
Pricing Issues in Web Hosting Services

Natarajan Gautam∗

Harold and Inge Marcus Department of Industrial and Manufacturing Engineering

The Pennsylvania State University

310 Leonhard Bldg., University Park, PA 16802

Email: ngautam@psu.edu

Phone: 814-865-1239

Fax: 814-863-4745

Initial Submission: March 20, 2004
Revised Submission: September 25, 2004

∗Short description of the author: Natarajan Gautam is an Associate Professor of Industrial Engineering at

Penn State. He received his B.Tech. degree in Mechanical Engineering from the Indian Institute of Technology,

Madras, and his M.S. and Ph.D. in Operations Research from the University of North Carolina at Chapel Hill. He

is a member of INFORMS, IIE and IEEE. He is an Associate Editor for the INFORMS Journal on Computing. He

served as the Newsletter Editor as well as Website Editor for the INFORMS Applied Probability Society.

1

Pricing Issues in Web Hosting Services

Abstract

In this paper we consider a web hosting application where a web server hosts a website for
a client organization. Users that access this web server are sensitive to the quality of service
(QoS) they receive (such as response time and request loss). In the current state of practice,
web hosting services charge clients only based on the amount of information stored but do not
negotiate any quality of service details. This is changing as users expect good QoS. From a cost
standpoint, these web server farms consume a lot of electric power which needs to be incorporated
in the price charged to clients. In addition, the Internet domain in the web server farm vicinity
experiences severe congestion. In this paper we consider two main parameters that the web
servers tune, namely, caching strategy which is a one time decision and the processing speed to
run the web server which can be tuned from time to time. We present a detailed methodology
that web servers can incorporate to make the above decisions. Based on the dynamics between
the three players (users, clients and web servers), we show that the price and web server settings
could both either stabilize or oscillate between several points indicating chaos.

Keywords: pricing, quality of service, queueing model, fixed point iteration

1 Introduction

In this day and age, every company or firm needs to maintain its presence in the Internet through

their web sites. However, it is not possible for all organizations to have the workforce, skill, and

money to set up and maintain a web server locally. Therefore these organizations outsource their

web sites to companies that specialize in web hosting. These web hosting companies own very large

web server farms consisting of thousands of servers where they store web sites of their clients. The

current state of practice in terms of pricing schemes for web hosting services, is to charge a fixed

price for the amount of information (in bytes) stored in the web server. Organizations such as

Dotster (2004), Fortune-City (2004), Global-Servers (2004) and most other web hosting companies

use such a pricing scheme.

The problem with the current pricing scheme is that there is no mention of quality of service

(QoS) that the users experience. All Internet applications are rapidly incorporating QoS guaran-

tees, hence users are very sensitive to the lack of QoS. Since the number of users and applications

in the Internet is growing at an exponential rate, the clients would soon start demanding QoS for

their users in order to stay competitive. However, what is complicated is that clients do not directly

interact with their customers, hence the clients would have to periodically monitor the web servers

to determine if the users’ QoS is met. Few companies such as Website-Providers (2004) promise

a 99.5% up time guarantee (as a QoS measure) and also require the clients to adhere to certain

traffic requirements. However, this does not help the user much as the QoS could degrade due to

congestion in the Internet domain in the vicinity of the web server farm. The ultimate objective is

to provide guarantees that can be directly related to the performance experienced such as response

time and loss.

The objective of this paper is twofold. Firstly, it provides a tool for performance analysis and

decision making for web servers. In particular, we recommend strategies for caching policies as well

as for determining performance measures, such as response time and loss. The second objective

is to study a pricing model for web hosting, that web servers can use iteratively by periodically

measuring user characteristics and updating prices with the client. The paper is written with the

web server farm as a potential beneficiary, however we incorporate client and user behavior aspects

in such a manner the clients could also benefit in terms of being able to negotiate an appropriate

contract. In principle, this paper studies the interaction between the three parties: users, clients

1

and web servers.

The literature on pricing issues in the Internet and telecommunication networks has gained

importance in the last two decades. We first summarize some of the work in the previous decade.

Kelly (1996) describes a charging and accounting mechanism based on an effective bandwidth con-

cept. Edell, McKeown, and Varaiya (1995) present a system for billing users for their TCP traffic.

MacKie-Mason and Varian (1995) discusses issues on pricing the internet. Parris, Keshav, and

Ferrari (1992) present a framework for pricing services, and study the effect of pricing on user

behavior and network performance. Cocchi, Estrin, Shenker, and Zhang (1993) study the role of

pricing policies in multiple service class networks. Crowcroft (1996) proposes subscription based

pricing, and a mechanism based on dynamic host address allocation giving priority levels for usage.

Shenker, Clark, Estrin, and Herzog (1996) state that the research agenda on pricing in computer

networks should shift away from the optimality paradigm and focus on structural/architectural

issues. Some of the other work, especially analytical-model based results, are summarized in the

recent book by Courcoubetis and Weber (2003).

In the current decade a large number of research articles have appeared on pricing in the In-

ternet. Caesar, Balaraman, and Ghosal (2000) present a comparative study of usage-based pricing

strategies for telephone services over the Internet. Adler, Cai, Shapiro, and Towsley (2003) consider

algorithms for probabilistically setting explicit congestion notification bit at routers to estimate link

congestion prices. Odlyzko (2000) argues that although flat rate continues to be the predominant

form of selling Internet access, flat rate pricing encourages waste and requires the 20 percent of

users who account for 80 percent of the traffic to be subsidized by other users and other forms

of revenue. In (Davies, Hardt, and Kelly 2004), the authors describe a framework for capacity

planning and costing in an IP network environment. In a congestion-pricing framework, according

to Henderson, Crowcroft, and Bhatti (2001), the congestion charge would replace usage and QoS

charges. Thereby, users would pay their Internet service providers a subscription charge to cover

fixed costs and a congestion charge only when appropriate. Flat rate and user based pricing policies

are used in (Hamadeh, Jin, Walia, Kesidis, and Kirjner 2004) to consider issues of cost recovery

in residential broadband access. Turner and Ross (2004) consider a market where peers trade re-

sources such as storage, bandwidth and CPU cycles. The authors build a protocol to facilitate this.

Jin and Jordan (2004) investigate the sensitivity of resource allocation and the resulting QoS to

resource prices in a reservation-based QoS architecture that provides guaranteed bounds on packet

2

loss and end-to-end delay for real-time applications.

The paper is organized as follows. In Section 2, we describe the problem scenario in order to

model the system to predict performance. In Section 3, we describe a methodology to make the

one-time decision of choosing an appropriate caching mechanism. The other performance analysis,

namely the queueing model to determine the QoS measures such as response time and loss, is

described in Section 4. Once the performance models are sorted out, we turn to pricing aspects

and study the relationship between the three groups: users, clients and servers, in Section 5. Finally

in Section 6 we state our concluding remarks and point out some future directions of work.

2 System Performance Modeling

There are three players in this system: web servers, client and users. Typically a web-hosting

service will own thousands of web servers (called server farms). Each web server hosts web sites

for one or more clients. Users access the client’s web pages from the web server and experience

certain QoS. Typically when users of a client have stringent QoS requirements, the client usually

gets a dedicated web server. If the web server hosts more than one client, typically they either have

similar QoS needs and workload characteristics, or they have no QoS requirements. In the former

case, we can club all the clients’ users and think of the web server as though it caters to a single

client. In that light, we can model each web server independent of the other web servers in the

farm, with the understanding that for all practical purposes it is as though there is a single client.

The only time a web server feels the effect of other web servers is when there is a congestion caused

in the local network (called domain) of the web server farm.

REQUESTS

RESPONSE

USERS
INTERNET

QUEUE

WEB
SERVER

Figure 1: The system of users, a single web server and the Internet

Consider a system of users, a single web server, and the Internet that connects the users to the

web server. See Figure 1 for an illustration of the system. Assume that the user requests come

according to a Poisson process with parameter λ requests per minute. This assumption is made for

3

analytical convenience with the understanding that in reality not only does λ not stay a constant,

but the inter-arrival times of requests some times are non-exponential. The requests to the web

server wait in a queue in front of the server. The web server serves one request at a time according

to first-come-first-served policy. We assume that all requests are for files that can be transmitted

to the user as a string of packets, none of the requests are for audio or streaming video applications

that have bandwidth requirements. The only two QoS requirements we consider in this paper are:

delay (average time between request and response) for those requests that receive a response and

request loss (fraction of requests that were lost without a response).

2.1 Modeling Service Times

The web server stores documents in two places: one in its main memory which takes a while to

retrieve and the other at a cache which can be retrieved relatively quickly. Typically only a small

number of documents are stored in the cache. When a web server picks up a request from its queue,

it first checks the cache to see if the request can be satisfied (if yes, the response is given quickly

and is called cache hit), otherwise the request is satisfied from the main memory (this is called

cache miss). This is pictorially explained in Figure 2.

Request

Cache Hit

Response

Cache Miss
Cache

Main
Memory

Update

Figure 2: The web server cache and main memory

The web server can update the contents of the cache based on the information requested. In

addition, the cache can be sorted in an appropriate manner to minimize searching speed. There are

several strategies available in the literature for cache management. We will address these caching

schemes in Section 3. In particular we will obtain the cache miss probability (called cm) and cache

hit probability. Let the average time to locate the requested file in the cache be `c. Also let the

average time to locate a requested file in the main memory (including time spent searching the

cache) be `m. If the average file size is M bytes and processor speed is c bytes per minute, then

4

the average service time (in minutes) for a request is

S =M/c+ cm(`m) + (1− cm)(`c). (1)

2.2 Modeling Request Loss

A request is considered lost when either the user’s request cannot reach the web server, or the web

server’s response cannot reach the user. Both happen when there is congestion in the web server

farm local network (or domain) or the web server itself goes down. We assume that the web server

down times as well as network congestion durations are long enough that the requests waiting in

the web server queue can be dropped. In addition any requests that come during this down (or

congested) period are also lost. Thereby request loss is computed as: the sum of fraction of requests

that were dropped and fraction of requests that were lost.

We can model this on-off behavior using an alternating renewal process. When the web server

is up and the domain network is congestion free, it corresponds to the server being “on”. Likewise,

if either the web server is down, or the domain network is congested or both, it corresponds to

the server being “off”. Thereby we can model the system as a single server queue with Poisson

arrivals and infinite waiting space such that when the server is on, it serves at an average rate of

1/S (see Equation (1)) customers per minute. When the server goes from on to off, all requests in

the queue and server are dropped. The system stays empty until the server comes back on. For

analytical convenience, we assume that the service times are exponentially distributed with mean

1
µ
= S. Also the on times and off times are assumed to be exponentially distributed with mean

1
α
and 1

β
minutes respectively. This system is analyzed in Section 4. Although several intricate

queueing network models are used (Menasce and Almeida 1998) to model web servers, they do

not incorporate congestion issues. Here we model the web server as a single station with the

understanding that only the bottleneck node is modeled and only catastrophic server breakdowns

are modeled.

2.3 Practical Considerations

Before jumping into the analytical models, it may be worthwhile to state the appropriateness

of some of the assumptions made thus far, especially from a practical point of view. We have

assumed for our model that the inter-arrival times, service times, on times and off times are all

exponentially distributed. Traces from web servers (Liu, Niclausse, and Jalpa-Villanueva 2001)

have shown that Poisson process is usually sufficient to model session arrival process. Since Poisson

5

process implies exponentially distributed inter-arrival times, this assumption is valid. However,

service times are not usually exponential in practice. This is a first-order approximation made for

modeling convenience. With regards to on and off times, Gray and Siewiorek (1991) reports that

practical measurements reveal that off-times are exponentially distributed, whereas on-times are

usually obey aWeibull distribution or a negative hyper-exponential distribution. Other assumptions

made henceforth would be supported by references.

3 Evaluating Caching Schemes

We consider two main caching strategies (Mookerjee and Tan 2002) in web proxy servers, LRU

(least recently used) and LFU (least frequently used). We obtain analytical expressions for the

cache-miss-probability for both LRU and LFU based on a given user behavior pattern. In the liter-

ature there are several papers that develop approximations for analyzing these caching strategies,

however there is very little exact analysis, as done in this paper. There are two Operations-Research

papers that devote a large effort analyzing caching strategies, namely (Mookerjee and Tan 2002 ;

Jelenkovic and Radovanovic 2004). In particular, Mookerjee and Tan (2002) build a determinis-

tic model that accurately computes cache properties based on sampled data. Further, Jelenkovic

and Radovanovic (2004) study a stochastic model of a cache, and obtain optimal control decisions

in a dynamic environment. This paper considers the caching problem as a strategic problem (as

opposed to operational problems as considered by Mookerjee and Tan (2002) as well as Jelenkovic

and Radovanovic (2004)).

We first explain the notations and the caching strategies. Then we model the LFU scheme

(Section 3.1) followed by the LRU scheme (Section 3.2). Finally we illustrate the results using an

example in Section 3.3. Consider a single web server. Let B be the set of all possible information
that the users access this web server for. Let B be the cardinality of B, i.e. B is the total number
of all possible information that can be cached. At any given time in this web server, a subset of B
is cached. Let the cache size be H. That means at a time, a maximum of H (where H ≤ B) pieces

of information can be cached in this web server.

When a user requests for a piece of information and this is not available in the cache, we en-

counter what is known as a cache-miss. Our main objective is to obtain analytical expressions

for this cache-miss-probability under two caching strategies, LRU and LFU. In the LRU scheme,

6

the cache is arranged according to an increasing least-recently-used scheme. That means the most

recently used information is at the head of the line in the cache queue. However, in the LFU

scheme, the last T requests are considered and the cache entries are arranged in an increasing

least-frequently used order. That means the most frequently accessed information among the last

T requests, is at the head of the line in the cache queue.

We assume that all users are identical and choose information u with probability p(u) (where

u ∈ B). The probability mass function of the chosen information is depicted in Figure 3. We
use a static model where this probability mass function of the chosen information does not change

with time. However, in the dynamic case we can assume quasi-static behavior and use this model.

Based on several papers (such as Breslau, Cao, Fan, Phillips, and Shenker (1999)) we model the

probability mass function using Zipf distribution for our numerical computations.

1 2 3 4 B. . .

. . .

Probability

0.01

0.02

0.03

0.04

0.05

Figure 3: Probability mass function of the chosen information

3.1 The LFU scheme

In this scheme, the index corresponding to the last T requests are stored. Based on the frequency

of the indices, in the long run the cache contains H (or less) entries in a decreasing LFU order. Let

v1, v2, . . ., vT be the last T requests that are stored. Let Nn(u) be the number of entries among

the T entries that correspond to information u just before the nth request. For n > T , let X i
n be

the index of the ith entry of the cache just before the nth request arrives. Note that X i
n = 0, if i

th

entry of the cache is empty. Therefore X1
n corresponds to the highest Nn(u), X

2
n corresponds to the

next highest Nn(u), and so on. The vector (X
1
n, X

2
n, . . . , X

H
n) represents the cache in an increasing

LFU order just before the nth request arrives. The dynamics of the Nn(·) process is described as
follows: if u is the index corresponding to the nth user request (this happens with probability p(u))

7

then Nn+1(u) = Nn(u) + 1− Iv1=u, where Iv1=u is the indicator variable that takes on the value 1

if v1 = u, and 0 if v1 6= u. Also, for i 6= u,

Nn+1(i) =

{

Nn(i)− 1 if i = v1,
Nn(i) if i 6= v1.

Let U = (u1, u2, . . . , uB) be the ordered set corresponding to the decreasing order of the proba-

bility mass function, i.e., ui and uj are such that if p(ui) > p(uj) then i < j. The following theorem

describes the cache miss probability in the long run based on the limiting distribution of the cache

contents.

Theorem 1 For large values of T (specifically as T →∞), in the limit X j
n (for j = 1, . . . , H) can

be calculated as

lim
n→∞

Xj
n → uj with probability 1.

Hence the long-run probability of cache miss under LFU is

cmlfu = (1− u1 − u2 − . . .− uH).

Proof. The theorem is a direct consequence of the strong law of large numbers (SLLN). By making

suitable transformation of variables, particularly Bernoulli random variables, and then using SLLN

one can prove the above result.

3.2 The LRU scheme

In this scheme, we assume that in steady-state, the cache contains H entries in an increasing LRU

order. Let Y i
n be the index of the i

th entry of the cache just before the nth request arrives. The

vector (Y 1
n , Y

2
n , . . . , Y

H
n) represents the cache in an increasing LRU order just before the n

th request

arrives. The dynamics of the cache is described as follows: if u is the index corresponding to the nth

user request (this happens with probability p(u)), then check if u ∈ {Y 1
n , Y

2
n , . . . , Y

H
n }. If indeed

u ∈ {Y 1
n , Y

2
n , . . . , Y

H
n }, in particular, u = Y j

n , then the vector (Y
1
n+1, Y

2
n+1, . . . , Y

H
n+1) is such that

Y i
n+1 =











Y j
n if i = 1
Y i−1
n if 1 < i ≤ j
Y i
n if i > j.

However, if u /∈ {Y 1
n , Y

2
n , . . . , Y

H
n }, then the vector (Y 1

n+1, Y
2
n+1, . . . , Y

H
n+1) is such that

Y i
n+1 =

{

u if i = 1
Y i−1
n if i > 1.

8

Let S be the state space of the stochastic process {(Y 1
n , Y

2
n , . . . , Y

H
n), n ≥ 0}. Clearly, S can be

written as

S = {(y1, y2, . . . , yH) : ∀i, j ∈ (1, 2, . . . , H), if i 6= j, then yi 6= yj}.

That means for a given n, no two elements in the H-tuple (Y 1
n , Y

2
n , . . . , Y

H
n) are identical. The

following theorem describes the cache miss probability in the long run based on the limiting distri-

bution of the cache contents.

Theorem 2 The limiting distribution of the stochastic process {(Y 1
n , Y

2
n , . . . , Y

H
n), n ≥ 0} is given

by

πy1,y2,...,yH
= lim

n→∞
P{Y 1

n = y1, Y
2
n = y2, . . . , Y

H
n = yH}

=
p(y1)p(y2) . . . p(yH)

[1− p(y1)][1− p(y1)− p(y2)] . . . [1− p(y1)− p(y2)− p(y3)− . . .− p(yH−1)]
.

Hence the long-run probability of cache miss under LRU is

cmlru =
∑

(y1,y2,...,yH)∈S

πy1,y2,...,yH
(1− p(y1)− p(y2)− . . .− p(yH))

=
∑

(y1,y2,...,yH)∈S

p(y1)p(y2) . . . p(yH)(1− p(y1)− p(y2)− . . .− p(yH))
[1− p(y1)][1− p(y1)− p(y2)] . . . [1− p(y1)− p(y2)− p(y3)− . . .− p(yH−1)]

.

Proof. Writing down the balance equation for the discrete time Markov chain {(Y 1
n , Y

2
n , . . . , Y

H
n), n ≥

0}, and going through the algebra, it is possible to show the results of the theorem.

3.3 Example

As a simplified example (to illustrate the results), consider there are 10 pieces of information (i.e.

B = 10) and the cache size is 4 (i.e. H = 4). The following is the probability mass function of the

10 pieces of information:

p(1) = 0.11, p(2) = 0.09, p(3) = 0.07, p(4) = 0.05, p(5) = 0.17,
p(6) = 0.15, p(7) = 0.03, p(8) = 0.01, p(9) = 0.13, p(10) = 0.19.

3.3.1 LFU results

From the above values, it is clear that U = (10, 5, 6, 9, 1, 2, 3, 4, 7, 8). Therefore if T is large, the

cache in the long run would be (10, 5, 6, 9) and the cache miss probability cmlfu from Theorem 1 is

1− p(10)− p(5)− p(6)− p(9) = 0.36. The results match with the simulations. However on running
simulations for smaller T values, we observe (based on a single simulation run for each T value)

that as T increases, cmlfu decreases asymptotically to 0.36. Figure 4 illustrates the results.

9

0 100 200 300 400 500 600 700 800
0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

T

C
ac

he
 M

is
s

P
ro

ba
bi

lit
y

Figure 4: Probability of cache miss as a function of T

3.3.2 LRU results

From Theorem 2, the long run probability that the cache has entries (5, 6, 9, 10) is given by

π5,6,9,10 =
p(5)p(6)p(9)p(10)

[1− p(5)][1− p(5)− p(6)][1− p(5)− p(6)− p(9)] .

= 0.002.

The above results agree perfectly with the simulations.

Likewise, the cache miss probability using Theorem 2 can be calculated as

cmlru =
10
∑

i=1

10
∑

j=1

j 6=i

10
∑

k=1

k 6=i,j

10
∑

l=1

l 6=i,j,k

p(i)p(j)p(k)p(l)[1− p(i)− p(j)− p(k)− p(l)]
[1− p(i)][1− p(i)− p(j)][1− p(i)− p(j)− p(k)] = 0.4879.

The above cmlru value tallied well with the simulations, and thereby validating our theorem.

3.4 Implementation

We now discuss some implementation issues that web servers will face while determining an appro-

priate caching strategy. When the relative popularity of the web documents change fast, LRU is

a better policy (since it does not retain old information). However if the popularity remains fairly

consistent over time, LFU is better. It is important to note that the number of documents would be

more-or-less fixed and hence due to the use of Zipf distribution, although the sorted ranks change,

their individual probabilities relative to their popularity ranks remain the same. Hence the cache

10

hit and cache miss probabilities do not change significantly with time. Thus these results are used

in the initial set up phase to aid a strategic decision. Once the caching strategy is chosen, the web

server only concentrates on dynamically modifying server speed from period to period.

4 Single Server Queue with Breakdown and Repair

In this section, we continue the analysis from Section 2.2. Recall that we have a single server queue

where customers arrive according to a Poisson process with mean arrival rate λ. Service times are

exponentially distributed with mean 1/µ. There is infinite room for requests to wait. The server

stays on for a random time distributed exponentially with mean 1/α. When the server turns off,

all customers in the system are ejected. Then the server stays off for a random time distributed

exponentially with mean 1/β. No requests can enter when the server is off. Recall that the server

is considered “off” either when there is congestion in the local network of the web server farm, or

when the server actually goes down. Notice that the system behaves as an M/M/1 queue when

the server is on, and the system is empty when the server is off. The server toggles between on and

off states.

D

0 1 2 3 4 5
λ λ λ λ λ

µ µ µ µ µ

λ

µ

α

α α
α α

α

β

Figure 5: Rate diagram of the CTMC

Chao (1995) considers a similar problem where the breakdowns are called catastrophes as all

the customers are lost. However the assumptions and settings in Chao (1995) are different in the

following ways: (1) catastrophe occurs with arrivals in Chao (1995), however in this paper, the

server randomly toggles between up and down states; (2) repair times are zero in Chao (1995); (3)

the methodology in the two papers are different. However we agree with Chao (1995) that this

type of catastrophic breakdowns have received very little attention. There have been some recent

papers (for example Chao and Zheng (2003), Kumar and Arivudainambi (2000), etc.) that consider

11

transient analysis of such systems.

We model the system as a continuous time Markov chain (CTMC). Let X(t) = i (for i =

0, 1, 2, 3, . . .) imply that there are i requests in the system and the server is on at time t. In

addition, let X(t) = D denote that the server is down (and there are no customers) at time t.

Clearly {X(t), t ≥ 0} is a CTMC with rate diagram shown in Figure 5. The CTMC is ergodic, and
for j = D, 0, 1, 2, . . ., let

pj = lim
t→∞

P{X(t) = j}.

In order to obtain the steady state probabilities pj , consider the following balance equations:

α(p0 + p1 + . . .) = βpD

βpD + µp1 = (λ+ α)p0

µp2 + λp0 = (λ+ α+ µ)p1

µp3 + λp1 = (λ+ α+ µ)p2

µp4 + λp2 = (λ+ α+ µ)p3

... =
...

From the first equation above, we have pD =
α

α+β . Multiplying the second equation by 1, third

equation by z, fourth equation by z2, and so on, and summing up:

ψ(z) =
µp0 − zβpD − p0µz

µ+ λz2 − λz − αz − µz , (2)

where ψ(z) = p0+ p1z+ p2z
2+ p3z

3+ p4z
4+ . . . (notice that ψ(1) = 1− pD). Standard techniques

such as ψ(0) = p0 and ψ(1) = β/(α + β) does not yield a solution for p0. Hence we need the

following Lemma to determine p0 and hence ψ(z).

Lemma 1 Consider a series of real positive-valued numbers a0, a1, a2, etc. For any function of

the form φ(z) =
∞
∑

i=0

aiz
i such that φ(z) can be written as a fraction φ(z) = A(z)

B(z) , where A(z) and

B(z) are polynomials, if B(z∗) = 0 for any z∗ ∈ [0,∞) then A(z∗) = 0.

Proof. By definition φ(z) is a continuous, differentiable and increasing function over z ∈ [0,∞).
For some z∗ ∈ [0,∞), let B(z∗) = 0. If A(z∗) > 0 (similar result can be shown for A(z∗) < 0),
then φ(z∗−) = −φ(z∗+) and |φ(z∗−)| → ∞. This contradicts the fact that φ(z) is continuous,

12

differentiable and increasing function over z ∈ [0,∞). Hence A(z∗) = 0.

We now use the above Lemma to derive a closed-form algebraic expression for ψ(z) from Equa-

tion (2). The result is described in the theorem below.

Theorem 3 The function ψ(z) is given by

ψ(z) =
µp0(1− z)− zαβ

α+β

λz2 − (λ+ µ+ α)z + µ, (3)

where p0 is given by

p0 =
αβ

µ(α+ β)

[

λ+ µ+ α−
√

(λ+ µ+ α)2 − 4λµ
λ− µ− α+

√

(λ+ µ+ α)2 − 4λµ

]

. (4)

Proof. Using the results from Lemma 1, setting the denominator of ψ(z) in Equation (2) to zero,

we get

z∗ =
(λ+ µ+ α)−

√

(λ+ µ+ α)2 − 4λµ
2λ

,

as the unique solution such that z∗ ∈ [0,∞). Setting the numerator of ψ(z) in Equation (2) to zero
at z = z∗, we get

p0 =
αβz∗

(α+ β)µ(1− z∗) .

By substituting for z∗, we get p0 in Equation (4). Also, by rearranging terms in Equation (2), we

get Equation (3).

Based on the above theorem, we can derive an asymptotic result. We let the server up and

down times to be extremely large (especially in comparison to the arrival and service rates). Then

we get the following remark:

Remark 1 If λ < µ, α→ 0 and β → 0 such that α
β
→ r, then pD = r/(1+r) and for i = 0, 1, 2, . . .,

pi = (1− pD)(1− λ/µ)(λ/µ)i.

The above result confirms our intuition that the system reaches steady state when the server is up.

Therefore, the probability that there are i requests is the product of the probability that the server

is up, and the probability there are i requests in steady state, given the server is up.

We now derive the two key performance measures, namely, loss and response time. Let P` be

the probability that a request is lost and let ∆ be the average delay (or response time) at the server

as experienced by users that receive a response. Note that the latter is a conditional expected value,

13

conditioned on receiving a response. The two QoS measures are P` and ∆, lower their values, better

the QoS. Both measures are in terms of L, the time-averaged number of requests in the system

(note that it includes the down times when there are no requests in the system). The following

theorem summarizes the results:

Theorem 4 The average number of requests in the web-server-system is

L =
1

α

[

λβ − µβ + p0µ(α+ β)

α+ β

]

, (5)

where p0 is described in Equation (4). The QoS measures P` and ∆, in terms of L are given by

P` =
αL(α+ β) + λα

λ(α+ β)
, (6)

∆ =
L(α+ β)2

λβ2
. (7)

Proof. By definition,

L = 0pD + 0p0 + 1p1 + 2p2 + 3p3 + . . . ,

and clearly that can be written as L = ψ′(1). By taking the derivative of ψ(z) in Equation (3),

and then letting z = 1, we get Equation (5). The number of requests that were dropped per unit

time is α(1p1 + 2p2 + 3p3 + . . .) = αL. Therefore the fraction of requests that entered the queue

and were dropped when the server switched from on to off, is αL
λ(1−pD) . The probability that an

arriving request will complete service, given that it arrived when the server was up, is given by

(conditioning on the number of requests seen upon arrival)

∞
∑

j=0

(

pj
1− pD

)(

µ

µ+ α

)j+1

=
µ

µ+ α

1

1− pD
ψ

(

µ

µ+ α

)

=
µ

1− pD
β − p0(α+ β)

λ(α+ β)
.

Therefore the rate at which requests exit the queue is µ β
α+β −µp0, which makes sense as whenever

there are one or more requests in the system, the exit rate is µ. In addition, since the drop rate

(derived above) is αL, we can write µ β
α+β − µp0 = λ(1 − pD) − αL, which again makes sense and

the total arrival rate when web server is on is λ(1− pD).

We also have a fraction pD requests that are rejected when the server is down. Therefore the

loss probability is λpD+αL
λ

, and by substituting for pD we obtain P` in Equation (6). Using Little’s

law, we can derive ∆ in the following manner. The expected number of requests in the system when

the server is on is L
1−pD

. Of these L, a fraction λ(1−pD)−αL
λ(1−pD) only will receive service. Therefore the

average delay (or response time) at the server as experienced by users that receives a response is

given by L
λ(1−pd)2

which is the expression in Equation (7).

14

5 Pricing Based on QoS

We derived algebraic expressions for the two performance measures: average delay for a request

that receives a response (∆) in Equation (7), and probability that a request is lost (P`) in Equation

(6). Both expressions were in terms of α, β, λ and µ. The terms α and β are beyond the control of

the three players in the system namely, users, client and web server. What changes QoS and price

are λ and µ. In the next few subsections we illustrate the relationships between QoS and price in

terms of λ and µ. Notice that µ = 1/S, where S is the average service time defined in Equation

(1). As discussed in Section 3.4, the caching scheme is selected only once, and thereby all terms

except the processor speed (c) in Equation (1) are fixed. Throughout this section, varying µ means

varying c.

5.1 User and Web Server Interaction

For a fixed server processing speed c (and hence fixed µ), by plotting ∆ and P` against λ, one

can see that both are increasing functions of λ. This is because as the load increases, performance

deteriorates. On the other hand if the delay or loss increases, the user demand (in terms of λ)

decreases and vice versa. The server performance and customer behavior is depicted in Figure 6.

Demand

Server performance

Customer behavior

λ

Delay or loss

Figure 6: Server performance and customer behavior versus λ

The following two equations describe a functional relationship between λ and the performance

measures from a customer behavior standpoint:

λ = cb`(P`), (8)

λ = cbd(∆). (9)

Since there are two equations, for a given ∆ and P`, the customer demand rate λ will be the

minimum of the two possible values. In other words, λ = min{cb`(P`), cbd(∆)}. Although in

15

Section 5.3 we will assume a functional form for cb`(λ) and cbd(λ), in reality this need not be

known, especially to the web server. In the iterative algorithm presented in Section 5.4, we will see

how the functions need not be known to the server.

5.2 Client and Web Server Interaction

The two parties that are involved in economic transactions are the client and web server. The client

would typically be willing to pay a higher price if it can attract a larger number of users to the web

site. This is because the expected profit increases if number of users increases. This relationship

is depicted in Figure 7. A functional relationship between the price a client is willing to pay (pr)

and λ can be thought as

pr = g(λ). (10)

The functional relationship in Equation (10) above need not be known to the web server as we will

see in the iterative algorithm presented in Section 5.4. However, in Section 5.3 we will assume a

functional form for g(λ).

Pr

λ

Figure 7: Price client is willing to pay versus λ

The web server on the other hand has several costs to recover including investment costs,

maintenance costs, operational costs, personnel costs, etc. However these costs are fixed with

respect to µ or c for that matter. One cost that has been ignored in the past that researchers are

paying attention to, is power cost. Typically c, the processing speed can be modified by suitably

changing the voltage. Since power is proportional to the square of the voltage, the cost incurred can

be assumed to be quadratic. In particular, the relationship between the price the client is willing

to pay (pr), and the processing speed (c), is given by

pr = k + ac2, (11)

where k is the fixed cost and a is the cost associated with power. This relationship is depicted in

16

Figure 8. The functional relationship in Equation (11) must be known to the web server in order

to decide on an acceptable price.

Pr

C

Figure 8: Price client is willing to pay versus c for server

5.3 Numerical Example

In this section we present a numerical example for the various parameters of the problem as well

as functional relationships. There are two phases of execution, the initial phase and the iterative

phase. In the initial phase, caching decisions are made, cache miss probability is computed as well

as user arrival rates are obtained. For this the server uses a nominal (possibly mid-range c value)

for processing speed. Using Equation (1), the service rate µ is obtained. For our numerical values,

we obtained a relationship between c and µ as follows:

1

µ
=
15000

c
+ 0.035,

from which an initial value of µ can be obtained. In the iterative phase, using the arrival rate λ,

for various c values, the server computes the loss probability (P`) and delay (∆) using Equations

(6) and (7). For the calculations, α = 0.02 and β = 0.1 were used. The server also computes the

price for various c values using numerical values for Equation (11):

pr = 10 + 30(c/1000000)
2.

The server presents (based on several c values), various options for price (pr) and QoS (P` and ∆).

Based on the λ value given to the client by the server, the client uses Equation (10) to determine

the price (pr) the client is willing to pay. The numerical values chosen for Equation (10) is:

pr = 12.65
√
λ.

Using this pr, the server now computes the corresponding c (from Equation (11), i.e. pr = 10 +

30(c/1000000)2) and uses it for the next iterative stage. At the end of the iterative stage the new

17

λ values are obtained according to the following customer behavior functions, corresponding to the

numerical values in Equations (8) and (9):

λ = min(1.195/∆, 1.8/P`).

This iterative phase is performed continuously.

For this numerical study, it turns out the iterative phase does not converge. Instead it oscillates

between two price values, irrespective of whether we start with an initial phase with a smaller price

(Figure 9), median price between the two values (Figure 10) or larger price (Figure 11). However

for other numerical examples, the results range from cases where the price converges to a single

fixed point, to cases where the oscillating price values depend on the initial value of λ and c.

0 10 20 30 40 50 60
28

30

32

34

36

38

40

42

n, the iteration stage

pr
ic

e
at

 n
th

 it
er

at
io

n

Figure 9: Price across iterations, initial values include: λ = 5 and c = 230770

0 10 20 30 40 50 60
38

38.5

39

39.5

40

40.5

41

41.5

n, the iteration stage

pr
ic

e
at

 n
th

 it
er

at
io

n

Figure 10: Price across iterations, initial values include: λ = 10 and c = 1000000

18

0 10 20 30 40 50 60
38

39

40

41

42

43

44

n, the iteration stage
pr

ic
e

at
 n

th
 it

er
at

io
n

Figure 11: Price across iterations, initial values include: λ = 12 and c = 2250000

5.4 Implementation Details: Iterative Procedure

In the previous subsection we alluded to the possibility of observing chaotic behavior when a fixed

point iteration is used (see Figures 9, 10 and 11). However it is important to realize a few things:

the functional relationships are usually unknown, a single simple function does not typically char-

acterize some of the relationships, other external factors steer the iterations in different directions,

the processing speed c usually takes 8-10 discrete values (as opposed to our continuous assumption),

and other incentives could be thrown in to steer away from the chaotic patterns.

In that light, we discuss some of the implementation details. Firstly from a user standpoint,

it is assumed that the users are extremely sensitive to the changes in QoS. In practice, the web

servers should wait for a reasonably long time before offering a new price to the client so that

the users can first modify their arrival rate and stabilize to the new value. Secondly, the clients

who are out of the picture in terms of request and response, would be interested in knowing if the

customers (i.e. users) were satisfied. One way is to conduct surveys. However an easier method

that the clients adopt is to send test messages (as dummy requests) periodically to evaluate the

server performance. Finally, the web server uses algorithm PRICE described below for iteratively

obtaining an optimal price.

19

delay
or loss

Price

Figure 12: Price versus performance advertised by server

Algorithm PRICE

Input: α, β, k, a
Output: Equilibrium price
Method:

1. Initially server must charge a base price for a period.

2. Based on user arrival patterns, λ is obtained by server. In addition, server determines optimal
caching policy using the estimated probabilities of accessing various documents.

3. Web server presents the value of λ to client, and hence offers a graph (or table) of price versus
performance as shown in Figure 12.

4. The client determines the most suitable price it can pay for a given λ, and offers that price.
Hence the web server knows the performance to provide and thereby c.

5. Server adjusts c suitably and runs the system for a period of time. Based on the QoS obtained,
the user demand rate λ changes suitably.

6. Server records new arrival rate λ.

7. Steps 3, 4, 5 and 6 are solved iteratively until λ, c (hence µ) and price are stabilized.

6 Concluding Remarks

In this research we concentrate on a customized pricing policy that a web server offers to each of

its clients. This pricing policy is a function of the QoS (or performance) experienced by the clients’

clients, i.e. the users. We first study two different caching policies namely LRU and LFU, and

evaluate their performance and applicability. We assume that the caching decision is a strategic

one-time decision. Next, we obtain closed-form algebraic expressions for performance measures

such as response time and loss experienced by users. In this, one of the innovative components

is to model congestion in the web server farm by assuming the web server to be down. Then

we study a pricing model where we assume users are sensitive to the QoS they receive (such as

20

response time and request loss). To adjust to the fluctuating demand, the server can suitably

modify the processing speed from time to time. Based on the dynamics between the three players

(users, clients and web servers), we show that the price and web server settings could either stabi-

lize or oscillate between several points (possibly depending on the initial condition) indicating chaos.

This paper is certainly a preliminary one and several extensions are possible in the future. First

of all the user arrival rates λ change significantly over time. In addition, the congestion episodes

are correlated with periods of high arrival rates. It is also important to incorporate some admission

control (possibly based on pricing) on the user traffic. Although the exponential distribution

produced nice closed-form results, it may be prudent to consider other distributions. In terms

of the web caching mechanisms, other schemes that are more dynamic can be used. In terms of

dynamically executing control, one other parameter of interest is to increase the number of servers

during periods of heavy traffic. For example, if there are sites that have unusually high demand for a

short time in a day, only during those times, the queue of requests can be served by multiple servers.

All these have a tremendous impact on pricing, which could also be time-of-the-day dependent.

Acknowledgements

The author thanks the anonymous referees for their comments and suggestions, which led to con-

siderable improvements in the content and presentation of this article. This research was partially

supported by the following NSF grants under the ITR initiative: ACI-0325056 and ANI-0219747.

References

Adler, M., J.-Y. Cai, J. Shapiro, and D. Towsley (2003). Estimation of congestion price using

probabilistic packet marking. In IEEE INFOCOM, pp. 2068–2078.

Breslau, L., P. Cao, L. Fan, G. Phillips, and S. Shenker (1999). Web caching, and zipf-like

distributions: Evidence, and implications. In IEEE INFOCOM.

Caesar, M., S. Balaraman, and D. Ghosal (2000). A comparative study of pricing strategies for

ip telephony. In IEEE GLOBECOM, pp. 344–349.

Chao, X. (1995). A queueing network model with catastrophes and product form solution. Op-

erations Research Letters 18 (2), 75–79.

Chao, X. and Y. Zheng (2003). Transient analysis of immigration birth-death processes with

total catastrophes. Probability in the Engineering and Informational Sciences 17, 83–106.

21

Cocchi, R., D. Estrin, S. Shenker, and L. Zhang (1993). Pricing in computer networks: Motiva-

tion, formulation and example. ACM/IEEE Transactions on Networking 1, 614–627.

Courcoubetis, C. and R. Weber (2003). Pricing Communication Networks: Economics, Technol-

ogy and Modelling. Chichester: Wiley.

Crowcroft, J. (1996, 11). Pricing the internet. IEE Colloquium on Charging for ATM (222), 1–4.

Davies, G., M. Hardt, and F. Kelly (2004). Come the revolution - network dimensioning, service

costing and pricing in a packet switched environment. Telecommunications Policy 28, 391–

412.

Dotster (2004). http://www.dotster.com/webhosting/webhosting commerce.php.

Edell, R. J., N. McKeown, and P. P. Varaiya (1995). Billing users and pricing for tcp. IEEE

Journal on Selected Areas in Communications 13 (7), 1–14.

Fortune-City (2004). http://www.fortunecity.com/business-web-hosting-plans.shtml.

Global-Servers (2004). http://www.globalservers.com/.

Gray, J. and D. Siewiorek (1991). High-availability computer systems. Computer 24 (9), 39–48.

Hamadeh, I., Y. Jin, S. Walia, G. Kesidis, and C. Kirjner (2004). Pricing and security issues for

residential broadband access. In CISS.

Henderson, T., J. Crowcroft, and S. Bhatti (2001). Congestion pricing: paying your way in

communication networks. IEEE Internet Computing 5 (5), 85–89.

Jelenkovic, P. R. and A. Radovanovic (2004). Optimizing lru caching for variable document sizes.

to appear in Combinatorics, Probability and Computing .

Jin, N. and S. Jordan (2004). The effect of bandwidth and buffer pricing on resource alloca-

tion and qos. Computer Networks, Special Issue on Internet Economics: Pricing and Poli-

cies 46 (1), 53–71.

Kelly, F. P. (1996). Charging and Accounting for Bursty Connections. Cambridge, MA: MIT

press.

Kumar, B. and D. Arivudainambi (2000). Transient solution of an m/m/1 queue with catastro-

phes. Computers & Mathematics with Applications 40, 12331240.

Liu, Z., N. Niclausse, and C. Jalpa-Villanueva (2001). Traffic model and performance evaluation

of web servers. Performance Evaluation 46, 77–100.

22

MacKie-Mason, J. K. and H. Varian (1995). Pricing the Internet. Cambridge, MA: MIT Press.

Menasce, D. and V. Almeida (1998). Capacity Planning for Web Performance. PTR: Prentice

Hall.

Mookerjee, V. and Y. Tan (2002). Analysis of a least recently used cache management policy for

web browsers. Operations Research 50 (2).

Odlyzko, A. (2000). Should flat-rate internet pricing continue. IT Professional 2 (5), 48–51.

Parris, C., S. Keshav, and D. Ferrari (1992). A framework for the study of pricing in integrated

networks. In Technical Report TR-92-016, International Computer Science Institute.

Shenker, S., D. Clark, D. Estrin, and S. Herzog (1996). Pricing in Computer Networks: Reshaping

the Research Agenda.

Turner, D. and K. Ross (2004). Lightweight currency paradigm for the p2p resource market. In

Seventh International Conference on Electronic Commerce Research.

Website-Providers (2004). http://webhosting.websiteproviders.net/guarantees/quality of service/.

23

