

Tactical Intelligence Tools for
Distributed Agile Control of Air Operations

Shashi Phoha
Applied Research Laboratory

The Pennsylvania State University
University Park, PA 16802

sxp26@psu.edu

Natarajan Gautam
Industrial Engineering

The Pennsylvania State University
University Park, PA 16802

ngautam@psu.edu

Alan Horn
Applied Research Laboratory
Pennsylvania State University

University Park, PA 16802
ajh14@psu.edu

Abstract

This paper presents an innovative architecture for
engineering an agile distributed system of interacting
agents, which is modeled as a set of interacting
automata[11]. By slight modification of Goranson's
definition of agility [5], we define agile control as the
collective ability of agents to continually adapt to
expected and unexpected changes. The intelligent control
of the enterprise, then, consists of (i) continual
observation of events and identification of relevant
changes on the battlefield (ii) controllers implementing a
dynamic C2 strategy as a control specification for each
agent in the enterprise, and (iii) tactical intelligence tools
which process necessary transient and situational
information for the agents to execute the control decisions
in the battlefield. A testbed implementing these
components and their interactions has been established as
shown in Figure 1. Methods for engineering agile control
specifications for a hierarchy of agents in the air
operations enterprise are discussed in a companion paper
in these proceedings [14]. This paper presents the
overall architecture and its testbed implementation for
agile control of air operations. In addition, a variety of
tactical intelligence tools are discussed which provide
situational and transient information for executing
control decisions. Algorithms for dynamic assignment of
targets to aircraft is an example of a tactical intelligence
tool. These algorithms require current and situational
knowledge of resources and positions of identified targets
to continually reconfigure assignments. Both centralized
and onboard tactical intelligence algorithms are
discussed and compared for relative performance. The
testbed is being used for more detailed experimental
verification of C2 strategies for air operations as
described in another companion paper in these
proceedings [4].

1. Intelligent Control of Dynamic
Operations

The air operations enterprise can be represented as a

dynamic hierarchy of intelligent agents who change their
internal states in response to interactions with other agents
or the environment. The dynamic time-evolution of
complex interactions of agents in the enterprise is
inherently different from the continuous variable
dynamics of physical processes. Unlike the evolution of
physical processes which are constrained by physical
laws, agent interactions are triggered by discrete events
and are characterized by a large number of interacting
processes under predictable and unpredictable
disturbances. Hence there are no inherent physical laws
to constrain system configurations other than natural
limitations of human/machine comprehension, resources
and ergonomics. Therefore, an accurate plant model,
based on physical laws, cannot easily be formulated.
Concurrent dynamic processes, embedded at each node of
the system, interact in highly non-linear, time-varying
stochastic and possibly inconsistent ways. Hence model
based conventional control methods are inadequate.
Alternate methods of designing controllers whose
structure and outputs are determined by empirical
evidence through observed input/output behavior rather
than by reference to a plant model are necessary.

Several techniques for such non-linear controller
design have recently been proposed in recent literature on
Intelligent Control [6, 7, 10, 2, 9, 12]. Meystel [8] has
proposed a nested hierarchical control architecture for the
design of Intelligent Controllers. Albus [2] has also
developed the Real Time Control Architecture in which
sensor and processing, value judgment, world modeling
and behavior generation subsystems interact to adaptively
generate appropriate response behaviors to sensor
observations and knowledge of mission goals. Brooks'
subsumption architecture [3] for intelligent control is

based on achieving increasing pre-specified levels of
competence in an intelligent system by examining outputs
of lower levels.

An innovative behavior based architecture for
intelligent agile control of agents in the air operations
enterprise is presented here. The mathematical
representation of agent interactions as a cellular space of
interacting automata was formulated in [11]. The
uniqueness of this approach is that it allows a
heterogeneous group of agents to self organize and
coordinate composite behaviors to support the execution
of desired global behaviors of the system. Desired system
behaviors are enabled through the hierarchical control
architecture of the system and represented as control
specifications. Methods for the control specifications for
an agent hierarchy and for checking the controllability
and hierarchical consistency of the resulting system are
discussed in [14].

In section 2 we present an overall architecture for
implementing agile enterprise control. Section 3 discusses
centralized versus distributed tactical intelligence. In
Section 4, we present four different algorithms for
dynamic target scheduling and routing of aircraft in a
limited SEAD Scenario [13] for corridor clearance.
Section 5 discusses resource bounded optimization and
performance comparisons for the four algorithms. More
detailed experimental verification of distributed C2
strategies on this testbed is discussed in [4].

2. Agile Control Architecture

The essential components of Agile Control are shown

in Figure 1. These are:
(i) Identification and communication of relevant

change in the enterprise to appropriate agents.
(ii) Hierarchical controller for specifying and

implementing a control strategy, and
(iii) Tactical intelligence tools for providing intelligent

decision support for executing the control strategy.
The description and interaction of these components

will be described in detail in this paper.
An enterprise simulator, representing air operations in

the battlefield, generates events which are observed and
responded to by intelligent agents. The design of the
hierarchical controller assumes the strategic knowledge an
experienced commander may have in specifying a control
strategy for his agents for a particular mission. For
example, in the corridor clearing scenario described later
in this paper, the control strategy will be based on mission
planning information which may not be specific in terms
of the exact location of targets. In general, sufficient
planning information is assumed so that our overall
control strategy can be implemented.

Control specifications define the execution level
behavior-modification rules for each agent in response to
observed changes in the enterprise. These specifications
are ill-posed, however, for the execution level dynamics

Fig 1. Components of the Agile Control Architecture

 Hierarchical Controller

Enterprise Simulator)

Tactical Intelligence Tools

Events Control

Decision Support Interface Controller Interface

Dispatcher (Simulation Interface and Control)

Enterprise Controller
Interface

Platform Simulation Platform Simulation Platform Simulation

Event Generator Action
Generator

Routing Clustering

Plant State
Filter

Discrete Event
Controller

Events Control

Decision Support Interface Controller Interface

Dispatcher (Simulation Interface and Control)

Plant State Plant ControlPlant State

Platform Simulation Platform Simulation Platform Simulation

Event Generator Action
Generator

Routing Clustering

Plant State
Filter

Discrete Event
Controller

in the enterprise is not yet defined. Tactical intelligence
tools are developed for providing situational and transient
information derived from event observations (including
status/position report) to support the execution of the
control strategy. For example, upon identification of an
unanticipated threat, the on-board controller may enable
the 'escape' behavior for a fighter aircraft. The tactical
intelligence tools on-board the aircraft must then provide
move-to-coordinates (x, y, z) for safe escape. In general,
the tactical intelligence tools identify observable change
in the enterprise and provide situational decision support
to the controller to enable an appropriate response.
Together, the hierarchical controller and tactical
intelligence tools define the response mechanism for an
intelligent agent.

The agent interface to the enterprise allows the
observation of change events in the enterprise by the
agent and enables the control actions to be implemented
in the enterprise.

This modular construction of the testbed allows
multiple control algorithms to be tested for a given
enterprise. It also allows variations in the plant simulator
to evaluate control performance of a particular control
strategy for various possible evolutions of the enterprise.

The following is a detailed description of the
components in Figure 1:
Enterprise Simulator (ES) - The ES generates raw data for

all forces, interactions among platforms, and
environmental conditions. It also responds to inputs
from the Dispatcher.

Dispatcher (D) – D receives data from the ES and sends it
to the Event Generator (EG) and Plant State Filter
(PSF). It acts as a bridge between the controllers and
the enterprise simulator (ES).

Event Generator (EG) - The EG abstracts discrete events
from the continuous data supplied by D. It also sends
an event list to the hierarchical controller.

Action Generator (AG) - The AG takes an event vector
from the controller and determines what actions
should be taken. The AG, sometimes using tactical
intelligent tools, determines what changes in the plant
(continuous world) are required to enact each
command (discrete events).

Plant State Filter (PSF) – The PSF reads pertinent data
from the plant for use by the Tactical Intelligence
Tools.

Controller Interface – This is a bridge between the EG
software and the controller software.

Decision Support Interface – This is a bridge between the
PSF software and the Tactical Intelligence Tools.

Hierarchical Controllers (HC) – The HC interpret the list
of events from the EG and from this list they send an
action vector to the action generator. An action
vector is a control request to enable or disable
specific controllable events.

The HC also abstract from event lists, sending these
“higher-level” events to higher-level controllers. These
higher-level controllers will also send commands back to
the lower-level (original) controller through an action
vector.
Tactical Intelligence (TI)– These are a set of tools used by

the Action Generator to make optimized decisions.
These contain algorithms for aircraft routing and
creating target lists for aircraft, called clusters.

3. Centralized Vs. Distributed Tactical

Intelligence

Some of the algorithms for tactical intelligence need to
be performed in a centralized fashion, such as the
planning algorithms before the start of a mission.
However once the mission starts there is a choice of
running the tactical intelligence algorithms either
centrally or in a distributed fashion. The advantages of a
centralized algorithm are potentially superior solutions
due to global optimization. The disadvantages of the
centralized algorithms are: the local information regarding
enemy targets cannot be used, the communication
overheads, security problems during communications,
failure of communications, complexity of problems, large
solution time for problems, potential inability to recover
from multiple back-to-back failures, etc. Since the merits
of the distributed algorithms are compelling for air
combat command and control which are initially
developed as centralized, are distributed over the
platforms for autonomous, unsynchronized execution.

4. Algorithms for Tactical Intelligence

The tactical intelligence module uses several

algorithms to assist the controller in making intelligent
decisions. One of the algorithms to facilitate dynamic
target scheduling and routing is explained here. It is a
distributed algorithm that each friendly aircraft uses to
autonomously decide its target schedule and routes. Some
of the instances when this algorithm is used during the
mission are: when an unknown enemy target is spotted,
when the enemy attacks, during a mechanical failure,
when fuel runs out, when weapons run out, when new
aircrafts are added, etc.

4.1 Dynamic target scheduling and routing
methods

Given the location of the friendly aircraft (e.g. Wild

Weasel) and the expected locations of the enemy targets
(with types such as fixed SAMS, mobile SAMS and
radars) the objective of the dynamic target scheduling and
routing algorithm is to compute a least-cost path to

destroy all known enemy targets. The cost of a path is a
function of the expected time to traverse a path and the
expected risk incurred by the friendly aircraft. The
following are the notations used in the algorithms:

N : Set of enemy targets
(xi, yi) : Coordinates of enemy target i (i 0 N)
(x0,y0) : Location of friendly aircraft at the time of

determining route
Cij : Cost for directly traveling from enemy target

i to enemy target j (i, j 0 N)
R : An ordered set corresponding to the route of

friendly aircraft
Z : Total cost for traversing route R
D : Dummy subset of enemy targets
Note that Cij is computed using (xi,yi),(xj,yj), speed of

the aircraft, and, a risk factor (rij) such that among all
paths between i and j, Cij is cost associated with the path
corresponding to the minimum of the product of the risk
factor and travel time. We assume in this paper that Cij
has been pre-computed and is available to use in the
algorithms. In a follow up paper we will describe
algorithms to compute costs Cij as well as the paths
between targets i and j. Some algorithms for dynamic
target scheduling and routing are now explained.

Greedy Algorithm: Given a set of enemy targets to
destroy and the current location of the Wild Weasel, a
greedy algorithm called the nearest neighborhood search
algorithm is developed to obtain a sequence and route to
destroy the targets. The greedy algorithm begins with the
current location of the Wild Weasel and destroys the
enemy target that can be reached by traversing the least
cost path. Among the undestroyed targets, the algorithm
next selects the enemy target that can be reached by
traversing the least cost path. This process continues until
all known enemy targets are destroyed. Then the Wild
Weasel patrols its assigned region. The main advantage of
using the greedy algorithm is to obtain high
responsiveness for the tactical intelligence module. Hence
the sequence and route to destroy the targets can be
obtained extremely fast. However the price to pay for this
high-speed response is the quality of the response. In most
cases this response from the tactical intelligence is far
from optimal, hence the overall objective of minimizing
the cost of destroying the targets will not be
accomplished.

Algorithm Greedy
1. Set i = 0, Z = 0, R := ∅ and D := N
2. While D � ∅, do

a. ijDj
CZZ

∈
+= min and ij

Dj
Ck

∈
= minarg

b. R = R ″ k and D = D ! k
c. i = k

Resource Bounded Optimization (RBO) Algorithm:
Given a set of enemy targets to destroy and the current
location of the Wild Weasel, an RBO algorithm based on
the 2-opt search for the well-known graph theoretic
problem, the traveling salesperson problem, is developed.
Note that the problem of obtaining a sequence and route
to destroy the targets can be stated as a Hamiltonian path
problem as explained in the algorithm that follows. In the
RBO algorithm, the solution from the greedy algorithm is
taken and improvised. At each iteration, a random-pair-
wise interchange to the current sequence and route to
destroy the targets is performed. After several iterations,
the algorithm will converge to the optimal solution. The
number of iterations the tactical intelligence will perform
will depend on the time available to respond. The solution
quality will improve with the number of iterations. This
algorithm can be stopped at any iteration and a solution
can be obtained. The numerical examples indicate a vast
improvement in the solution quality (as compared to the
greedy algorithm and the optimal algorithm) in very few
iterations. However the disadvantage is that it may take a
long time to obtain the optimal solution especially in ill-
posed problems. We require a few definitions for the
algorithm. Consider an element i in the ordered set R.
Define P(i) and S(i) as the elements preceding and
succeeding i respectively in the ordered set R. In other
words P(i) and S(i) are respectively the enemy targets
destroyed before and after destroying target i. Note that if
i is the first or last target respectively, then P(i) or S(i) are
null sets. Also define an operation U(A) on a set A that
results in a 2-tuple denoting 2 elements randomly selected
from set A. Denote the binary variable Y(i,j) such that it is
1 if arc (i,j) is in route R and, 0 otherwise.

Algorithm RBO(I)
1. Set I as the number of desired iterations
2. Obtain R using Algorithm Greedy
3. Update R to include the initial location of friendly

aircraft, i.e., R = {0} χ R
4. For x = 1 to I, do

a. (i, j) = U(R) [Note: i and j are 2 nodes randomly
selected from the route]

b. if i � j, P(i) � ι, P(j) � ι, S(i) � ι, S(j) � ι, P(i) � j,
and P(j) � i

i. n1 = i, m1 = S(i)
ii. n2 = j, m2 = S(j)
iii. if Cn1,m1 + Cn2,m2 > Cn1,n2 + Cm1,m2,
 then modify R such that

 Y(n1,m1)=0,Y(n2,m2)=0,Y(n1,n2)=1 and
Y(m1,m2)=1

elseif i � j, and S(i) � ι,
 n1 = i, m1 = 0 and n2 = j, m2 = S(j)
if Cn2,m2 > Cn1,2,
then modify R such that

 Y (n2,m2)=0 and Y(n1,n2)=1
elseif i � j, and S(j) � ι,
 n1 = i, m1 = S(i) and n2 = j, m2 = 0
if Cn1,m1 > Cn1,n2,
then modify R such that
 Y(n1,m1) = 0 and Y(n1,n2)=1

else
go to a.

Note that other “elseif” conditions can be incorporated
into the algorithm. For presentation reasons those
conditions have been omitted.

Hamiltonian Path: The path traversed by the Wild
Weasel from the current location to the last destroyed
target is referred to as the Hamiltonian path in graph
theory literature (see Ahuja [1]). The algorithm uses a
network representation such that the known enemy targets
are the nodes of the network. There is an arc from every
node to every other node denoting the ability to go from
any target to any other target. The cost on the arc
represents the cost of traversing from one target to
another and is computed using the expected travel time
and expected risk. The algorithm begins by solving the
minimal spanning tree (another well-known graph
theoretic problem) of the network. If the spanning tree is
not a Hamiltonian path, then it has arcs that violate the
Hamiltonian path requirements. The solution of the
minimal spanning tree acts as the lower bound. Then at
every iteration, the lower bound is improved using a
branch-and-bound technique where one of the violating
arcs of the spanning tree is set to a high cost. The
algorithm stops when a Hamiltonian path is obtained, i.e.,
there are no more branches to consider. This algorithm
can guarantee optimal solution after a sufficiently large
number of iterations. The major drawback is that if the
algorithm is stopped during any iteration, no solution will
exist that can be responded by the tactical intelligence.

We introduce a few notations before illustrating the
algorithm. Let C= [Cij] be a cost matrix denoting the arc
cost between every pair of nodes. Define T(C) as an
operation on C that results in a minimum spanning tree of
the network. In particular, let X = T (C) such that X = [Xij]
and Xij is a binary variable such that it is 1 if arc (i,j) is in
the spanning tree and, 0 otherwise. For minimum
spanning tree algorithms, see [1] to determine if a
spanning tree is a Hamiltonian path is to check if the
degree of all nodes in the spanning tree is not greater than
2, except node 0 whose degree should not be greater than
1. In essence, the following algorithm iterates through
several spanning trees until a Hamiltonian path is
obtained.

Algorithm Hamiltonian
1. Set W = 0 and X = T (C)
2. If X is a Hamiltonian path, W = 1

3. While W = 0, do
a. Z = 0.5 XC,the total cost of the spanning tree
b. For every node with degree greater than allowed:

i. Obtain X = T(C) assuming one of arc cost of
the node is infinite

ii. If X = T (C) is not a Hamiltonian path, go to
b. Else Z0 = 0.5XC

c. Choose Hamiltonian path with smallest Z0
4. Y = X and obtain the route R via Y.

Note that it is possible to improve the above branching
procedure by doing a branch-and-bound procedure. This
would require fathoming all minimum spanning trees
whose costs are greater that the current Hamiltonian path
cost during an iteration. If the algorithm is stopped in the
middle, to avoid the situation of not having a route we do
the following: if a (current) Hamiltonian path is available
it can be used, otherwise, the solution from the greedy
algorithm can be used.

Optimal Algorithm: This algorithm uses complete
enumeration of the entire solution space to obtain the
optimal solution. Therefore every possible sequence and
routes to destroy the targets are considered and the best is
chosen. This is a very time-consuming algorithm and
takes n! computations if there are n targets to be
destroyed. Since this algorithm guarantees an optimal
solution, it is used for benchmarking other algorithms.

Define R as a set of all possible routes and r as a
candidate route. Also let D (r) be the cost of the candidate
route r.

Algorithm Optimal
1. Set Z = 4

2. For all ∈r R , if D(r) < Z, then R = r and Z = D(r)

5. Resource Bounded Optimization
Performance Comparisons

The algorithms developed in the previous section are

tested here for different numerical values. In particular,
the performance of the new RBO algorithm developed is
tested against the other algorithms for an air operation
scenario described below.

5.1 Generic Air Ops Scenario

The scenario considered here is a limited SEAD

scenario. A bombing mission is to be attempted against an
enemy airbase. For the bombers to be able to perform the
mission, enemy air defenses must be disabled in two
corridors leading to the base. In the scenario, the corridors
are given. They are four miles wide at their narrowest, to

insure the safety of aircraft flying down the middle of the
corridor. The enemy has three types of entities: (1) fixed
SAM sites, (2) mobile SAM launchers, and (3) fixed radar
sites. The mobile SAM launchers perform a random walk
on the terrain. They stop wandering and prepare to attack
at random points in the walk. Any target that has been hit
is disabled for a random period of time.

Friendly forces are limited to Wild Weasels, which
search for and destroy SAMs. Each Wild Weasel has its
own discrete event controller. The local controller has
access only to local information. Another discrete event
controller coordinates activities among the Wild Weasels.
The coordinator interacts with the system by receiving
ISR inputs and sending radio messages to the aircraft.
Each aircraft starts with an initial mission to be
completed. The aircraft's controller determines the
decisions that are taken as events occur. Missions will be
to patrol parts of the corridor and destroy enemy entities.
Aircraft communicate with the supervisory controller as
needed for coordination. It will adjust the regions covered
and targets aircraft in response to changing conditions.

The tactical intelligence module explained in Section 2
is responsible for (1) allocating platforms to targets and
regions (2) allocating routes to platforms, and, (3)
allocating patrolling pattern after destroying known
SAMs in a region. In this paper we have explained in
detail the algorithms only for the second task, i.e.
allocating routes to platforms. The other algorithms are
explained in [4]. It is important to note that these
algorithms are executed both during the initial planning
phase as well as en-route during the attack phase.
Therefore it is critical to obtain an algorithm that
produces reasonably good results in a short period of
time. At this time, we only compare the performance of
the algorithms running independently. However, in a
future paper, we will provide the results based on
battlefield simulations.

The coordinator assigns regions for aircraft to cover.
This is a centralized algorithm that uses a clustering
algorithm (K-Means algorithm) and regions are created
by a Vornoi process which partitions a corridor into
disjoint regions. The individual aircraft choose their own
strategies for destroying known targets based on a
decentralized algorithm. Once all known targets are
destroyed, another decentralized algorithm (such as a
lawnmower-type algorithm) to patrol for new threats is
used. Regions must be reassigned and strategy for
destroying targets must be reformulated as aircraft are
destroyed, unknown enemy targets are spotted, aircraft
run out of fuel or weapons, or new aircrafts are added.

5.2 Performance Metrics

The dynamic target scheduling and routing methods are

considered here. It is assumed that regions have been
described and targets have been assigned to each aircraft. In
order to compare the four algorithms in Section 4.1, we use
two performance metrics: solution quality and number of
floating-point operations. The solution quality is
benchmarked against the best possible solution. Therefore
the ratio between the optimal solution (produced using the
optimal algorithm) and the solution produced by an
algorithm is the measure considered for solution quality.
The number of floating-point operations is a measure of the
number of operations that will be required on a computer to
obtain the given solution. Then based on the type of
computer installed on the aircraft, this metric can be used to
determine the time to respond to the controller with a route.

5.3 Performance Evaluation

To evaluate the performance of the different

algorithms, using 30 sets of enemy target locations to
destroy and current location of the Wild Weasel, for each
set, the following algorithms were considered and average
performance metrics were obtained: greedy algorithm,
RBO(I) algorithm with I=5, 10, 25, 50 and 100 iterations,
Hamiltonian path algorithm (which is stopped after a
sufficient number of iterations), and, optimal algorithm.
The performance metrics are tabulated in Table 1, below.
This table is based on 8 enemy targets assigned to an
aircraft. Any value larger than 8 targets would require
very large computational time for the optimal solution.
However, for the other algorithms we could use many
more targets. Also, the table is obtained by running the
algorithms off-line. From the table note that the RBO
algorithm with just 10 or 25 iterations results in a good
solution. Therefore, if the RBO algorithm needs to be
aborted after, say 5000 floating point operations, the
solution obtained is very good. On the other hand, the
Hamiltonian algorithm after 5000 floating point
operations would not have produced any solution. Also,
the greedy algorithm would have used an inferior
solution. The RBO algorithm produces significantly better
results than the greedy algorithm in a very few extra
iterations. Therefore for the SEAD scenario it would be
most appropriate to use the RBO algorithm and depending
on the time available to solve the RBO, the algorithm can
be stopped at a suitable time.

 Greedy RBO
(5 itns)

RBO
(10 itns)

RBO
(25 itns)

RBO
(50 itns)

RBO
(100 itns)

Hamilt. Optimal

Solution quality 0. 9575 0.9683 0. 9727 0.9824 0. 9845 0. 9868 0. 9907 1.0000
Floating pt. Ops. 992 2589 4095 8601 15898 30395 49048 351769

Table 1. Performance metrics

Acknowledgements and disclaimers

This effort is sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-99-1-0547
(JFACC). The U.S. Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air
Force Research Laboratory, or the U.S. Government.

References

[1] R.K. Ahuja, T.L. Magnanti, and, J.B. Orlin, Network

Flows: Theory, Algorithms and Applications, Prentice-Hall
Inc., 1993.

[2] J.S. Albus, "A Reference Model Architecture for Intelligent

Systems Design," in An Introduction to Intelligent and
Autonomous Control, pp 27-56. Kluwer Academic
Publishers, 1993.

[3] R.A. Brooks, "A Robust Layered Control System for a

Mobile Robot," IEEE Transactions on Robotics and
Automation, 2(3): pp 14-23, 1986.

[4] R. R. Brooks, C. Griffin, P. Dicke, M. Byrne, M. Edwards,

S. Phoha, D. Friedlander, B. Button and E. Grele,
"Experimental Verification of Distributed C2 Strategies,"
proceedings of 2nd DARPA JFACC Symposium on
Advances in Enterprise Control, Minneapolis, MN, July
10-11, 2000.

[5] H. T. Goranson, The Agile Virtual Enterprise Cases,

Metrics, Tools, Quorum Books, 1999.

[6] C. J. Harris, ed., Advances in Intelligent Control, Taylor &
Francis, Bristol, PA, 1994.

[7] A. H. Levis, "Modeling and Design of Distributed

Intelligence Systems, " in An Introduction to Intelligent and
Autonomous Control, pp 109-128, Kluwer Academic
Publishers, Boston, M, 1993.

[8] A. Meystel, "Autonomous Mobile Robots: Vehicles with

Cognitive Control, "Proceedings of the World Scientific,
Singapore, 1991.

[9] S. Phoha, S. Sircar, A. Ray, and I. Mayk," Discrete Event

Control of Warfare Dynamics," The Technical Proceedings
of the 1992 Symposium on Command and Control
Research and the 9th Annual Decision Aids Conference,
Monterey, CA, June 8-12, 1992.

[10] S. Phoha, E. Peluso, P.A. Stadter, J. Stover, and R. Gibson,

"A Mobile Distributed Network of Autonomous Undersea
Vehicles," Proceedings of the 24th Annual Symposium and
Exhibition of the Association for Unmanned Vehicle
Systems International, Baltimore, MD, June 3-6, 1997.

[11] S. Phoha and R. Brooks, "A Constructivist Theory of

Distributed Intelligent Control of Complex Dynamic
Systems," DARPA JFACC Symposium on Advances in
Enterprise Control, San Diego, CA, November 15-16,
1999.

[12] P. J. Ramadge, W. M. Wonham, "Supervisory Control of a

Class of Discrete Event Processes," SIAM J. Control and
Optimization, Vol. 25, No. 1, January 1987.

[13] SEAD Scenario. http://www.cgi.com/web2/govt/seadystorm,

April 7, 2000.

[14] W. Xi, A. Ray, S. Phoha and W. Zhang "Hierarchical

Consistency of Supervisory Command and Control of
Aircraft Operations," proceedings of the 2nd DARPA
JFACC Symposium on Advances in Enterprise Control,
Minneapolis, MN, July 10-11, 2000.

