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Abstract

This paper is motivated by the problem of capturing and releasing the CPU by a routine

software application in order to accommodate other non-routine requests that need the CPU.

Specifically, we consider a network of distributed software agents where each agent is assigned

with routine tasks that need to be processed by a CPU. The CPU also receives requests from

other processes running on the machine. The problem is to select an optimal threshold on the

workload of the agent so that the agent releases the CPU and recaptures it from time-to-time

based on its workload.

In order to do that, we use a stochastic fluid-flow model with two buffers, one for the agent

that runs the routine tasks and the other for the remaining non-routine jobs at the CPU. Input

to the two buffers are from on-off sources and the processor switches between the two buffers

using a threshold-based policy. We develop analytical approximations for the buffer content

distribution and determine the Quality of Service (QoS) experienced by the two sources of

traffic. We use the QoS performance measures to formulate and solve an optimization problem

to design an optimal threshold value.
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1 Introduction

Consider a distributed agent architecture where each software agent resides on a workstation and

shares the CPU with other jobs running on that workstation. We assume that the CPU is always

available for processing tasks of the agent. Since the agent receives tasks only in spurts, it sometimes

could share the CPU with other applications running on the workstation. Based on the workload

of the agent, it decides when to release and when to capture the CPU. We study the following

control policy. When the workload becomes zero, the agent gives up the CPU and waits until the

workload reaches a threshold “a” when it recaptures the CPU. The main aim of this paper is to

obtain optimal values for a so that performance measures for both the agent and the other jobs on

the CPU are optimized.

Typically, such problems are modeled analytically as multi-class queueing systems where each

class generates traffic into its own buffer and a single server empties out the buffers in some fashion.

The two main types of analysis employed in the literature are: (i) determining the best policy for

the server to empty out the different buffers with fairly simplistic objective functions; (ii) for a

given policy, determining the performance measures experienced by the system and fine-tuning the

policy under very complex objective functions. Problems such as load balancing (see Mirchandany

et al [22], Kostin et al [18] and Tantawi and Towsley [26]) and armed bandits (see Darce et al [9]

and Whittle [28]), fall under the former category. Polling systems (see Takagi [25], Daganzo [8],

Boxma [7], and the references therein) and its variants including this paper, fall under the latter

case.

Polling systems and its variants have been well-studied in the literature especially for discrete

arrival systems for various policies. In Kesidis [17], policies such as Packetized General Processor

Sharing Mechanism and Weighted Round Robin Mechanism are considered for example. Some of

the other polling policies studied are full-service exhaustive policy and gated policy. A compre-

hensive treatment of polling systems for discrete arrivals can be found in Takagi [25] and Daganzo

[8]. There is also a significant amount of literature on policies based on static priority. However

for fluid arrivals (where customers or packets enter queues continuously one behind the other) the

literature is currently in the developing stages.

Since tasks arrive in bursts at the agent, we use fluid models to analyze the system performance.

In particular, we use a two-class fluid queueing system where the agent traffic belongs to one class

and the rest of the traffic belong to another class. The justification for using fluid-flow models is

explained in Section 2. We analyze the traffic flow by approximating it by fluids, following the
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large literature using fluid-flow models for computer and communication systems (see Anick et al

[1], and, Elwalid and Mitra [10]).

Several policies for scheduling multi-class fluid traffic at a node have been analyzed using fluid

models for design and performance of computer and communication networks. The threshold policy

described in this paper is relatively less studied especially under fluid traffic conditions. Policies

such as timed round-robin and static priority are well established (see Gautam and Kulkarni [14]

for a comprehensive list of references). Under timed round robin policy (a variation of polling), the

scheduler serves the buffers in a fixed cyclical fashion. The static priority service policy is a special

case (when a = 0) of the threshold policy considered in this paper. Narayanan and Kulkarni [23]

analyze multi-class fluid models that use static priority service policy. They develop the marginal

buffer-content distributions for each class of fluid. Zhang [29] analyzes the joint distribution of the

buffer contents of each class under static priority service policy. Elwalid and Mitra [12] develop a

large-deviations based approach to evaluate the buffer content distributions for the static priority

service policy.

For the multi-class traffic performance analysis, the concept of effective bandwidths and its

applications to solving QoS problems is well established. Gibbens and Hunt [15], Kesidis et al [16],

Elwalid and Mitra [11], Kulkarni [21], Choudhury et al [4], and Whitt [27], discuss the concept of

effective bandwidths. We use effective bandwidths and their extensions developed in Palmowski

and Rolski [24] and Gautam et al [13].

The paper is organized as follows. In Section 2 we describe the problem setting and define

the notation used in this paper. In Section 3 we recapitulate some preliminary results in terms

of single-class, single-buffer fluid models. We begin our analysis for the case when the switch-over

times between the different classes of traffic is zero in Section 4. Then in Section 5, we consider

the case when we have a non-zero switch-over time. Numerical results of our work are presented in

Section 6. Analysis involving generalizations in terms of number and type of sources are included

in Section 7. We describe some concluding remarks and directions for future work in Section 8.

2 Problem Description

Distributed systems of dynamic heterogeneous components without centralized control have emerged

in a very wide range of applications. The motivation for this paper comes from a large scale dis-

tributed multi-agent system for military logistics called ”Cognitive Agent Architecture” (COUGAAR

see http://www.cougaar.org). The COUGAAR system comprises of several software agents that
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work in a cooperative manner in order to accomplish tasks for military logistics planning operations.

The system must be able to dynamically adapt to the changes in its environment and reallocate

essential processing, if necessary. It must be done in a distributed manner with no centralized

control or human intervention. We focus on a society of agents where all the agents are distributed

over different machines (or computers). At each machine, there is a single Central Processing Unit

(CPU) that processes tasks submitted not only by the agent on the machine but also by other

applications running on the machine.

Especially under wartime conditions when the resources are limited (such as a set of computers

on a ship or air-craft), it becomes crucial for the software agent to share the CPU with other,

possibly critical, applications. In that light, our objective is to adaptively control when the software

agent captures the CPU and when the agent releases it for other applications. Other approaches that

have been used in load-balancing to improve utilization and sharing of resources apply techniques

at the kernel (operating system) or the hardware level. These techniques have a limitation in that

they cannot be reconfigured easily by the end-user to adapt to changing load characteristics or

different objectives set for the system.

2.1 Scenario

We consider the scenario of a CPU that receives jobs from a software agent as well as other

applications. Assume there are two buffers, one for the agent and one for the rest of the processes.

Tasks arrive at the two buffers in bursts. The CPU processes jobs at rate c when it is serving either

buffers. When the agent buffer becomes empty, the agent gives up the CPU and waits until the

workload reaches a threshold “a”. At this time it recaptures the CPU and gets its tasks processed at

rate c. There are two target values B1 and B2 for the agent buffer and the other buffer respectively,

such that it is undesirable to exceed those quantities. They could be thought of as buffer sizes, if

so desired. The objective is to obtain an optimal a value so that a weighted sum of the probability

of exceeding limits B1 and B2 in buffers 1 and 2 respectively is minimized.

2.2 Modeling traffic as on-off fluids

We collected timestamps for over 60,000 tasks that were received by an agent in the COUGAAR

system submitted to a CPU. Figure 1 illustrates the instances when the agent receives tasks.

Clearly, the bursty nature of the task arrival process can be modeled as an on-off fluid. Although

only a sample is presented, the task arrivals at all the agents can be modeled as on-off fluids. In

addition, even the non-agent jobs, that other applications submit arrive in bursts and therefore
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fluid models are appropriate. We therefore use fluid models for analyzing the performance of such

systems.
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Figure 1: Tasks submitted by an agent

2.3 Model: Two-buffer fluid-flow model of the system
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Figure 2: Two-Buffer System

We model the above scenario as a two-buffer fluid-flow system as shown in Figure 2. Both

buffers are of infinite capacity. For j = 1, 2, fluid enters buffer j according to an alternating on-off

process such that for an exponentially distributed time (with mean 1/αj) fluid enters continuously

at rate rj and then no fluid enters for another exponentially distributed time (with mean 1/βj).

When the off-time ends, another on-time starts, and so on. Let Xj(t) be the amount of fluid in

buffer j (for j = 1, 2) at time t. A scheduler alternates between buffers 1 and 2 while draining

out fluid continuously at rate c. Without loss of generality assume that r1 > c and r2 > c. Other

conditions, such as stability will be derived subsequently. The policy adopted by the scheduler is

as follows: as soon as buffer 1 becomes empty (i.e. X1(t) = 0) the scheduler switches from buffer 1

to buffer 2. When the buffer contents in buffer 1 reaches a (i.e. X1(t) = a), the scheduler switches

back from buffer 2 to buffer 1. We denote a as the threshold for buffer 1. Note that the scheduler’s
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policy is dependent on buffer 1 only. That means even if buffer 2 is empty (i.e. X2(t) = 0), as

long as buffer 1 has less than a (i.e. X1(t) < a), the scheduler does not switch back to buffer 1. In

addition, there is a constant switch-over time θ that is incurred every time the scheduler switches

from one buffer to the other. Figure 3 illustrates a sample path of the buffer content processes

X1(t) and X2(t). The numerical values used to generate this sample path are given in Section 6.
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Figure 3: A sample path of buffercontent process

2.4 Objective

For the model described in Section 2.3 above, the objective of this paper is to:

• derive analytical expressions or approximations for the steady-state buffer content distribu-

tions (queue length distributions in fluid queues), lim
t→∞

P{X1(t) > x} and lim
t→∞

P{X2(t) > x}.
Then use the analytical expressions for the infinite buffers to approximate the buffer overflow

probabilities as

ε1 = lim
t→∞

P{X1(t) > B1} and ε2 = lim
t→∞

P{X2(t) > B2}

where B1 and B2 are the actual buffer sizes of the two buffers.

• solve an optimization problem to design a threshold a so that the weighted sum of QoS

measures ε1 and ε2 are minimized, i.e., min
a
{w1ε1 + w2ε2}.

3 Preliminaries

We first present some preliminary results from the literature before addressing the objectives de-

scribed in Section 2.4. Consider a single infinite-sized buffer (with constant output capacity c) that
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Figure 4: Single Buffer Fluid Model

admits traffic from a source driven by a random environment process {Z(t), t ≥ 0} (see Figure 4).

At time t, the source generates fluid at rate r(Z(t)). Let X(t) be the amount of fluid in the buffer

at time t. We present some preliminary results from studies on such single buffer fluid models.

3.1 Effective bandwidths

Assume that the environment process {Z(t), t ≥ 0} is a stationary and ergodic process satisfying

the Gärtner-Ellis conditions (see Kesidis et al [16]). Then, for a given v (v > 0), the effective

bandwidth of the source is

eb(v) = lim
t→∞

1

vt
logE

{

exp

(

v

∫ t

0
r(Z(t))dt

)}

. (1)

When the {Z(t), t ≥ 0} process can be modeled as certain special stochastic processes, Kesidis et

al [16], Elwalid and Mitra [11] and Kulkarni [21] illustrate how to compute eb(v) in those cases.

We consider two special cases that would be used later in this paper.

1. General on-off source: Consider a source modulated by a two-state (on and off) process

{Z(t), t ≥ 0} that alternates between on and off states. The random amount of time the pro-

cess spends in the on state (called on-times) has cdf U(·) with mean τU and the corresponding

off-time cdf is D(·) with mean off time τD. Fluid is generated continuously at rate r during

the on state and at rate 0 during the off state. The effective bandwidth of this source is given

by (see Kulkarni [21]) the unique solution to

Ũ(v eb(v)− rv) D̃(v eb(v)) = 1 (2)

where Ũ(·) and D̃(·) are the Laplace Stieltjes transforms (LSTs) of U(·) and D(·) respectively.

2. Exponential on-off source: When U(t) = 1− e−αt and D(t) = 1− e−βt for t ≥ 0, we call the

source an exponential on-off source with on-time parameter α, off-time parameter β and rate

r. The effective bandwidth of the exponential on-off source is (see Elwalid and Mitra [11])

eb(v) =
rv − α− β +

√

(rv − α− β)2 + 4βrv

2v
. (3)
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3.2 Bounds on limiting distribution of buffer content

Bounds on the limiting distribution of the buffer content process {X(t), t ≥ 0} when {Z(t), t ≥ 0}
is a semi-Markov process is derived in Gautam et al [13]. We now present the case for a general

on-off source described in Section 3.1. The effective bandwidth of a source, eb(v) is an increasing

function of v (evident from Equation (1)). Also, if the environment process {Z(t), t ≥ 0} is a

stationary and ergodic process satisfying the Gärtner-Ellis conditions (see Kesidis et al [16]), then

lim
t→∞

E[r(Z(t))] ≤ eb(v) ≤ lim
t→∞

max{r(Z(t))}.

In fact as v is increased from 0 to ∞, eb(v) increases from the lower bound to the upper bound

in the above equation. Therefore, if c is such that lim
t→∞

E[r(Z(t))] < c ≤ lim
t→∞

max{r(Z(t))}, then
there exists a unique solution η that satisfies the following equation:

eb(η) = c. (4)

The limiting distribution of the buffer contents are bounded as (see Gautam et al [13])

C∗e
−ηx ≤ lim

t→∞
P{X(t) > x} ≤ C∗e−ηx, (5)

where

C∗ =
Ũ(−η(r − c))− 1

τU + τD

r

c(r − c)η infx

{
∫∞

x
eη(r−c)(y−x)dU(y)

1−U(x)

} (6)

and

C∗ =
Ũ(−η(r − c))− 1

τU + τD

r

c(r − c)η supx

{
∫∞

x
eη(r−c)(y−x)dU(y)

1−U(x)

} . (7)

For the special case when {Z(t), t ≥ 0} corresponds to an exponential on-off source (see Section

3.1 for notation), the upper and lower bounds in Equation (5) become equal. Thus the limiting

distribution of the buffer content is

lim
t→∞

P{X(t) > x} = rβ

c(α+ β)
e−ηx, (8)

where

η =
cα+ cβ − βr

c(r − c)
.

When traffic from two independent general on-off sources are multiplexed into a single infinite

capacity buffer, we derive bounds for the limiting distribution of the buffer contents as follows:

K1∗K2∗e
−ηx ≤ lim

t→∞
P{X(t) > x} ≤ K1∗K2∗e−ηx, (9)
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where η is the solution to

eb1(η) + eb2(η) = c, (10)

K1∗ =









Ũ1(−η(r1 − eb1(η)))− 1

τ1
U + τ1

D

r1

eb1(η)(r1 − eb1(η))η infx

{
∫∞

x
eη(r1−eb1(η))(y−x)dU1(y)

1−U1(x)

}









,

K2∗ =









Ũ2(−η(r2 − eb2(η)))− 1

τ2
U + τ2

D

r2

eb2(η)(r2 − eb2(η))η infx

{
∫∞

x
eη(r2−eb2(η))(y−x)dU2(y)

1−U2(x)

}









,

K1∗ =









Ũ1(−η(r1 − eb1(η)))− 1

τ1
U + τ1

D

r1

eb1(η)(r1 − eb1(η))η supx

{
∫∞

x
eη(r1−eb1(η))(y−x)dU1(y)

1−U1(x)

}









,

and

K2∗ =









Ũ2(−η(r2 − eb2(η)))− 1

τ2
U + τ2

D

r2

eb2(η)(r2 − eb2(η))η supx

{
∫∞

x
eη(r2−eb2(η))(y−x)dU2(y)

1−U2(x)

}









.

Subscripts and superscripts “1” and “2” are used in the above relations to denote the corresponding

values for the two different sources. Note that Artiges and Nain [2] also obtain exponential bounds

for multiplexing non-homogeneous multiclass Markovian on-off sources. Their upper bounds are

similar to those reported above.

3.3 First passage times in fluid flow models

Let T be the time when the buffer contents X(t) for the first time reaches zero. Therefore

T = inf{t > 0 : X(t) = 0}.

Let {Z(t), t ≥ 0} be an exponential on-off source (with parameters defined in Section 3.1) such that

if Z(t) = 0, the source is off at time t and if Z(t) = 1, the source is on. Define the first passage

time distribution

Gx(t) = P{T ≤ t|X(0) = x, Z(0) = 1}.

The LST of Gx(t) can be derived from Narayanan and Kulkarni [23] and Gautam et al [13] as

G̃x(w) =

{

w+β+cs0(w)
β

ex s0(w) if w ≥ w∗

∞ otherwise,
(11)

where w∗ = (2
√

cαβ(r − c)−rβ−cα−cβ)/r, s0(w) =
−b−
√

b2+4w(w+α+β)c(r−c)

2c(r−c) and b = (r−2c)w+

(r − c)β − cα.
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3.4 Steady state distribution for fluid flow models

Consider a single buffer fluid model described in Figure 4 with the only exception that the output

capacity is not a constant, but a stochastic and time-varying quantity µ(Z(t)). Recollect that

r(Z(t)) is the rate at which fluid enters the buffer at time t and {Z(t), t ≥ 0} is the environment

process. Kulkarni and Rolski [19] use the analysis in Borovkov [3] p. 24 to prove the existence of

a unique steady state distribution for the above fluid model. They state that, if {Z(t), t ≥ 0} is

stationary (in strict sense) ergodic and E[R(Z(t))] − E[µ(Z(t))] < 0, then for each x ≥ 0, there

exists a finite (a.s.) random variable X∗ such that

lim
t→∞

P (X(t) > x) = P (X∗ > x).

4 Analysis: Zero Switch-over Times

Consider the two-buffer fluid model in Section 2.3. In this section we derive the buffer content

distributions lim
t→∞

P{X1(t) > x} and lim
t→∞

P{X2(t) > x} for the zero switch-over time case (θ = 0).

In Section 5 we will extend these results to the θ > 0 case by making suitable approximations.

4.1 Time between switching

Under the zero switch-over time case, we first derive expressions for the time the scheduler spends

in each of the buffers. For j = 1, 2, let Tj be the time spent by the scheduler serving buffer j before

switching to the other buffer. Mathematically we denote

T1 = inf{t > 0 : X1(t) = 0|X1(0) = a}

and

T2 = inf{t > 0 : X1(t) = a|X1(0) = 0}.

We now study the distributions of T1 and T2, as well as derive expressions for their moments.

4.1.1 Distribution of time spent on buffer 1

Let O1(t) be the cdf of the random variable T1 such that

O1(t) = P{T1 ≤ t}.

Define Õ1(w) as the LST of O1(t) such that

Õ1(w) = E[e−wT1 ].
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Theorem 1 The LST Õ1(w) is

Õ1(w) =

{

w+β1+cs0(w)
β1

ea s0(w) if w ≥ w∗

∞ otherwise,
(12)

where

w∗ = (2
√

cα1β1(r1 − c)− r1β1 − cα1 − cβ1)/r1, (13)

s0(w) =
−b−

√

b2 + 4w(w + α1 + β1)c(r1 − c)

2c(r1 − c)
(14)

and b = (r1 − 2c)w + (r1 − c)β1 − cα1.

Proof. Recall that due to the definition of T1, the source is “on” initially, so we are in the situation

described in Section 3.3. Therefore, by directly substituting for the first passage time expressions

in Section 3.3 and Equation (11), we obtain the above expressions.

4.1.2 Distribution of time spent on buffer 2

Let O2(t) be the cdf of the random variable T2 (defined in Section 4.1) such that

O2(t) = P{T2 ≤ t}.

Define Õ2(s) as the LST of O2(t) such that

Õ2(s) = E[e−sT2 ].

Theorem 2 The LST Õ2(s) is

Õ2(s) =
β1

β1 + s
e
−a

α1s+β1s+s2

r1s+r1β1 . (15)

Proof. During time T2, the scheduler serves only buffer 2. Therefore the buffer 1’s contents X1(t)

is non-decreasing. Clearly,

O2(t) = P{T2 ≤ t} = P{X1(t) > a|X1(0) = 0}. (16)

For all t ∈ [0,∞), let Z1(t) = 0 denote that source 1 is off and Z1(t) = 1 denote that source 1 is on

at time t. Define for i = 0, 1

Hi(x, t) = P{X1(t) ≤ x, Z1(t) = i}.

Also define the vector H(x, t) = [H0(x, t) H1(x, t)]. By a similar argument in Anick et al [1] we

can show that H(x, t) satisfies the following partial differential equation

∂H(x, t)

∂t
+

∂H(x, t)

∂x
R = H(x, t)Q (17)
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with initial conditions H0(x, 0) = 1 and H1(x, 0) = 0, where

R =

[

0 0
0 r1

]

and Q =

[

−β1 β1

α1 −α1

]

.

Now, taking the Laplace transform of Equation (17) with respect to t, we get

sH∗(x, s)−H(x, 0) +
∂H∗(x, s)

∂x
R = H∗(x, s)Q. (18)

Due to the initial conditions below Equation (17), Equation (18) reduces to

sH∗(x, s)− [1 0] +
∂H∗(x, s)

∂x
R = H∗(x, s)Q.

Taking the LST of the above equation with respect to x yields

sH̃∗(w, s)− [1 0] + wH̃∗(w, s)R− wH∗(0, s)R = H̃∗(w, s)Q.

Since P{X1(t) ≤ 0, Z1(t) = 1} = 0, we have H∗(0, s) = [H∗
0 (0, s) 0] and therefore wH∗(0, s)R =

[0 0]. Hence the above equation reduces to

H̃∗(w, s) = [1 0][sI + wR−Q]−1.

Plugging in for R and Q, and taking the inverse of the matrix yields

H̃∗(w, s) =
1

wr1(s+ β1) + α1s+ β1s+ s2
[s+ wr1 + α1 β1]. (19)

However,

Õ2(s) = 1− sH∗
0 (a, s)− sH∗

1 (a, s).

Therefore inverting the transform in Equation (19) with respect to w, and substituting in the above

equation, yields the desired result.

4.1.3 Average time between switching

Having derived expressions for the distributions of T1 and T2, we now address the issue of computing

their moments. In particular we derive a closed-form algebraic expression for the mean of both T1

and T2 in the next theorem.

Theorem 3 The mean of T1 and T2 are given by

E[T1] =
r1 + a(α1 + β1)

cα1 + cβ1 − r1β1
(20)

E[T2] =
r1 + a(α1 + β1)

r1β1
(21)
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Proof. Using the relations E[T1] = −dÕ1(w)
dw

at w = 0 and E[T2] = −dÕ2(s)
ds

at s = 0, the theorem

can be proved.

Remark 1 The ratio E[T1]/E[T2] is independent of a. This indicates that no matter what the

threshold is, the ratio of time spent by the scheduler serving buffers 1 and 2 remains the same.

Before computing the performance measures, the important question to ask is when do the

limiting distributions exist for the buffer contents X1(t) and X2(t). The following theorem describes

the condition under which the limiting distributions exist.

Theorem 4 Limiting distributions for the buffer contents X1(t) and X2(t) exist when

r1β1

α1 + β1
+

r2β2

α2 + β2
< c. (22)

Proof. Using the notation and results in Section 3.4, in order to show that steady distribution for

a fluid queue exists, it is enough to show that (see Kulkarni and Rolski [19] and Borovkov [3] p.

24) (i) the environment process {Z(t), t ≥ 0} is stationary ergodic, and (ii) the mean input rate is

smaller than the mean output capacity, i.e., E[R(Z(t))]− E[µ(Z(t))] < 0.

Clearly the environment processes driving the two fluid sources, Z1(t) and Z2(t) are stationary

ergodic. Therefore it is enough to find the conditions when the mean input rate is less than the

available output capacity to determine when steady state distributions for X1(t) and X2(t) exist.

In other words, if
r1β1

α1 + β1
< c, (23)

steady state distribution for X1(t) exists. Also, steady-state distribution for X2(t) exists if the

mean input rate is less than the available output capacity, i.e.

r2β2

α2 + β2
< c

E[T2]

E[T1] + E[T2]
+ 0

E[T1]

E[T1] + E[T2]
= c− r1β1

α1 + β1
. (24)

Since (24) is more constraining than (23), it is the necessary condition for the existence of limiting

distributions for buffers 1 and 2.

4.2 Buffer 2 analysis

We begin by studying the buffer content process of buffer 2. In particular, our aim is to derive

the limiting buffer-content distribution as our main performance measure. If we consider buffer

2 in isolation, its input is from an exponential on-off source but the output capacity alternates
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between c (for T2 time) and 0 (for T1 time). However the effective-bandwidth approximation and

the bounds detailed in Section 3 assume that the output channel capacity is a constant. In order

to utilize those techniques, we need to first transform our model into an appropriate one with a

constant output channel capacity. The next section outlines a procedure for this.

4.2.1 Compensating source

Consider a single-buffer fluid model for buffer 2 with a constant output channel capacity c whose

input is generated by the original exponential on-off source and a fictitious compensating source.

The compensating source is such that it stays on for T1 time units and off for T2 time units. When

the compensating source is on, it generates fluid at rate c and when it is off it generates fluid at rate

0. Note that the compensating source is independent of the original source. Clearly, the dynamics

of the buffer-content process (of buffer 2) remain unchanged for this transformed single-buffer-fluid

model with two input sources (including the compensating source) and constant output capacity c.

4.2.2 Limiting distribution of buffer contents

Using the above model and the analysis in Section 3.2, we can derive the limiting distribution of

the buffer contents of buffer 2. We first obtain the effective bandwidth of source 2 (the original

source into buffer 2) using Equation (3) as

eb2(v) =
r2v − α2 − β2 +

√

(r2v − α2 − β2)2 + 4β2r2v

2v
.

Using Equation (2) we can derive the effective bandwidth of the compensating source (eb0(v)) as

the unique solution to

Õ1(v eb0(v)− cv) Õ2(v eb0(v)) = 1

where Õ1(·) and Õ2(·) can be obtained from Equations (12) and (15) respectively. Using Equation

(10) we obtain η as the solution to

eb0(η) + eb2(η) = c. (25)

Theorem 5 The limiting distribution of the contents of buffer 2 is bounded as

LB ≤ lim
t→∞

P{X2(t) > x} ≤ UB (26)

where

LB =
r2β2

eb2(η)(α2 + β2)

1− Õ2(ηeb0(η))

E(T1) + E(T2)

c

eb0(η)(c− eb0(η))η
e−ηx,

13



UB =
r2β2

eb2(η)(α2 + β2)

1/Õ2(ηeb0(η))− 1

E(T1) + E(T2)

c

eb0(η)(c− eb0(η))η
e−ηx

and η is the solution to Equation (25).

Proof. Using Equation (9), making the appropriate variable substitutions, then going over the

algebra and taking the limits will yield the bounds in Inequality (26).

4.3 Buffer 1 analysis

We now derive the limiting distribution of the buffer contents of buffer 1. Note that the scheduler

is never idle when it is serving buffer 1. This makes it impossible to use a compensating source

and study the buffer contents similar to buffer 2. Therefore we resort to alternate techniques as

detailed in the following sections.

4.3.1 SMP model

For a value of x greater than the threshold a, we can model the system as a semi-Markov process

(SMP) and derive the limiting distribution lim
t→∞

P{X1(t) > x}. Fix x ensuring that x > a. For all

t ∈ [0,∞), let Z1(t) = 0 denote that source 1 is off and Z1(t) = 1 denote that source 1 is on at time

t. Consider the following four states of the system:

Y (t) = 1 if X1(t) = 0 and Z1(t) = 0,

Y (t) = 2 if X1(t) = a and Z1(t) = 1,

Y (t) = 3 if X1(t) = x and Z1(t) = 1,

Y (t) = 4 if X1(t) = x and Z1(t) = 0,

Y (t) = 0 otherwise.

Let Sn be the nth time the system reaches one of the four states 1, 2, 3 or 4. Also let Yn = Y (Sn).

Theorem 6 The sequence of bivariate random variables {(Yn, Sn), n ≥ 0} is a Markov renewal

sequence.

Proof. Directly follows from the definition of Markov renewal sequences (see Kulkarni [20]).

4.3.2 Approximate model

The greatest difficulty is in obtaining the kernel of the Markov renewal sequence defined in the

previous section. Therefore we resort to approximations here. Consider the setting in the previous

section where we fix x such that x > a. If x is suitably larger than a, then experimentally we have
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found that once the buffer contents X1(t) falls to a from above (source 1 will be off at this time),

there is a very small probability that the buffer contents will exceed a before reaching zero. This is

also evident from the sample path shown in Figure 3. Under that restrictive framework, we divide

a scheduler service cycle into 3 parts:

1. V1: the time when the scheduler is serving buffer 2. This is also the time when buffer 1 climbs

from 0 to a. From Equation (21) we get

E[V1] =
r1 + a(α1 + β1)

r1β1
.

2. V2: the time when the scheduler is serving buffer 1 and the buffer content of buffer 1 goes

above a and returns back to a. This is like the first passage time for the buffer when it leaves

zero and returns to zero. The expected time is

E[V2] =
r1

cα1 + cβ1 − r1β1
.

The probability that the buffer content will exceed x in this stage is
r1β1

c(α1 + β1)
e−η(x−a),

where

η =
cα1 + cβ1 − β1r1

c(r1 − c)
. (27)

3. V3: the time when the scheduler is serving buffer 1 and the buffer content of buffer 1 declines

from a to zero. Using the above equation and Equation (20), the expected time is

E[V3] =
a(α1 + β1)

cα1 + cβ1 − r1β1
.

Assuming that a fraction
r1β1

c(α1 + β1)
e−η(x−a) of the time V2, X1(t) is above x, we obtain the

following approximation for the limiting distribution of the buffer contents:

lim
t→∞

P{X1(t) > x} ≈

r1β1

c(α1 + β1)
E[V2]e

−η(x−a)

E[V1] + E[V2] + E[V3]
. (28)

We conducted simulation experiments to validate this approximation. Figure 5 shows that the

approximation is valid even when the switch-over times are positive.

5 Approximations: Positive Switch-over Times

Now we consider the case of positive switch-over times θ defined in Section 2.3. This means every

time the scheduler switches from buffer 1 to buffer 2 or from buffer 2 to buffer 1, it incurs a time
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θ > 0 to switch. That means in every cycle there would be a time 2θ that the scheduler does

not serve either buffers. The implications of this in terms of performance is that if the scheduler

switches very often (for very small a values) then a larger proportion of time is wasted than when

the scheduler switches less often. This brings us to the first question (before addressing performance

issues): when do the limiting distributions of the buffer contents exist?

5.1 Necessary condition for existence of distributions

In order to derive the necessary condition for the existence of steady state distributions of the buffer

content processes X1(t) and X2(t), we need to define mθ, the fraction of time the scheduler spends

in switching, in the long run. Using that we state the following theorem:

Theorem 7 The two buffers in the system defined in Section 2.3 with θ > 0 have a steady-state

distribution if
r1β1

α1 + β1
+

r2β2

α2 + β2
< c(1−mθ). (29)

Proof. The theorem can be proved similar to Theorem 4 with the understanding that only a

fraction (1−mθ) of time the capacity c is available to the entire system.

The difficulty is in obtaining a closed-form expression for mθ. We obtain an approximate

expression that works well when the switching time θ is much smaller than the up times or down

times of source 1. An approximation for mθ is

mθ ≈
2θ

r1+(a+r1θ)(α1+β1)
cα1+cβ1−r1β1

+ r1+a(α1+β1)
r1β1

+ θ
,

where the numerator is the time spent in one cycle in switching, and in the denominator the term

r1+(a+r1θ)(α1+β1)
cα1+cβ1−r1β1

is the average time for buffer 1 to empty from (a+ r1θ) which is the approximate

level when the scheduler starts serving buffer 1, the term r1+a(α1+β1)
r1β1

is the average time the

scheduler spends switching and serving buffer 2 before buffer 1 reaches a, and, the term θ denotes

the time the scheduler takes to return to buffer 1. We now develop approximations for the QoS

measures.

5.2 Buffer 2 approximations

The analysis proceeds very similar to that in Section 4.2. Consider the compensating source defined

in Section 4.2.1. Now with θ > 0, the compensating source is such that its on times are T adj
1 + 2θ

and off times are T2 − θ, where T2 is as defined in Section 4.1 and T adj
1 is the adjusted T1 defined
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in Section 4.1 such that the first passage time starts at (a+ r1θ) instead of a. Therefore the LSTs

of the on and off times are now respectively

Õ1
adj

(w) = E[e−w(Tadj
1 +2θ)] =

{
(

e−2wθ
)

w+β1+cs0(w)
β1

e(a+r1θ) s0(w) if w ≥ w∗

∞ otherwise.

and

Õ2
adj

(s) = E[e−s(T2−θ)] =
(

esθ
) β1

β1 + s
e
−a

α1s+β1s+s2

r1s+r1β1 .

The effective bandwidth of the compensating source is the unique solution to

Õ1
adj

(v ebadj0 (v)− cv) Õ2
adj

(v ebadj0 (v)) = 1.

The next step is to solve for η in

ebadj0 (η) + eb2(η) = c.

Using Theorem 5 we can derive the distribution of the contents in buffer 2 as

LBadj ≤ lim
t→∞

P{X2(t) > x} ≤ UBadj ,

where

LBadj =
r2β2

eb2(η)(α2 + β2)

1− Õ2
adj

(ηebadj0 (η))

E(T adj
1 + 2θ) + E(T2 − θ)

c

ebadj0 (η)(c− ebadj0 (η))η
e−ηx,

and

UBadj =
r2β2

eb2(η)(α2 + β2)

1/Õ2
adj

(ηebadj0 (η))− 1

E(T adj
1 + 2θ) + E(T2 − θ)

c

ebadj0 (η)(c− ebadj0 (η))η
e−ηx.

As an approximation for the limiting distribution of buffer contents of buffer 2, we use

lim
t→∞

P{X2(t) > x} ≈ (LBadj + UBadj)/2. (30)

5.3 Buffer 1 approximations

We proceed analyzing the approximations for buffer 1 in a fashion very similar to that in Section

4.3.2. The cycle is split into three parts, this time it is V adj
1 , V adj

2 and V adj
3 . Their expected values

are approximated as

E[V adj
1 ] =

r1 + (a+ r1θ)(α1 + β1)

r1β1
,

E[V adj
2 ] =

r1

cα1 + cβ1 − r1β1

and

E[V adj
3 ] =

(a+ r1θ)(α1 + β1)

cα1 + cβ1 − r1β1
.
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Therefore the limiting distribution of the contents of buffer 1 can be approximated as

lim
t→∞

P{X1(t) > x} ≈

r1β1

c(α1 + β1)
E[V adj

2 ]e−η(x−a−r1θ)

E[V adj
1 ] + E[V adj

2 ] + E[V adj
3 ]

, (31)

where η is defined in Equation (27).

In Section 4.3.2 we derived an approximate expression for lim
t→∞

P{X1(t) > x} when θ = 0 and

here we made a further approximation to that expression. Therefore in order to test the accuracy

of the expression in Equation (31), we resort to simulations. However the main concern with

simulations is that the simulation results do not converge for computationally tractable number

of runs and number of replications. Therefore we compare lim
t→∞

E[X1(t)], the steady-state average

buffer contents for which the simulations converge. It turns out that even for lim
t→∞

E[X2(t)], the

simulation does not converge due to very high variances. Obtaining the expected buffer contents

in the intervals E[V adj
1 ], E[V adj

2 ] and E[V adj
3 ], and scaling them appropriately, we get

lim
t→∞

E[X1(t)] ≈
a
2E[V adj

1 ] +

{

r1β1

ηc(α1 + β1)
+ a+ r1θ

}

E[V adj
2 ] + a

2E[V adj
3 ]

E[V adj
1 ] + E[V adj

2 ] + E[V adj
3 ]

, (32)

where η is defined in Equation (27).
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Figure 5: Testing the approximation against simulations

In Figure 5 we compare lim
t→∞

E[X1(t)] obtained from Equation (32) against simulations for

various values of the threshold a. The solid line in Figure 5 is the analytical approximation and

the dots represent the simulation estimates of lim
t→∞

E[X1(t)] for a values of 0.5, 1, 1.5 and 2. The

two dashed lines around the dots represent the 95% confidence limits for the simulation estimates

(i.e. the dots). For example, for a = 1, simulations yielded a mean buffer content of 0.6007 and a

standard error of 0.0048 on the mean. The numerical values used as inputs to generate the figure
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are given in Section 6. Although the analytical approximation does not fall within the confidence

interval of the simulations, it is clear from the figure that the expression in Equation (32) is very

accurate. Although this does not prove that Equation (31) is accurate but leads us to believe that

the approximation may be reasonable.

6 Results

We now present some numerical results based on our analysis in the previous sections. Since our

main goal is to determine an optimal threshold a, in all our graphs the parameter that varies is

a. The numerical values for other parameters are: β1 = 2, α1 = 8, r1 = 2.645, β2 = 3, α2 = 9,

r2 = 1.87, c = 1.06 and θ = 0.0078125, all in appropriate units. Although we assumed that

the buffer sizes are infinite, for the QoS approximation for overflow probability we compute the

probabilities that X1(t) and X2(t) exceed B1 and B2 respectively. For that purpose we chose

B1 = 2.5 and B2 = 8. In the next section we present our performance-analysis results followed by

results to obtain the optimal a in a latter section.

6.1 Buffer content distribution
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Figure 6: Bounds on the limiting distribution of buffer 2

We first consider buffer 2. For the numerical values described above, using the bounds LBadj and

UBadj (described in Section 5.2), we obtain upper and lower bounds for ε2 = lim
t→∞

P{X2(t) > B2}.
The bounds on the overflow probability ε2 is plotted against various threshold values a in Figure 6.

An approximate expression for ε2 is obtained using Equation (30). Using this approximation,

ε2 is plotted against various threshold values a in Figure 7. From the figure it is clear that the QoS

for buffer 2 improves with increasing a.
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Figure 7: Approximation for limiting distribution of buffer 2
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Figure 8: Approximation for limiting distribution of buffer 1

Next we consider buffer 1. We use the approximation in Equation (31) to obtain estimates for

the buffer overflow probability ε1 = lim
t→∞

P{X1(t) > B1}. Figure 8 illustrates ε1 for various values

of threshold a, where it is clear that the QoS worsens for buffer 1 as a increases.

6.2 Optimization results

From Figures 7 and 8, it seems like ε1 increases with a and ε2 decreases with a. We would therefore

like to obtain a trade-off between the performance experienced by the two classes of traffic. In

particular we solve an optimization problem to select a that minimizes the weighted sum of overflow

probabilities min
a
{w1ε1 + w2ε2}. We consider several values for weights w1 : w2 such that w1 > w2

since source 1 gets, in some sense, a priority on the scheduler. The objective function w1ε1 + w2ε2

is plotted against a in Figure 9 for three weight ratios 2 : 1, 5 : 1 and 10 : 1. For example,

we obtain the optimal solution for the case w1 : w2 = 10 : 1 as a = 1.25 which would keep the
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Figure 9: Optimal Solution for the Threshold Under Various Weights

objective function the lowest. The optimal solution can be found using several techniques such as

the dichotomy search, golden search or complete enumeration.

7 Generalization: N general input sources for buffer 2

In this section we consider a generalization to the scenario studied thus far. The agent buffer

(buffer 1 in Figure 10) and its input process i.e. exponential on-off source, remains unchanged.

However we accommodate a variety of sources into buffer 2 (with possibly different traffic rates)

to submit jobs to the CPU which processes them in an FCFS fashion. In particular, we assume

that there are N general on-off sources that generate traffic into buffer 2 in the following manner:

for i = 1, 2, . . . , N , source i stays “on” for a random time with cdf Ui(·) and mean τ iU ; “off” for

a random time with cdf Di(·) and mean τ iD; fluid is generated continuously at rate ri2 during the

on state and at rate 0 during the off state. The other notation and service scheduling policy are

identical to that in Section 2.3. In particular, the threshold is a and the switching time is θ. The

motivation for this generalization stems from the fact that although there is only one agent on a

machine controlling the CPU, there could be several applications submitting jobs at different rates

to buffer 2 in order to be processed by the CPU when the agent buffer relinquishes the CPU.

Based on the arguments in Section 5.1, we can state that the steady-state distributions for the

buffer contents X1(t) and X2(t) exist if

r1β1

α1 + β1
+

N
∑

i=1

ri2τ
i
U

τ iU + τ iD
< c(1−mθ)

where mθ is defined in Section 5.1.
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Figure 10: Two-Buffer System

Note that the scheduler’s policy is dependent on buffer 1 only. In this generalization the X1(t)

process is identical to that in the scenario defined in Section 2.3. So the analysis for buffer 1 is

identical to that in Section 5.3 and we do not present it here. Also, since the scheduler’s policy is

dependent only on buffer 1, the compensating source defined in Section 5.2 for buffer 2 also remains

unchanged. Therefore we only need to present the analysis for buffer 2 with the understanding that

buffer 2 can be modeled as one with a constant channel capacity c but with an extra compensating

source besides the N original sources.

The effective bandwidth, ebi2(v), of source i (for i = 1, 2, . . . , N) generating traffic into buffer 2

is given by (see Kulkarni [21]) the unique solution to

Ũi(v ebi2(v)− ri2v) D̃i(v ebi2(v)) = 1 (33)

where Ũi(·) and D̃i(·) are the LSTs of Ui(·) and Di(·) respectively. Recall that the effective band-

width of the compensating source is ebadj0 (η), as defined in Section 5.2. The next step is to solve

for η in

ebadj0 (η) +
N
∑

i=1

ebi2(η) = c.

Generalizing Equation (9) to accommodate the N+1 on-off sources (including the compensating

source), we can derive the distribution of the contents in buffer 2 as

K0∗

{

N
∏

i=1

Ki∗

}

e−ηx ≤ lim
t→∞

P{X2(t) > x} ≤ K∗
0

{

N
∏

i=1

K∗
i

}

e−ηx,

where

K0∗ =
1− Õ2

adj
(ηebadj0 (η))

E(T adj
1 + 2θ) + E(T2 − θ)

c

ebadj0 (η)(c− ebadj0 (η))η
,

K∗
0 =

1/Õ2
adj

(ηebadj0 (η))− 1

E(T adj
1 + 2θ) + E(T2 − θ)

c

ebadj0 (η)(c− ebadj0 (η))η
,
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for i = 1, 2, . . . , N ,

Ki∗ =













Ũi(−η(ri2 − ebi2(η)))− 1

τ iU + τ iD

ri2

ebi2(η)(r
i
2 − ebi2(η))η supx

{

∫∞

x
e
η(ri

2
−ebi

2
(η))(y−x)

dUi(y)

1−Ui(x)

}













and

K∗
i =













Ũi(−η(ri2 − ebi2(η)))− 1

τ iU + τ iD

ri2

ebi2(η)(r
i
2 − ebi2(η))η infx

{

∫∞

x
e
η(ri

2
−ebi

2
(η))(y−x)

dUi(y)

1−Ui(x)

}













.

Note that the above extension is derived in Gautam et al [13]. In fact in Gautam et al [13], there is

an expression for the bounds of the buffer content when the input sources are modulated by semi-

Markov processes (and not just alternating renewal or on-off processes). Therefore it is possible to

further generalize these results even further.

8 Conclusions and Extensions

In this paper we consider a 2-class fluid model with one buffer for each class of traffic. Traffic enters

the two buffers according to an exponential on-off process. Traffic is emptied at rate c by a single

scheduler that alternates between the two buffers. When buffer 1 becomes empty the scheduler

switches to buffer 2 (after a switch-over time) and returns back to buffer 1 when the contents of

buffer 1 exceeds a. Under this policy, we develop the steady state distribution of the contents of

buffers 1 and 2. We use that to formulate and solve an optimization problem to design the optimal

threshold a.

The next step is to use these analytical results in an implementation test-bed for agent task

scheduling. In the future we will consider other threshold-based scheduling policies as well. Besides

the threshold on the agent workload, we will also study thresholds on the CPU utilization. We will

extend the results to a network of agents.

Appendix 1: Joint Distribution of Buffer Contents

A powerful technique to compute the joint distribution of queue lengths in discrete-customer queues

(especially for 2-class or 2-buffer queues) is to formulate a Riemann-Hilbert boundary value problem.

This technique is described in detail in Cohen and Boxma [5] and [6]. In fact, Boxma [7] considers

a system of two identical queues, attended by a server who alternately serves a customer of each
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queue after spending a random switching time. In that paper, the generating function equation

for the joint queue length distribution is formulated as a Riemann-Hilbert boundary value problem

and solved.

Unlike discrete-customer queues, fluid queues have not enjoyed much success with Riemann-

Hilbert boundary value problem formulations. Zhang [29] is one of the few papers that employs this

technique for fluid queues, however the author does not use the term Riemann-Hilbert boundary

value problem. The major differences (in terms of the setting) between what is described in Section

2.3 and Zhang [29] are: (i) the threshold a is zero and therefore the problem reduces to a static

priority problem, (ii) there is no switching time, (iii) the input traffic to the two buffers are corre-

lated. In Zhang [29], it is possible to conveniently analyze the processes X1(t) and X1(t) +X2(t).

However in this paper, due to the buffer-content dependent switching policy as well as the non-

work-conserving service discipline, the analysis becomes complex and intractable. We now present

an attempt of going over the analysis.

Recall the model in Section 2.3. In order to simplify the analysis, we assume that θ = 0, i.e.

switch over is instantaneous. We now present some additional notation. For m = 1, 2, i = 0, 1 and

j = 0, 1,

Zm(t) =

{

0 if source m is off at time t,
1 if source m is on at time t,

Y (t) =

{

1 if the scheduler is serving buffer 1 at time t,
2 if the scheduler is serving buffer 2 at time t,

H
(m)
ij (t;x1, x2) = P{X1(t) ≤ x1, X2(t) ≤ x2, Z1(t) = i, Z2(t) = j, Y (t) = m},

H(m)(t;x1, x2) = [H
(m)
00 (t;x1, x2) H

(m)
01 (t;x1, x2) H

(m)
10 (t;x1, x2) H

(m)
11 (t;x1, x2)],

D
(1)
1 = diag[−c − c r1 − c r1 − c],

D
(2)
1 = diag[0 0 r1 r1],

D
(1)
2 = diag[0 r2 0 r2],

D
(2)
2 = diag[−c r2 − c − c r2 − c],

Q =











−β1 − β2 β1 β2 0
α2 −α2 − β1 0 β1

α1 0 −α1 − β2 β2

0 α1 α2 −α1 − α2











.

The vector H(m)(t;x1, x2) satisfies the following partial differential equation, for m = 1, 2,

∂

∂t
H(m)(t;x1, x2) +

∂

∂x1
H(m)(t;x1, x2)D

(m)
1 +

∂

∂x2
H(m)(t;x1, x2)D

(m)
2 = H(m)(t;x1, x2)Q,
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with the following boundary conditions:

H
(1)
ij (t; 0, x2) = 0 for all i, j

H
(2)
ij (t;∞, x2) = H

(2)
ij (t; a, x2) for all i, j

H
(m)
i1 (t;x1, 0) = 0 for all i,m

H
(2)
1j (t; 0, x2) = 0 for all j

Unlike Zhang [29], here we cannot re-write the differential equation in steady-state by dropping

the ∂t term. This is because here the corresponding processes are not ergodic (the m = 1 equation

would render X2 →∞ and viceversa). Our only hope is to analyze the transient case and compute

the 3-dimensional Laplace transform

F (s;w1, w2) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−st−w1x1−w2x2H(m)(t;x1, x2).

Then we need to couple the Laplace transform equations with analyzing the Markov Regenerative

Process (MRGP) {(X1(t), X2(t), Z1(t), Z2(t), Y (t)), t ≥ 0} by considering the scheduler switching

instants as Markov-renewal epochs. To combine the Riemann-Hilbert boundary value formulation

with the MRGP formulation is analytically intractable. For this reason, we resort to approximation

techniques.

Appendix 2: Random Switch-over Times Analysis

In Section 5, we considered the switch-over times to be positive constants. Here we extend the

analysis to the case when the switch-over times are non-negative random variables. In particular,

let the switch-over times be random with mean θ, cumulative distribution function FS(·) and LST

F̃S(·). Assume that for y < 0, FS(y) = 0. Let S12 be the random time for the scheduler to switch

from buffer 1 to buffer 2. Likewise define S21.

Before developing approximations for the marginal distribution of the buffer contents in steady

state, we need to make some assumptions regarding the switch-over times:

1. The switch-over time must be much smaller than the “on” times for source 1. In other words,

if U1 ∼ exp(α1) denotes the “on” times for source 1, then P (S21 > U1) ≈ 0.

2. The switch-over time must be much smaller than T2, i.e., P (S12 > T2) ≈ 0.

The above assumptions are practical since the switch-over time is usually a very tiny amount of

time. These assumptions are needed to keep the analysis tractable.
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Define T adj
1 (t) as the random time for buffer 1 to empty out from a level a + r1t while the

scheduler is serving that buffer continuously. Note that T adj
1 defined in Section 5.2 corresponds to

T adj
1 (θ). Figure 11 pictorially depicts the buffer and scheduler dynamics that will be useful in our

analysis.

2 -> 1buffer 2
Serve

1 -> 2
Switch

buffer 2
Serve

2 -> 1
Switch

buffer 1
Serve Switch

1 -> 2
Switch Serve

buffer 1

S T
2

- S
1212 21

S T
1

adj
S

21
)( S

12
T

2
- S

12 21
S T

1 )
21

(S
adj

Scheduler
state  at

Buffer 2

OFF ON

Scheduler
state  at
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OFF ON OFF

OFF ON OFF ON

X
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) 

=
 0

1

X
   

(t
) 

=
 0

1

X
   

(t
) 

=
 a

X
   

(t
) 
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 a

1 1

Figure 11: Scheduler Dynamics

Buffer 2 approximations

The analysis proceeds identical to that in Section 5.2. Consider the compensating source defined

in Section 4.2.1. The compensating source is such that its on times are T adj
1 (S21) + S12 + S21 and

off times are T2−S12. By conditioning and unconditioning on the switch-over times, we can derive

the LSTs of the on and off times respectively as

Õ1
adj

(w) = E[e−w(Tadj
1 (S21)+S12+S21)] =

{

F̃S(w)w+β1+cs0(w)
β1

ea s0(w)F̃S(w − r1s0(w)) if w ≥ w∗

∞ otherwise.

and

Õ2
adj

(s) = E[e−s(T2−S12)] = F̃S(−s)
β1

β1 + s
e
−a

α1s+β1s+s2

r1s+r1β1 .

The effective bandwidth of the compensating source is the unique solution to

Õ1
adj

(v ebadj0 (v)− cv) Õ2
adj

(v ebadj0 (v)) = 1.

The next step is to solve for η in

ebadj0 (η) + eb2(η) = c.

Using Theorem 5 we can derive the distribution of the contents in buffer 2 as

LBadj ≤ lim
t→∞

P{X2(t) > x} ≤ UBadj ,
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where

LBadj =
r2β2

eb2(η)(α2 + β2)

1− Õ2
adj

(ηebadj0 (η))

E(T adj
1 (S21) + S12 + S21) + E(T2 − S12)

c

ebadj0 (η)(c− ebadj0 (η))η
e−ηx,

and

UBadj =
r2β2

eb2(η)(α2 + β2)

1/Õ2
adj

(ηebadj0 (η))− 1

E(T adj
1 (S21) + S12 + S21) + E(T2 − S12)

c

ebadj0 (η)(c− ebadj0 (η))η
e−ηx.

Note that E(T adj
1 (S21) + S12 + S21) = E[T adj

1 (θ)] + 2θ and E(T2 − S12) = E(T2) − θ, where from

Equation (20) we have E[T adj
1 (θ)] = r1+(a+r1θ)(α1+β1)

cα1+cβ1−r1β1
and E(T2) is given in Equation (21).

Buffer 1 approximations

Proceeding in a similar fashion as in Section 5.3 we can show that

lim
t→∞

P{X1(t) > x} ≈

r1β1

c(α1 + β1)
E[V adj

2 ]e−η(x−a)F̃S(−ηr1)

E[V adj
1 ] + E[V adj

2 ] + E[V adj
3 ]

,

where η is defined in Equation (27), and the terms E[V adj
1 ], E[V adj

2 ] and E[V adj
3 ] are defined in

Section 5.3.
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