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Abstract 
 

This paper presents an innovative architecture for 
engineering an agile distributed system of interacting 
agents, which is modeled as a set of interacting 
automata[11].  By slight modification of Goranson's 
definition of agility [5], we define agile control as the 
collective ability of agents to continually adapt to 
expected and unexpected changes.  The intelligent control 
of the enterprise, then, consists of (i) continual 
observation of events and identification of relevant 
changes on the battlefield (ii) controllers implementing a 
dynamic C2 strategy as a control specification for each 
agent in the enterprise, and (iii) tactical intelligence tools 
which process necessary transient and situational 
information for the agents to execute the control decisions 
in the battlefield.  A testbed implementing these 
components and their interactions has been established as 
shown in Figure 1.  Methods for engineering agile control 
specifications for a hierarchy of agents in the air 
operations enterprise are discussed in a companion paper 
in these proceedings [14].  This paper presents the 
overall architecture and its testbed implementation for 
agile control of air operations.  In addition, a variety of 
tactical intelligence tools are discussed which provide 
situational and transient  information for executing 
control decisions.  Algorithms for dynamic assignment of 
targets to aircraft is an example of a tactical intelligence 
tool.  These algorithms require current and situational 
knowledge of resources and positions of identified targets 
to continually reconfigure assignments.  Both centralized 
and onboard tactical intelligence algorithms are 
discussed and compared for relative performance.  The 
testbed is being used for more detailed experimental 
verification of C2 strategies for air operations as 
described in another companion paper in these 
proceedings [4]. 

 

1. Intelligent Control of Dynamic 
Operations 

 
The air operations enterprise can be represented as a 

dynamic hierarchy of intelligent agents who change their 
internal states in response to interactions with other agents 
or the environment.  The dynamic time-evolution of 
complex interactions of agents in the enterprise is 
inherently different from the continuous variable 
dynamics of physical processes.  Unlike the evolution of 
physical processes which are constrained by physical 
laws, agent interactions are triggered by discrete events 
and are characterized by a large number of interacting 
processes under predictable and unpredictable 
disturbances.  Hence there are no inherent physical laws 
to constrain system configurations other than natural 
limitations of human/machine comprehension, resources 
and ergonomics.  Therefore, an accurate plant model, 
based on physical laws, cannot easily be formulated.  
Concurrent dynamic processes, embedded at each node of 
the system, interact in highly non-linear, time-varying 
stochastic and possibly inconsistent ways.  Hence model 
based conventional control methods are inadequate.  
Alternate methods of designing controllers whose 
structure and outputs are determined by empirical 
evidence through observed input/output behavior rather 
than by reference to a plant model are necessary. 

Several techniques for such non-linear controller 
design have recently been proposed in recent literature on 
Intelligent Control [6, 7, 10, 2, 9, 12]. Meystel [8] has 
proposed a nested hierarchical control architecture for the 
design of Intelligent Controllers.  Albus [2] has also 
developed the Real Time Control Architecture in which 
sensor and processing, value judgment, world modeling 
and behavior generation subsystems interact to adaptively 
generate appropriate response behaviors to sensor 
observations and knowledge of mission goals.  Brooks' 
subsumption architecture [3] for intelligent control is 



based on achieving increasing pre-specified levels of 
competence in an intelligent system by examining outputs 
of lower levels. 

An innovative behavior based architecture for 
intelligent agile control of agents in the air operations 
enterprise is presented here.  The mathematical 
representation of agent interactions as a cellular space of 
interacting automata was formulated in [11].  The 
uniqueness of this approach is that it allows a 
heterogeneous group of agents to self organize and 
coordinate composite behaviors to support the execution 
of desired global behaviors of the system.  Desired system 
behaviors are enabled through the hierarchical control 
architecture of the system and represented as control 
specifications.  Methods for the control specifications for 
an agent hierarchy and for checking the controllability 
and hierarchical consistency of the resulting system are 
discussed in [14]. 

In section 2 we present an overall architecture for 
implementing agile enterprise control. Section 3 discusses 
centralized versus distributed tactical intelligence.  In 
Section 4, we present four different algorithms for 
dynamic target scheduling and routing of aircraft in a 
limited SEAD Scenario [13] for corridor clearance.  
Section 5 discusses resource bounded optimization and 
performance comparisons for the four algorithms.  More 
detailed experimental verification of distributed C2 
strategies on this testbed is discussed in [4]. 
 

2. Agile Control Architecture    
 
The essential components of Agile Control are shown 

in Figure 1.  These are: 
(i) Identification and communication of relevant 

change in the enterprise to appropriate agents. 
(ii) Hierarchical controller for specifying and 

implementing a control strategy, and  
(iii) Tactical intelligence tools for providing intelligent 

decision support for executing the control strategy. 
The description and interaction of these components 

will be described in detail in this paper. 
An enterprise simulator, representing air operations in 

the battlefield, generates events which are observed and 
responded to by intelligent agents.  The design of the 
hierarchical controller assumes the strategic knowledge an 
experienced commander may have in specifying a control 
strategy for his agents for a particular mission.  For 
example, in the corridor clearing scenario described later 
in this paper, the control strategy will be based on mission 
planning information which may not be specific in terms 
of the exact location of targets.  In general, sufficient 
planning information is assumed so that our overall 
control strategy can be implemented.   

Control specifications define the execution level 
behavior-modification rules for each agent in response to 
observed changes in the enterprise.  These specifications 
are ill-posed, however, for the execution level dynamics 

 

 

Fig 1. Components of the Agile Control Architecture 
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in the enterprise is not yet defined.  Tactical intelligence 
tools are developed for providing situational and transient 
information derived from event observations (including 
status/position report) to support the execution of the 
control strategy.  For example, upon identification of an 
unanticipated threat, the on-board controller may enable 
the 'escape' behavior for a fighter aircraft.  The tactical 
intelligence tools on-board the aircraft must then provide 
move-to-coordinates (x, y, z) for safe escape.  In general, 
the tactical intelligence tools identify observable change 
in the enterprise and provide situational decision support 
to the controller to enable an appropriate response.  
Together, the hierarchical controller and tactical 
intelligence tools define the response mechanism for an 
intelligent agent. 

The agent interface to the enterprise allows the 
observation of change events in the enterprise by the 
agent and enables the control actions to be implemented 
in the enterprise. 

This modular construction of the testbed allows 
multiple control algorithms to be tested for a given 
enterprise.  It also allows variations in the plant simulator 
to evaluate control performance of a particular control 
strategy for various possible evolutions of the enterprise. 

The following is a detailed description of the 
components in Figure 1: 
Enterprise Simulator (ES) - The ES generates raw data for 

all forces, interactions among platforms, and 
environmental conditions.  It also responds to inputs 
from the Dispatcher. 

Dispatcher (D) – D receives data from the ES and sends it 
to the Event Generator (EG) and Plant State Filter 
(PSF).  It acts as a bridge between the controllers and 
the enterprise simulator (ES). 

Event Generator (EG)  - The EG abstracts discrete events 
from the continuous data supplied by D.  It also sends 
an event list to the hierarchical controller.    

Action Generator (AG) - The AG takes an event vector 
from the controller and determines what actions 
should be taken.  The AG, sometimes using tactical 
intelligent tools, determines what changes in the plant 
(continuous world) are required to enact each 
command (discrete events). 

Plant State Filter (PSF) – The PSF reads pertinent data 
from the plant for use by the Tactical Intelligence 
Tools. 

Controller Interface  – This is a bridge between the EG 
software and the controller software. 

Decision Support Interface – This is a bridge between the 
PSF software and the Tactical Intelligence Tools. 

Hierarchical Controllers (HC) – The HC interpret the list 
of events from the EG and from this list they send an 
action vector to the action generator.  An action 
vector is a control request to enable or disable 
specific controllable events.   

The HC also abstract from event lists, sending these 
“higher-level” events to higher-level controllers.  These 
higher-level controllers will also send commands back to 
the lower-level (original) controller through an action 
vector. 
Tactical Intelligence (TI)– These are a set of tools used by 

the Action Generator to make optimized decisions.  
These contain algorithms for aircraft routing and 
creating target lists for aircraft, called clusters. 

 
3. Centralized Vs. Distributed Tactical 

Intelligence 
 

Some of the algorithms for tactical intelligence need to 
be performed in a centralized fashion, such as the 
planning algorithms before the start of a mission. 
However once the mission starts there is a choice of 
running the tactical intelligence algorithms either 
centrally or in a distributed fashion. The advantages of a 
centralized algorithm are potentially superior solutions 
due to global optimization. The disadvantages of the 
centralized algorithms are: the local information regarding 
enemy targets cannot be used, the communication 
overheads, security problems during communications, 
failure of communications, complexity of problems, large 
solution time for problems, potential inability to recover 
from multiple back-to-back failures, etc. Since the merits 
of the distributed algorithms are compelling for air 
combat command and control which are initially 
developed as centralized, are distributed over the 
platforms for autonomous, unsynchronized execution.  

 
4. Algorithms for Tactical Intelligence 

 
The tactical intelligence module uses several 

algorithms to assist the controller in making intelligent 
decisions. One of the algorithms to facilitate dynamic 
target scheduling and routing is explained here. It is a 
distributed algorithm that each friendly aircraft uses to 
autonomously decide its target schedule and routes. Some 
of the instances when this algorithm is used during the 
mission are: when an unknown enemy target is spotted, 
when the enemy attacks, during a mechanical failure, 
when fuel runs out, when weapons run out, when new 
aircrafts are added, etc. 
 
4.1 Dynamic target scheduling and routing 
methods 

 
Given the location of the friendly aircraft (e.g. Wild 

Weasel) and the expected locations of the enemy targets 
(with types such as fixed SAMS, mobile SAMS and 
radars) the objective of the dynamic target scheduling and 
routing algorithm is to compute a least-cost path to 



destroy all known enemy targets. The cost of a path is a 
function of the expected time to traverse a path and the 
expected risk incurred by the friendly aircraft. The 
following are the notations used in the algorithms: 

N : Set of enemy targets 
(xi, yi) : Coordinates of enemy target i (i 0 N) 
(x0,y0) : Location of friendly aircraft at the time of 

determining route 
Cij : Cost for directly traveling from enemy target 

i to enemy target j (i, j 0 N) 
R : An ordered set corresponding to the route of 

friendly aircraft 
Z : Total cost for traversing route R 
D : Dummy subset of enemy targets 
Note that Cij is computed using (xi,yi),(xj,yj), speed of 

the aircraft, and, a risk factor (rij) such that among all 
paths between i and j, Cij is cost associated with the path 
corresponding to the minimum of the product of the risk 
factor and travel time. We assume in this paper that Cij  
has been pre-computed and is available to use in the 
algorithms. In a follow up paper we will describe 
algorithms to compute costs Cij as well as the paths 
between targets i and j. Some algorithms for dynamic 
target scheduling and routing are now explained. 

 
Greedy Algorithm: Given a set of enemy targets to 
destroy and the current location of the Wild Weasel, a 
greedy algorithm called the nearest neighborhood search 
algorithm is developed to obtain a sequence and route to 
destroy the targets. The greedy algorithm begins with the 
current location of the Wild Weasel and destroys the 
enemy target that can be reached by traversing the least 
cost path.  Among the undestroyed targets, the algorithm 
next selects the enemy target that can be reached by 
traversing the least cost path. This process continues until 
all known enemy targets are destroyed. Then the Wild 
Weasel patrols its assigned region. The main advantage of 
using the greedy algorithm is to obtain high 
responsiveness for the tactical intelligence module. Hence 
the sequence and route to destroy the targets can be 
obtained extremely fast. However the price to pay for this 
high-speed response is the quality of the response. In most 
cases this response from the tactical intelligence is far 
from optimal, hence the overall objective of minimizing 
the cost of destroying the targets will not be 
accomplished. 
 
Algorithm Greedy 
1. Set i = 0, Z = 0, R := ∅ and D := N 
2. While D � ∅, do 

a. ijDj
CZZ

∈
+= min  and ij

Dj
Ck

∈
= minarg  

b. R = R  ″  k  and  D = D ! k 
c. i = k 

 

Resource Bounded Optimization (RBO) Algorithm: 
Given a set of enemy targets to destroy and the current 
location of the Wild Weasel, an RBO algorithm based on 
the 2-opt search for the well-known graph theoretic 
problem, the traveling salesperson problem, is developed. 
Note that the problem of obtaining a sequence and route 
to destroy the targets can be stated as a Hamiltonian path 
problem as explained in the algorithm that follows. In the 
RBO algorithm, the solution from the greedy algorithm is 
taken and improvised. At each iteration, a random-pair-
wise interchange to the current sequence and route to 
destroy the targets is performed. After several iterations, 
the algorithm will converge to the optimal solution. The 
number of iterations the tactical intelligence will perform 
will depend on the time available to respond. The solution 
quality will improve with the number of iterations. This 
algorithm can be stopped at any iteration and a solution 
can be obtained. The numerical examples indicate a vast 
improvement in the solution quality (as compared to the 
greedy algorithm and the optimal algorithm) in very few 
iterations. However the disadvantage is that it may take a 
long time to obtain the optimal solution especially in ill-
posed problems. We require a few definitions for the 
algorithm. Consider an element i in the ordered set R. 
Define P(i) and S(i) as the elements preceding and 
succeeding i respectively in the ordered set R. In other 
words P(i) and S(i) are respectively the enemy targets 
destroyed before and after destroying target i. Note that if 
i is the first or last target respectively, then P(i) or S(i) are 
null sets. Also define an operation U(A) on a set A that 
results in a 2-tuple denoting 2 elements randomly selected 
from set A. Denote the binary variable Y(i,j) such that it is 
1 if arc (i,j) is in route R and, 0 otherwise. 
 
Algorithm RBO(I) 
1. Set I as the number of desired iterations 
2. Obtain R using Algorithm Greedy 
3. Update R to include the initial location of friendly 

aircraft, i.e., R = {0} χ  R 
4. For x = 1 to I, do 

a. (i, j) = U(R) [Note: i and j are 2 nodes randomly 
selected from the route] 

b. if i � j, P(i) � ι, P(j) � ι, S(i) � ι, S(j) � ι, P(i) � j, 
and P(j) � i  

i.  n1 = i, m1 = S(i) 
ii.  n2 = j, m2 = S(j) 
iii. if Cn1,m1 + Cn2,m2 > Cn1,n2 + Cm1,m2,  
 then modify R such that  

 Y(n1,m1)=0,Y(n2,m2)=0,Y(n1,n2)=1 and 
Y(m1,m2)=1 

elseif  i � j, and S(i) � ι,  
 n1 = i, m1 = 0 and n2 = j, m2 = S(j) 
if  Cn2,m2 > Cn1,2,  
then modify R such that  



  Y (n2,m2)=0 and Y(n1,n2)=1  
elseif  i � j, and S(j) � ι,  
 n1 = i, m1 = S(i) and n2 = j, m2 = 0 
if  Cn1,m1 > Cn1,n2,  
then modify R such that  
 Y(n1,m1) = 0 and Y(n1,n2)=1  

else 
go to a. 

Note that other “elseif” conditions can be incorporated 
into the algorithm. For presentation reasons those 
conditions have been omitted. 
 
Hamiltonian Path: The path traversed by the Wild 
Weasel from the current location to the last destroyed 
target is referred to as the Hamiltonian path in graph 
theory literature (see Ahuja [1]). The algorithm uses a 
network representation such that the known enemy targets 
are the nodes of the network. There is an arc from every 
node to every other node denoting the ability to go from 
any target to any other target. The cost on the arc 
represents the cost of traversing from one target to 
another and is computed using the expected travel time 
and expected risk. The algorithm begins by solving the 
minimal spanning tree (another well-known graph 
theoretic problem) of the network. If the spanning tree is 
not a Hamiltonian path, then it has arcs that violate the 
Hamiltonian path requirements. The solution of the 
minimal spanning tree acts as the lower bound. Then at 
every iteration, the lower bound is improved using a 
branch-and-bound technique where one of the violating 
arcs of the spanning tree is set to a high cost. The 
algorithm stops when a Hamiltonian path is obtained, i.e., 
there are no more branches to consider. This algorithm 
can guarantee optimal solution after a sufficiently large 
number of iterations. The major drawback is that if the 
algorithm is stopped during any iteration, no solution will 
exist that can be responded by the tactical intelligence. 

We introduce a few notations before illustrating the 
algorithm. Let C= [Cij] be a cost matrix denoting the arc 
cost between every pair of nodes. Define T(C) as an 
operation on C that results in a minimum spanning tree of 
the network. In particular, let X = T (C) such that X = [Xij] 
and Xij is a binary variable such that it is 1 if arc (i,j) is in 
the spanning tree and, 0 otherwise. For minimum 
spanning tree algorithms, see [1] to determine if a 
spanning tree is a Hamiltonian path is to check if the 
degree of all nodes in the spanning tree is not greater than 
2, except node 0 whose degree should not be greater than 
1. In essence, the following algorithm iterates through 
several spanning trees until a Hamiltonian path is 
obtained. 
 
Algorithm Hamiltonian 
1. Set W = 0 and X = T (C) 
2. If X is a Hamiltonian path, W = 1  

3. While W = 0, do 
a. Z = 0.5 XC,the total cost of the spanning tree 
b. For every node with degree greater than allowed: 

i. Obtain X = T(C) assuming one of arc cost of 
the node is infinite 

ii. If X = T (C) is not a Hamiltonian path, go to 
b. Else  Z0 = 0.5XC  

c. Choose Hamiltonian path with smallest Z0  
4. Y = X and obtain the route R via Y. 

Note that it is possible to improve the above branching 
procedure by doing a branch-and-bound procedure. This 
would require fathoming all minimum spanning trees 
whose costs are greater that the current Hamiltonian path 
cost during an iteration. If the algorithm is stopped in the 
middle, to avoid the situation of not having a route we do 
the following: if a (current) Hamiltonian path is available 
it can be used, otherwise, the solution from the greedy 
algorithm can be used. 

 
Optimal Algorithm: This algorithm uses complete 
enumeration of the entire solution space to obtain the 
optimal solution. Therefore every possible sequence and 
routes to destroy the targets are considered and the best is 
chosen. This is a very time-consuming algorithm and 
takes n! computations if there are n targets to be 
destroyed. Since this algorithm guarantees an optimal 
solution, it is used for benchmarking other algorithms.  

Define R  as a set of all possible routes and r as a 
candidate route. Also let D (r) be the cost of the candidate 
route r.  
 
Algorithm Optimal 
1. Set Z = 4  

2. For all ∈r R , if D(r) < Z,  then R  = r and Z = D(r)  
 
 

5. Resource Bounded Optimization 
Performance Comparisons 

 
The algorithms developed in the previous section are 

tested here for different numerical values. In particular, 
the performance of the new RBO algorithm developed is 
tested against the other algorithms for an air operation 
scenario described below. 

 
5.1 Generic Air Ops Scenario 

 
The scenario considered here is a limited SEAD 

scenario. A bombing mission is to be attempted against an 
enemy airbase. For the bombers to be able to perform the 
mission, enemy air defenses must be disabled in two 
corridors leading to the base. In the scenario, the corridors 
are given. They are four miles wide at their narrowest, to 



insure the safety of aircraft flying down the middle of the 
corridor. The enemy has three types of entities: (1) fixed 
SAM sites, (2) mobile SAM launchers, and (3) fixed radar 
sites. The mobile SAM launchers perform a random walk 
on the terrain. They stop wandering and prepare to attack 
at random points in the walk. Any target that has been hit 
is disabled for a random period of time. 

Friendly forces are limited to Wild Weasels, which 
search for and destroy SAMs. Each Wild Weasel has its 
own discrete event controller. The local controller has 
access only to local information. Another discrete event 
controller coordinates activities among the Wild Weasels. 
The coordinator interacts with the system by receiving 
ISR inputs and sending radio messages to the aircraft. 
Each aircraft starts with an initial mission to be 
completed. The aircraft's controller determines the 
decisions that are taken as events occur. Missions will be 
to patrol parts of the corridor and destroy enemy entities. 
Aircraft communicate with the supervisory controller as 
needed for coordination. It will adjust the regions covered 
and targets aircraft in response to changing conditions. 

The tactical intelligence module explained in Section 2 
is responsible for (1) allocating platforms to targets and 
regions (2) allocating routes to platforms, and, (3) 
allocating patrolling pattern after destroying known 
SAMs in a region. In this paper we have explained in 
detail the algorithms only for the second task, i.e. 
allocating routes to platforms. The other algorithms are 
explained in [4]. It is important to note that these 
algorithms are executed both during the initial planning 
phase as well as en-route during the attack phase. 
Therefore it is critical to obtain an algorithm that 
produces reasonably good results in a short period of 
time. At this time, we only compare the performance of 
the algorithms running independently. However, in a 
future paper, we will provide the results based on 
battlefield simulations.  

The coordinator assigns regions for aircraft to cover. 
This is a centralized algorithm that uses a clustering 
algorithm (K-Means algorithm) and regions are created 
by a Vornoi process which partitions a corridor into 
disjoint regions. The individual aircraft choose their own 
strategies for destroying known targets based on a 
decentralized algorithm. Once all known targets are 
destroyed, another decentralized algorithm (such as a 
lawnmower-type algorithm) to patrol for new threats is 
used.  Regions must be reassigned and strategy for 
destroying targets must be reformulated as aircraft are 
destroyed, unknown enemy targets are spotted, aircraft 
run out of fuel or weapons, or new aircrafts are added.  

5.2 Performance Metrics 
 
The dynamic target scheduling and routing methods are 

considered here. It is assumed that regions have been 
described and targets have been assigned to each aircraft. In 
order to compare the four algorithms in Section 4.1, we use 
two performance metrics: solution quality and number of 
floating-point operations. The solution quality is 
benchmarked against the best possible solution. Therefore 
the ratio between the optimal solution (produced using the 
optimal algorithm) and the solution produced by an 
algorithm is the measure considered for solution quality. 
The number of floating-point operations is a measure of the 
number of operations that will be required on a computer to 
obtain the given solution. Then based on the type of 
computer installed on the aircraft, this metric can be used to 
determine the time to respond to the controller with a route.  

 
5.3 Performance Evaluation 

 
To evaluate the performance of the different 

algorithms, using 30 sets of enemy target locations to 
destroy and current location of the Wild Weasel, for each 
set, the following algorithms were considered and average 
performance metrics were obtained: greedy algorithm, 
RBO(I) algorithm with I=5, 10, 25, 50 and 100 iterations, 
Hamiltonian path algorithm (which is stopped after a 
sufficient number of iterations), and, optimal algorithm. 
The performance metrics are tabulated in Table 1, below.  
This table is based on 8 enemy targets assigned to an 
aircraft. Any value larger than 8 targets would require 
very large computational time for the optimal solution. 
However, for the other algorithms we could use many 
more targets. Also, the table is obtained by running the 
algorithms off-line. From the table note that the RBO 
algorithm with just 10 or 25 iterations results in a good 
solution. Therefore, if the RBO algorithm needs to be 
aborted after, say 5000 floating point operations, the 
solution obtained is very good. On the other hand, the 
Hamiltonian algorithm after 5000 floating point 
operations would not have produced any solution. Also, 
the greedy algorithm would have used an inferior 
solution. The RBO algorithm produces significantly better 
results than the greedy algorithm in a very few extra 
iterations. Therefore for the SEAD scenario it would be 
most appropriate to use the RBO algorithm and depending 
on the time available to solve the RBO, the algorithm can 
be stopped at a suitable time. 

 Greedy RBO  
(5 itns) 

RBO 
(10 itns) 

RBO 
(25 itns) 

RBO 
(50 itns) 

RBO 
(100 itns) 

Hamilt. Optimal 

Solution quality 0. 9575 0.9683 0. 9727 0.9824 0. 9845 0. 9868 0. 9907 1.0000 
Floating pt. Ops. 992 2589 4095 8601 15898 30395 49048 351769 

Table 1.  Performance metrics 



 
  

Acknowledgements and disclaimers 
 

This effort is sponsored by the Defense Advanced 
Research Projects Agency (DARPA) and Air Force 
Research Laboratory, Air Force Materiel Command, 
USAF, under agreement number F30602-99-1-0547 
(JFACC).  The U.S. Government is authorized to 
reproduce and distribute reprints for Government 
purposes notwithstanding any copyright annotation 
thereon.  The views and conclusions contained herein are 
those of the authors and should not be interpreted as 
necessarily representing the official policies or 
endorsements, either expressed or implied, of the Defense 
Advanced Research Projects Agency (DARPA), the Air 
Force Research Laboratory, or the U.S. Government.  

 
References 
 
[1] R.K. Ahuja, T.L. Magnanti, and, J.B. Orlin, Network 

Flows: Theory, Algorithms and Applications, Prentice-Hall 
Inc., 1993. 

 
[2] J.S. Albus, "A Reference Model Architecture for Intelligent 

Systems Design," in An Introduction to Intelligent and 
Autonomous Control, pp 27-56.  Kluwer Academic 
Publishers, 1993. 

 
[3] R.A. Brooks, "A Robust Layered Control System for a 

Mobile Robot,"  IEEE Transactions on Robotics and 
Automation, 2(3): pp 14-23, 1986. 

 
[4] R. R. Brooks, C. Griffin, P. Dicke, M. Byrne, M. Edwards, 

S. Phoha, D. Friedlander, B. Button and E. Grele, 
"Experimental Verification of Distributed C2 Strategies," 
proceedings of 2nd DARPA JFACC Symposium on 
Advances in Enterprise Control, Minneapolis, MN, July 
10-11, 2000. 

 
[5] H. T. Goranson, The Agile Virtual Enterprise Cases, 

Metrics, Tools, Quorum Books, 1999.  
 

[6] C. J. Harris, ed., Advances in Intelligent Control, Taylor & 
Francis, Bristol, PA, 1994. 

 
[7] A. H. Levis, "Modeling and Design of Distributed 

Intelligence Systems, " in An Introduction to Intelligent and 
Autonomous Control, pp 109-128, Kluwer Academic 
Publishers, Boston, M, 1993. 

 
[8] A. Meystel, "Autonomous Mobile Robots: Vehicles with 

Cognitive Control, "Proceedings of the World Scientific, 
Singapore, 1991. 

 
[9] S. Phoha, S. Sircar, A. Ray, and I. Mayk," Discrete Event 

Control of Warfare Dynamics," The Technical Proceedings 
of the 1992 Symposium on Command and Control 
Research and the 9th Annual Decision Aids Conference, 
Monterey, CA, June 8-12, 1992. 

 
[10] S. Phoha, E. Peluso, P.A. Stadter, J. Stover, and R. Gibson, 

"A Mobile Distributed Network of Autonomous Undersea 
Vehicles," Proceedings of the 24th Annual Symposium and 
Exhibition of the Association for Unmanned Vehicle 
Systems International, Baltimore, MD, June 3-6, 1997. 

 
[11] S. Phoha and R. Brooks, "A Constructivist Theory of 

Distributed Intelligent Control of Complex Dynamic 
Systems," DARPA JFACC Symposium on Advances in 
Enterprise Control, San Diego, CA, November 15-16, 
1999. 

 
[12] P. J. Ramadge, W. M. Wonham, "Supervisory Control of a 

Class of Discrete Event Processes," SIAM J. Control and 
Optimization, Vol. 25, No. 1, January 1987. 

 
[13] SEAD Scenario.  http://www.cgi.com/web2/govt/seadystorm, 

April 7, 2000. 
 
[14] W. Xi, A. Ray, S. Phoha and W. Zhang "Hierarchical 

Consistency of Supervisory Command and Control of 
Aircraft Operations," proceedings of the 2nd DARPA 
JFACC Symposium on Advances in Enterprise Control, 
Minneapolis, MN, July 10-11, 2000. 

 


