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ABSTRACT 
Logistic systems which are inherently distributed, in general can be classified 
as complex systems. Survivability of these systems under varying environment 
conditions is of paramount importance. Different environmental conditions in 
which the logistic system resides are translated into several stresses. These in 
turn will manifest as internal stresses. Logistic systems can be modeled as a 
collection of software agents. Each agent’s behavior is a result of the stresses 
imposed. Predicting the agents’ collective behavior is of paramount importance 
to ensure survivability. Analytical modeling of such systems becomes very 
difficult, albeit impossible. In this paper, we study a supply chain in which a 
real life scenario is used. We implement the supply chain in Cougaar 
(Cognitive Agent Architecture developed by DARPA) and develop a predictor, 
based on Support Vector Machine. We report our methodology and results with 
real-life experiments and stress scenarios. 

INTRODUCTION 
Logistic systems can be classified as complex systems (Choi et al., 2001, 

Baranger, http://necsi.org/projects/baranger/cce.pdf). Logistic systems have 
many components such as suppliers and distributors at several stages. These 
components are distributed geographically but interdependent. At each 
component some form of nonlinear decision making process goes on. Typically 
the system would respond in a stable manner to external disturbances. But due to 
information delay, inherent feedback structure and nonlinear components 
unstable phenomena can arise which may ultimately manifest as chaotic 
behavior. Efficient resource allocation and collective oscillations (of say 
inventory levels) are some examples of emergent behavior shown by supply 
chains. They have structure at many scales, each component itself represents a 
simple supply chain. The components compete due to resource limitation but 
collobarate/cooperate to maximize their gains which is another characteristic 
feature of a complex system. 

The survivability of logistic systems under varying environmental 
conditions is of paramount importance. Survivability is going to be itself an 
emergent property of a logistic system and it represents the ability of the system 
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to function critically even under adverse conditions. We refer to these adverse 
conditions as stresses. In order to improve the survivability, agents should detect 
stresses and take appropriate actions so that they can adapt to stress conditions. 

Due to lack of analytical tools for predicting emergent behavior of a 
complex system from its component behavior, simulation is primary tool of 
designing and optimizing them.  In this paper, we would like to show how an 
agent learns to detect stresses as the first step towards improving survivability. 
We implemented the supply chain in COUGAAR (Cognitive Agent Architecture 
developed by DARPA) as a simulation model. Through an extensive design of 
experiments we subjected the supply chain to various stress conditions and made 
the agents learn to predict them using Support Vector Machines.  

THE SMALL SUPPLY CHAIN (SSC) 
We built a multi-agent system for a small supply chain using Cougaar 

version 8.6.0 (http://www.cougaar.org). Cougaar is an open source multi-agent 
architecture and is appropriate for modelling large-scale distributed supply chain 
management applications. We call our supply chain system ‘the Small Supply 
Chain (SSC)’. 

Each agent in SSC represents an individual organization such as a retailer 
and a supplier in the supply chain. Figure 1 represents demand flows in this 
small supply chain.  

Figure 1. Demand flows in the Small Supply Chain (SSC) 

STRESS TYPES AND LEVELS 
After some preliminary experiments and observations we used the 

following stress conditions to show our approach. 
 Stress 1. Changing OPTEMPO. The SSC works according to a Logistics 

Plan. The plan for each agent is prespecified. Every activity of each agent has an 
OPTEMPO value which represents the level of the activity. Changing 
OPTEMPOs can result in a different plan. OPTEMPO can have one of the three 
values, ‘low’, ‘medium’ and ‘high’.  

Stress 2. Adding and Dropping agents. Dropping agents can represent  
situations such as communication loss due to physical accidents or cyber attacks. 
When a retailer agent is dropped, its supporting agent will not receive tasks from 
the dropped agent and its retailer agents will not receive responses from the 
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dropped agent. These changes will affect planning significantly. By adding new 
retailer  agents, we can evaluate how sensitive the SSC is to scalability. The 
addition of new retailer agent increases a load  to the other supplier agents.  

PREDICTORS 
In Cougaar, every agent has its own blackboard. During logistics planning, 

the intermediate planning results are continuously accumulated on that 
blackboard. Therefore, by observing the blackboard we can recognize the 
planning state. Our idea is to detect stresses by observing the blackboard. Each 
agent should have the ability to detect the stresses coming from outside so that it 
can make a decision autonomously to handle the stresses. 

In this work, for each agent we build a separate supervised learning model.  
Many types of task classes are instantiated on the blackboard. The collection of 
the number of  tasks of each type represents the state of the agent. A task is a 
java class of Cougaar which represents a logistic requirement or activity. Tasks 
are generated successively along the supply chain starting from the tasks of the 
retailers. The learning model takes the state of the agent as input feature and 
predicts the corresponding stress type and level. The pattern recognition model - 
predictor - is built using the Support Vector Machine.  

In order to prepare training and test data, the blackboard of each agent is 
monitored and data is stored into a database during experiments by a monotoring 
facility which consists of a specialized Plugin and a separate server machine. 
The Plugin is a java class provided by Cougaar. The pattern recognition model is 
trained by the data from the database off-line.  

SUPPORT VECTOR MACHINES (SVM) 
A Support Vector Machine is a pattern recognition method. It has been 

popular since the mid-90s because of its theoretical clearness and good 
performance. Many pattern recognition applications have been reported since 
this theory was developed by Vapnik (Műller, et al., 2001), which also 
exemplify its superiority over similar such techniques. Moghaddam and Yang 
(2002) applied SVM to the appearance-based gender classification and showed 
that it is superior to other classifiers-nearest neighbor, radial basis function 
classifier. Liang and Lin (2001) showed SVM has better performance than 
conventional neural network in detection of delayed gastric emptying. For an 
exhaustive review, we recommend the reader to (Burges, 1998), (Chapelle et al., 
1999) and (Műller et al., 2001).   

The main idea of SVM is to separate the classes with a surface that 
maximizes the margin between them. This is an approximate implementation of 
the Structural Risk Minimization induction principle (Osuna, et al., 1997). To 
construct a classifier for a given data set, a SVM solves a quadratic 
programming problem with each variable corresponding to  a data point. When 
the size of the data set is large, it requires special techniques such as 
decompositions to handle the large number of variables. Basically, the SVM is a 
linear classifier. Thus in order to handle a dataset which is not separable by a 
linear function, inner-product kernel functions are used. The role of the inner-
product kernel functions is to convert an inner product of low dimensional data 
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points into a corresponding inner product in high dimensional space without 
actual mapping. The principle of the mapping is based on Mercer’s theorem 
(Vapnik 1998). By doing so, the SVM overcomes non linear-separable cases.  

The selection of kernel functions depends on the problem. We should 
choose an appropriate function by performing experiments. Other control 
parameters for the SVM are the extra cost for errors (represented as C), the loss 
sensitivity constant (εinsensitivity) and the maximum number of iterations. The extra 
cost for errors, C, is a cost assigned to training errors in non linear-separable 
cases. A larger C corresponds to assigning a higher penalty to errors (Burges 
1998). The loss sensitivity constant (εinsensitivity) represents the allowable error 
range for the prediction values.  

SVMs are basically developed as binary classifiers.  Currently a lot of 
research is being done in the area of multi-class SVM. We use BSVM 2.0 which 
is the multi-class SVM program suggested by Hsu and Lin (2002). 

EXPERIMENT CONDITIONS 
We simulated the SSC under various stress conditions. 12 Stress conditions 

are made through the combination of the following factors; The number of 
retailer 1(zero, one, two), OPTEMPO of retailer 2 (LOW, HIGH), OPTEMPO 
of retailer 3 (LOW, HIGH). 

219 data sets were used for training and 94 data sets were used for testing 
the prediction power from a total of 313 data sets. The conditions and number of 
experiments are shown in the table 1.  

 
Condition Retailer 1 Retailer 2 Retailer 3 Training Test Total 

1 Zero LOW LOW 25 11 36 
2 Zero HIGH LOW 19 8 27 
3 Zero LOW HIGH 18 8 26 
4 Zero HIGH HIGH 17 7 24 
5 One LOW LOW 29 13 42 
6 One HIGH LOW 17 7 24 
7 One LOW HIGH 18 7 25 
8 One HIGH HIGH 18 8 26 
9 Two LOW LOW 21 9 30 
10 Two HIGH LOW 12 5 17 
11 Two LOW HIGH 13 6 19 
12 Two HIGH HIGH 12 5 17 

Grand Total - - - 219 94 313 
 

Table 1. The stress condition and number of experiments 

TRAINING 
Through preliminary studies apart from the experiments tabulated above we  

found that all the stress conditions do not affect all the agents. Thus, we 
prepared different classification definitions for the training set depending on the 
agent (See the table 2). 

As the classification definitions are different for different  agents, the input 
features are also different. The tasks used as input features in each agent are 
shown in table 3.  
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The option ‘multi-class bound-constrained support vector classification’ in 
BSVM 2.0 is selected. For others, we use default options of BSVM 2.0 such as 
the radial basis function with gamma = 1/(the number of input features).  

 
Agent name Class definition 
Retailer 2, 

Warehouse 2 
 Class 1: condition 1,3,5,7,9,11    (Retailer 2 LOW) 
 Class 2:  condition 2,4,6,8,10,12  (Retailer 2 HIGH) 

Retailer 1 
 Class 1: condition 1,2,3,4 (zero Retailer 1) 
 Class 2: condition 5,6,7,8 (one Retailer 1) 
 Class 3: condition 9,10,11,12 (two Retailer 1) 

Factory 2, 
Supplier 2 

 Class 1: condition 1,3 (Retailer 2 LOW at zero Retailer 1) 
 Class 2: condition 2,4 (Retailer 2 HIGH at zero Retailer 1) 
 Class 3: condition 5,6,7,8,9,10,11,12 (All other cases) 

Warehouse 1, 
Factory 1  12 Classes, Regard each condition as one class 

Retailer 3, 
Distribution Center 2 

 Class 1: condition 1,2,5,6,9,10  (LOW Retailer 3) 
 Class 2:  condition 3,4,7,8,11,12 (HIGH Retailer 3) 

Distribution Center 1, 
Supplier 1 

 Class 1: 1,2 (LOW Retailer 3 at zero Retailer 1) 
 Class 2: 3,4 (HIGH Retailer 3 at zero Retailer 1) 
 Class 3: 5,6 (LOW Retailer 3 at one Retailer 1) 
 Class 4: 7,8 (HIGH Retailer 3 at one Retailer 1) 
 Class 5: 9,10 (LOW Retailer 3 at two Retailer 1) 
 Class 6: 11,12 (HIGH Retailer 3 at two Retailer 1) 

Wholesaler 1  Class 1: condition 9,10,11,12 (Two Retailer 1) 
 Class 2: condition 1,2,3,4,5,6,7,8 (other conditions) 

 
Table 2. The class definition by agents 

  
Agent Features Agent Features 

Retailer 2 PS, PW Warehouse 1 PS, PW, OS 
Distribution Center 1 W, OPS, OS Factory 1 TP, W, OPS, OS 

Retailer 3 PS, PW Supplier 1 TR, TP, OTP 
Distribution Center 2 PS, PW Retailer 1 PS, PW 

Factory 2 TP Warehouse 2 TP, W 
Supplier 2 OTP Wholesaler 1 S 

 
* PS = ProjectSupply, PW = ProjectWithdraw, W =Withdraw, TP = Transport, 

TR = Transit, S = Supply, OPS = ProjectSupply coming from outside, 
OS = Supply coming from outside, OTP = Transport coming from outside 

 
Table 3. The input features by agents 

 
Agent Success rate Agent Success rate 

Retailer 2 100% Warehouse 1 100% 
Retailer 1 100% Distribution Center 1 100% 
Retailer 3 100% Factory 1 22.34% 

Distribution Center 2 100% Supplier 1 40.43% 
Factory 2 100% Warehouse 2 84.04% 
Supplier 2 100% Wholesaler 1 86.17% 

 
Table 4. The success rate to classify the stress condition at each agent 

RESULTS 
The table 4 contains the test results. Overall performance is good. In 

addition, we can see the agent near the retailers in the supply chain can detect 
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stresses well. The Warehouse 1 agent can detect exactly all the stress types even 
though it is far from retailers (see Fig 1.).  

CONCLUSIONS 
We have shown an effective application of pattern recognition model for 

detecting stresses by observing the internal state of each agent. Each agent has a 
SVM since the influence of the same stress on different agents can be different. 
Some agents near the retailers can detect stresses very well. However, it is hard 
to detect the influence of the stress on agents which are far from retailers. 
Overall performance of predictor of each agent is good. Constructing the 
capability  for stress detection is the first step towards improving the 
survivability of a multi-agent system. This result is important because we can 
pursue further research on how we can dampen the effect of stresses based on 
the result of this study. Based on current detected state each agent can change 
their behaviors - ordering or planning - to adapt to stress conditions without 
serious performance degradation of overall supply chain. In addition, our 
approach is generally useful because it is very hard to model a complex system 
analytically. 
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