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Meeting Inelastic Demand in Systems with Storage
and Renewable Sources
Soongeol Kwon, Yunjian Xu, and Natarajan Gautam

Abstract—We consider a system where inelastic demand for
electric power is met from three sources: the grid, in-house
renewables such as solar panels, and an in-house energy storage
device. In our setting, energy demand, renewable power supply,
and cost for grid power are all time-varying and stochastic.
Further, there are limits and inefficiency associated with charging
and discharging the energy storage device. We formulate the
storage operation problem as a dynamic program with parame-
ters estimated from real-world demand, supply and cost data. As
the dynamic program is computationally intensive for large-scale
problems, we explore algorithms based on approximate dynamic
programming (ADP), and apply them to a test data set. Using the
real-world test data, we numerically compare the performance of
two ADP-based algorithms against Lyapunov optimization based
algorithms that require no statistical knowledge. Our results
ascertain the value of storage and the value of installing a
renewable source.

I. INTRODUCTION

Renewable generation capacity is expanding rapidly to
potentially reduce carbon dioxide emissions and dependence
on fossil fuels. Being a source of non-dispatchable generation,
renewable energy introduces variability into the energy port-
folio, and further amplifies the difficulty of matching demand
with supply in real time. Energy storage is an environmentally
friendly candidate that can provide flexibility to the system and
mitigate the impact of volatile renewable generation.

The focus of this paper is on the operation of electric
storages operated by the electricity consumers who own
distributed renewable generation and face time-varying and
stochastic electricity prices. Our motivation stems from the po-
tential of electricity consumers to own and use storage devices
(e.g., major consumers like data centers [1] and individual
consumers who own PHEVs [2]), and from a recent study
that shows consumer ownership of storage can be socially
beneficial [3]. We also note that there is a growing trend
for residential consumers and data centers to own distributed
renewable generation [4], [5].

In this paper, we consider a consumer of electricity with
inelastic demand, i.e., in each time period the consumer has to
consume a certain (time-varying and possibly random) amount
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energy that is independent of the price of electricity. Part of
the demand can be met by a renewable energy source (such
as photo-voltaic (PV) solar panels) that is situated locally
and owned by the consumer. Note that renewable power
supply is time-varying and stochastic. Remaining demand
(if any), beyond what the renewable source can supply, is
satisfied either from the grid or by an in-house Energy Storage
Device (ESD) or both. Like power demand and renewable
supply, price for power from the grid is also time-varying
and stochastic.

In the last few years this problem has received a lot of
attention. There exists a substantial literature on the operation
of energy storage owned by renewable generators or system
operators. The joint scheduling of variable wind generation
and energy storage systems is studied in order to maximize
the joint profit of wind farms and energy storage systems,
through a two-stage stochastic programming formulation [6],
and a model predictive control (MPC)-based approach [7]. The
authors of [8] derive an upper bound on the marginal value
of storage (at small installed capacities) for a transmission-
constrained power network. A few recent works study the
optimal operation of energy storage devices with an objective
of minimizing the mismatch between the available renewable
generation and system load [9], [10], [11].

Another well studied application of energy storage is the use
of storages to arbitrage [12], [2]. A few recent works conduct
a dynamic programming approach to derive the arbitrage value
of electric storage, in the presence of dynamic pricing [13],
[14]. Different from the setting in the present paper, this
aforementioned literature assumes that the operator of energy
storages (e.g., an arbitrager) has zero demand for electricity
and puts no value on its own electricity consumption.

There have been recent studies on the operation of
consumer-owned ESDs. The authors of [15] study the day-
ahead scheduling of energy storage by analyzing a noncoop-
erative game among consumers. There is a growing literature
that applies Lyapunov optimization based on-line algorithms
on the operation of consumer-owned ESDs [16], [17], [18].
These on-line algorithms are shown to be asymptotically
optimal, as the storage capacity increases to infinity.1 Unlike
the Markov decision process (MDP), which is computationally
complex and requires substantial statistical information of the
system dynamics, Lyapunov optimization based algorithms use
simple linear programs to make storage operation decisions
based only on the current system state (e.g., the current storage

1It is worth noting that these Lyapunov optimization based on-line algo-
rithms may fail to achieve asymptotic optimality if the storage efficiency is
less than 1, i.e., if the storage has non-negligible self-discharging [19].
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level). Our numerical results show that the algorithm proposed
in [17] performs well when the storage capacity is significantly
larger than the maximum charging/discharging rates, i.e., when
it takes many hours to fully charge and discharge the storage.

Closely related to the present paper, a few recent papers
establish structural properties on optimal storage operation
policies in a variety of MDP settings that incorporate time-
varying (and/or stochastic) cost and demand [20], [21], [22].
The main results of these theoretic works are the existence of
an optimal policy that can be characterized by (time-varying
and possibly state dependent) operational thresholds. The
computation of these thresholds usually becomes intractable
for practical settings with stochastic renewable generation and
varying electricity prices, for example, in our MDP setting
where time is explicitly incorporated into the system state, and
each time period lasts for only 5 minutes (288 time periods
per day).

We formulate the storage operation problem as an MDP
with periodic cycles. The parameters of the MDP are trained
using a set of real data on electricity prices, solar generation,
consumer demand. The main contribution of this paper is to
implement and numerically compare approaches ranging from
Markovian models, to hybrid methods based on statistics and
optimization, to those that are based on Lyapunov optimization
and require no historical information, under a variety of param-
eter settings on the storage size, the level of solar generation,
as well as the maximum charging/discharging rates.

We introduce and test two approximate dynamic program-
ming (ADP) based heuristic policies, which usually yield
the best performance among all tested heuristics. The first
ADP-based policy, which is referred to as One-step Look-
ahead Algorithm (OLA), chooses an action that minimizes the
expected cost for the current and the next state. While OLA
always treats the next stage as the terminal stage, the second
ADP-based heuristic policy, which is referred to as One-
step Roll-out algorithm (ORA), approximates the cost-to-go
at every possible next system state by solving a deterministic
(certainty-equivalent) optimization problem with future system
stochasticity taking the expected value.

The insight we obtain from numerical experiments sheds
some light on the effectiveness of different types of heuristic
policies and the value of storage under various parameter
settings. We summarize our key findings in the following.

1) Algorithms based on Lyapunov optimization (e.g., the
one proposed in [17]) require minimum (almost negligi-
ble) computational efforts, and perform reasonably well
when the storage capacity is significantly larger than the
maximum charging/discharging rates. For fast-charging
storage devices that can be fully charged within 2 hours,
on the other hand, ADP-based algorithms (i.e., ORA and
OLA) significantly outperform the one proposed in [17].

2) The value of storage (VoS, which is measured as the
net benefit obtained by the consumer if she operates
the storage according to an ADP algorithm) is much
higher under 5-minute real-time pricing than that under
hourly pricing, due the higher variability in cost in the
former case. VoS increases sharply with the storage
capacity only when the maximum charging/discharging
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Fig. 1. Schematic representation of scenario and notation

rates grow in proportion to the storage capacity. In other
words, the value of storage does not increase appreciably
with increase in storage size, if the maximum charg-
ing/discharging rates remain fixed.

The rest of the paper is organized as follows. We describe
our problem in Section II. In Section III we develop a
probabilistic model and suggest ADP-based approaches to
solve it. We consider other heuristic algorithms in Section IV.
We compare and discuss the performance of these algorithms
in Section V by obtaining parameters using a real training data
set and testing them. Finally, we make some brief concluding
remarks in Section VI.

II. PROBLEM DESCRIPTION

Before describing our model, we state a few key features of
our problem setup. We consider inelastic demand, which must
always be met instantaneously in real time and cannot be either
postponed or cut back using incentives such as prices.2 The
ESD has a finite energy storage capacity. Price is non-negative
and exogenous (not affected by the consumer’s decisions).
There are inefficiencies in charging and discharging, but no
leakages (i.e., self-discharging) in the ESD. This assumption
of 100% storage efficiency (no self-discharging) is reasonable
since many popular types of modern batteries (e.g., Lead acid,
Sodium Sulphur (NaS), Lithium ion, and Vanadium redox
batteries) have negligible self-discharge (0 − 5% per month)
[24], and further, the effective planning horizon for storage
operation is usually no more than a week.

We now describe some notations used in this work (picto-
rially described in Fig. 1). We consider a discrete-time model
where time periods are indexed by t = 0, 1, . . .. The amount of
energy in the ESD at the beginning of period t is denoted by
Ut (in kWh). The stochastic uncontrollable variables are: Dt,
the demand for energy in period t (in kWh); St, the energy
supply from renewable source in period t (in kWh); Ct, the
cost in period t for a unit of energy from grid (in $/kWh).
Table I summarizes the acronyms used in this paper.

There are constraints and inefficiencies in the ESD charging
and discharging processes. A maximum of K kWh of energy
can be stored in the ESD at any time. The ESD can be
discharged and charged at a maximum rate of cdis and cchar
(in kW) respectively. Also, the ESD discharging and charging
efficiencies are ηdis ≤ 1 and ηchar ≤ 1 respectively (which we
explain next). If ρ kWh of energy is used to charge the ESD

2We note that electricity consumption usually exhibits inelasticity in the
short term [23], and that the setting of inelastic demand is used in many
related works, e.g., [9], [20].
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TABLE I
SUMMARY OF ACRONYMS

Acronym Description
ESD Energy Storage Device
MDP Markov Decision Process
OLA One-step Look-ahead Algorithm
ORA One-step Roll-out Algorithm
TBA Threshold-Based Approximation algorithm
NOA Naive Opportunistic Algorithm
HWR The on-line algorithm proposed in

Huang, Walrand and Ramchandran [17]

in period t, then the increase in ESD level Ut+1−Ut is ρηchar
kWh. Likewise if ρ kWh of energy is needed from the ESD,
then the increase in ESD level Ut+1 − Ut is −ρ/ηdis kWh.
Next we describe the decision variables under the control of
the consumer. Let Xt, Yt and Zt be the energy drawn (in
kWh) from the grid, renewable source and ESD respectively
at period t. While Xt ≥ 0 and Yt ≥ 0 for all t, Zt can be
positive or negative.

During every period t, given demand Dt, renewable supply
St, cost Ct and ESD charge level Ut, we need to determine the
supply from grid Xt, the draw from renewable source Yt, and
contribution from the ESD Zt so that the long-run expected
total cost is minimized subject to satisfying demand, staying
within ESD capacities and other constraints such as dynamics
and non-negativity. As in [20], [21], we are interested in
minimizing the total expected discounted cost. This sequential
decision making problem can be formulated mathematically as
follows

Minimize(Xt,Yt,Zt) limT→∞
∑T
t=0 β

t E[CtXt] (1)

Subject to the following ∀t ∈ {0, 1, 2, . . .}, (2)

Xt + Yt + Zt ≥ Dt, (3)

0 ≤ Yt ≤ St, ψZt ≤ cdis, (4)

−ψmin{Zt, 0} ≤ cchar, (5)

Ut+1 − Ut = −max{Zt, 0}/ηdis − ηchar min{Zt, 0}, (6)

0 ≤ Ut ≤ K, Xt ≥ 0, (7)

where β ∈ (0, 1) is a discount factor, and ψ is a constant for
time-unit conversion, i.e. number of time units per hour (viz.
since cchar is in kW and Zt in kWh, if length of period t is
1 second then ψ = 3600). In constraint (3) we have implicitly
assumed free disposal of renewable generation.3 For all t ≥ 0,
Ct, Dt, and St are modeled as discrete random variables, and
all constraints in the above optimization problem must hold
for every trajectory of realized demand, renewable supply, and
cost.

Remark 1: We can reduce the above problem to a 1-
dimensional control in Xt or Zt by realizing that we can
let Yt = St and Zt = Dt - Xt - Yt, subject to the charg-
ing/discharging rate constraints [6], [16], [21]. However, for

3It is optimal to use the renewable generation first to meet the demand, and
then to charge the residual renewable generation to the ESD. If there is not
enough storage capacity to absorb the residual renewable generation, then it
is possible that Yt + Zt > Dt (note that Xt = 0 and Zt ≤ 0 in this case).

ease of presentation we will use all variables, not just Xt or
Zt.

Remark 2: It is shown in [16], [20], [22] that the optimal
policy can be characterized by two thresholds. Given the
system state at period t, namely t, Dt, St, Ct, and Ut, the
optimal policy does the following: (i) if Ut lies between the
two thresholds, do not charge or discharge the storage; (ii) if
Ut lies below the lower threshold, greedily charge the storage
up to this threshold; (iii) if Ut lies above the higher threshold,
then discharge the storage to fulfil the demand. The threshold
structure of optimal policies will provide some guidance on
the design of heuristic policies (proposed in Sections III-B
and IV). We finally note that when ηchar = ηdis = 1
(no charging/discharging inefficiency), there exists a simpler
optimal policy with a single threshold [14].

III. MDP: PROBABILISTIC MODEL WITH CYCLES

In this section, we first introduce the way we fit real data
into an MDP model, and then discuss approaches to solve it.
Analyzing the data described in [25], [4] and the NREL labs,
it is evident that demand, solar PV supply and cost are time-
varying and stochastic. However, it is also not unreasonable
to assume that there are daily or weekly effects. In other
words, there is a deterministic variability as well as stochastic
variability. To model such a phenomenon we consider what
we call probabilistic model with cycles.

Definition 1: An uncontrolled process {Vt}∞t=1 is cyclic
with cycle length N if the joint probabilistic distribution of
{Vτ+`N}N−1

τ=0 is identical for all ` ∈ {1, 2, . . .}, where N is
the number of periods in a cycle. Each cycle lasts for T hours,
and therefore has N = ψT periods. �

Based on the above definition, we assume that {Dt}∞t=1,
{St}∞t=1 and {Ct}∞t=1 are cyclic with cycle length T (one cycle
typically is the equivalent of one day). Further, we write down
for all t ∈ {0, 1, . . .}, with n = (t mod N),

Dt = dnW
d
t + δn, St = snW

s
t , Ct = cnW

c
t + γn,

where {d1, d2, . . . , dN}, {δ1, δ2, . . . , δN}, {s1, s2, . . . , sN},
{c1, c2, . . . , cN} and {γ1, γ2, . . . , γN}, are sets of determin-
istic constants while {W d

t }∞t=1, {W s
t }∞t=1, and {W c

t }∞t=1, are
stationary and independent discrete time Markov chains on
state spaces Sd, Ss, and Sc and transition probability matrices
Pd, Ps, and Pc respectively.

One can think of {s1, s2, . . . , sN} as the power supplied by
PV panels on a perfectly sunny day while Ss is a continuous
set of values between 0 and 1. The demand and cost terms
do not have such a nice interpretation and one would have to
model them carefully based on data.

Note that since Dt, St and Ct are continuous, so are W d
t ,

W s
t and W c

t .4 However, to model as an MDP, we need state
spaces Sd, Ss, and Sc to be discrete. We discretize W d

t , W s
t

and W c
t using discrete random variables W̃ d

t , W̃ s
t and W̃ c

t

each of which take M + 1 different values. For example the
aforementioned W s

t would be mapped from a statespace Ss =

4These random parameters W d
t , W s

t and W c
t are assumed to be not

correlated although Dt, St and Ct might themselves be correlated due to
the correlation in their deterministic components.
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[0, 1] to S̃s = [0, 1/M, 2/M, . . . , 1]. Thus W̃ d
t , W̃ s

t and W̃ c
t

would each be M + 1 state discrete time Markov chains with
transition probability matrices Pd, Ps, and Pc respectively.
By some abuse of notations, for the rest of this paper we let
Dt, St, and Ct denote the corresponding discretized values of
demand, renewable generation, and cost at stage t.

In Section V, we will use training data to estimate dn, δn,
sn, cn and γn for all n ∈ {1, . . . , N} as well as Pd, Ps, and
Pc. However, for the rest of this section we take a probabilistic
approach assuming all the aforementioned parameters are
known and formulate the system as an MDP.

We denote the system state at time t as a 5-tuple

x = {{t/N}+ 1,W d
t ,W

s
t ,W

c
t , Ut}, (8)

(where {t/N} denotes (t mod N)) with state space S given
by the cartesian product

{1, 2, . . . , N} × S̃d × S̃s × S̃c × S̃u,

where S̃u is the discrete set of values between 0 and K
that Ut can take. We note that the constructed MDP is
stationary, because the time dependency and correlations of
consumer demand and renewable generation are incorporated
by including in the system state a periodic Markov chain that
describes time evolution.

Let the action at time t denote the amount of power to
be supplied from the grid, i.e. Xt, with action space A(x)
corresponding to the set of all possible real numbers that lie
in the following interval

A(x) =
[ (
D{t/N} − S{t/N} −min{ηdisU{t/N}, cdis/ψ}

)+
,(

D{t/N} − S{t/N} + min
{
K−U{t/N}
ηchar

, cchar/ψ
})+ ]

,

(9)
where (·)+ = max{·, 0}. Here, the lower bound of the
action space is the amount of energy needed from the grid
to fulfil the demand, when the storage is greedily discharged
for consumption, and the upper bound is the amount of energy
needed to meet the demand and to greedily charge the storage.

As noted in Remark 1, the energy drawn from renewable
source and ESD at period t is determined by Xt, i.e., Yt =
St and Zt = Dt - Xt - Yt.

Given any x ∈ S, Xt ∈ A(x), and y ∈ S, we can compute
the transition probability Pxy(Xt) using appropriate Kro-
necker products of Pd, Ps, Pc and other matrices of zeros
and ones (which are not explained due to space constraints).
The next-stage storage level is given by

Ut+1 = Ut −max{Zt, 0}/ηdis − ηchar min{Zt, 0}, (10)

where Zt = Dt − St −Xt.
The stage cost at time t is the product of the corresponding

power cost in state i times Xt ∈ A(x), CtXt.
By incorporating the time element into the state of the

dynamic program, we have indeed formulated a “stationary”
MDP (the quotes are because the state transition is stationary
from one cycle of N values to the next cycle, but not within a
cycle). For a given stationary policy which maps every possible
system state x to a point in the action space A(x), the long-
run discounted total cost corresponds to the objective function

of our optimization problem defined in Section II (and also
results in a feasible solution).

A. Exact MDP Solution

Note that the above MDP has a finite state-space and a finite
action-space. There are many methods to obtain the optimal
action a ∈ A(x) at state x for all x ∈ S. We consider a
linear program (LP) based method. The following LP solves
the optimal cost-to-go at each state x, {J∗x}x∈S [26]:

Max{Jx}
∑

x∈S
cxJx

s.t. gx(a) + β
∑
y∈S

Pxy(a)Jy ≥ Jx, ∀x ∈ S, ∀a ∈ A(x),

(11)
where {cx}x∈S is a given vector with positive components,
and gx(a) is the stage cost at state x under action a. The
optimal action to be taken at each state x can then be obtained
by the following Bellman equation:

a∗ ∈ arg min
a∈A(x)

{
gx(a) + β

∑
y∈S

Pxy(a)J∗y

}
. (12)

In this manner it is possible to determine the optimal action
in each state (in theory).

In summary, the MDP algorithm works as follows: given
the demand, renewable generation, cost, and storage level at
stage t, we first obtain the discretized values Dt, St, Ct and
Ut. Using those we compute the optimal action Zt prescribed
by the MDP. Then we obtain the actions Yt = St and Xt =
max(Dt − St − Zt, 0).

We note that an optimal solution to the LP formulated in
(11) must exist. However in practice, one could encounter dif-
ficulties known as the curse of dimensionality. The exact MDP
can be solved (especially by packages such as MATLAB) only
when the action space is small, ηchar = ηdis = 1, and Ct, Dt

and St belong to a small discrete set for all t ∈ {1, . . . , N}.
In the next subsection, we adopt a common procedure usually
referred to as Approximate Dynamic Programming (ADP)
to deal with the curse of dimensionality.

B. Approximate MDP Solution

In this section, we introduce two simple ADP-based al-
gorithms that will be tested against other heuristics as well
as the exact MDP solution in Section V. An effective way
to reduce the computation required by a dynamic program
is to truncate the time horizon and at each stage make a
decision based on look-ahead of a small number of stages
[27], [28]. In particular, we will focus on the simplest ADP
algorithms that look only a single stage ahead. Numerical
results in Section V demonstrate that even these simplest
ADP algorithms usually (significantly) outperforms Lyapunov
optimization based algorithms. It is worth noting that, how-
ever, even these simplest ADP algorithms require much more
computation than Lyapunov optimization based algorithms.

According to the simplest ADP-based policy, which is
referred to as One-Step Look-ahead algorithm (OLA) in this
paper, given the current state we determine the best action
so that the expected cost for this state and the next state is
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minimized. Formally, given the current system state x, the
algorithm chooses an action Xt ∈ At that minimizes the
following cost:

CtXt +
∑
y

βPxy(Xt) · Ct+1 · (Dt+1 − St+1 − ηdisUt+1)
+
,

(13)
where (·)+ = max{·, 0}, and y is the system state at time
t + 1 that includes the parameters Ct+1, Dt+1, St+1 and
Ut+1. In this myopic version of one-step look-ahead policy,
the stage t + 1 is treated as the terminal stage, and therefore
the policy fully discharges the storage to fulfill the demand at
stage t+ 1. This would result in a stage cost at time t+ 1 of
Ct+1 (Dt+1 − St+1 − ηdisUt+1)

+.
A natural way to improve OLA is to replace the myopic

stage cost at state y by some approximated cost-to-go at this
state. Formally, given the current system state x, a One-step
Roll-out algorithm (ORA) chooses an action Xt ∈ At that
minimizes the following cost:

CtXt +
∑

y∈S
βPxy(Xt) · J̃y, (14)

where J̃y is an approximation of the cost-to-go at system state
y, Jy. We note that if the approximation is exact, i.e., if J̃y =
Jy, then the above Bellman recursion must yield the optimal
action at the current system state x.

The OLA simply treats stage t+1 as the terminal stage and
let J̃y be the stage cost at time t + 1 in state y. The ORA,
on the other hand, solves a certainty equivalent optimization
problem to approximate the cost-to-go at possible next-stage
system states, where all random variables take the expected
value, given that the system state at time t+ 1 is y:

J̃y = Minimize{X̄τ ,Ȳτ ,Z̄τ ,Ūτ}
t+N∑
τ=t+1

βτ−t−1E[Cτ | y] · X̄τ

Subject to ∀τ ∈ {t+ 1, t+ 2, . . . , t+N},
X̄τ + Ȳτ + Z̄τ ≥ E[Dτ | y],

0 ≤ Ȳτ ≤ E[Sτ | y], ψZ̄τ ≤ cdis, (15)

−ψmin{Z̄τ , 0} ≤ cchar,
Ūτ+1 − Ūτ = −max{Z̄τ , 0}/ηdis − ηchar min{Z̄τ , 0},

0 ≤ Ūτ ≤ K, X̄τ ≥ 0,

where Ūt+1 is determined by the system state y, E[· |y]
denotes conditional expectation, and the minimization is taken
over the variables X̄τ , Ȳτ , and Z̄τ .

Certainty equivalent control is a simple and intuitive way
to make sequential decisions under uncertainty. It is shown
to be optimal for Linear-Quadratic-Gaussian (LQG) problems
[29]. Certainty equivalence is the logic underlying the cur-
rent practice of unit commitment (which is a deterministic
optimization problem with random demand and renewable
generation taking the expected value), and is proposed for the
economic/environmental dispatch of power systems with in-
termittent renewable generation [30]. The certainty equivalent
approximation results in significant computational savings by
avoiding computing the exact cost-to-go at stage t+1, and on
the other hand, makes the ORA suboptimal.

Since the system state space is continuous (due to the
continuous storage level), given the current system state x,
it is impossible to evaluate the cost-to-go of every possible
state y at stage t + 1 (by solving the certainty equivalence
optimization problem in (15)). In our simulation, we therefore
discretize the space of demand, renewable supply, and cost at
stage t+ 1, and restrict our attention to a finite set of actions
Xt. Formally, given the current system state x, ORA chooses
an action Xt from a finite set of actions Ā(x) ∈ A(x), in
order to minimize

CtXt +
∑

y∈S̄(x)

βPxy(Xt)∑
y∈S̄(x) Pxy(Xt)

J̃y, (16)

where S̄(x) is a finite subset of S that includes the discretized
states of demand, renewable supply, and cost, as well as a
finite set of storage levels Ut+1 resulting from the finite set of
actions in Ā(x) (according to Eq. (10)). In our simulation, the
discretized states (of demand, renewable supply, and cost) are
uniformly distributed in a compact set that is estimated from
real data. The set of actions Ā(x) explored by ORA at state
x includes the following: (i) charge the battery only if there
is surplus in renewable generation, i.e., Xt = (Dt − St)

+,
(ii) greedily discharge the battery to meet the demand, i.e.,
Zt = min

{
cdis/ψ, ηdisUt, (Dt − St)+

}
, (iii) greedily charge

the battery, i.e., Zt = −min
{
cchar/ψ, (K − Ut)+

/ηchar

}
,

and several additional actions that are uniformly distributed
between actions (ii) and (iii).

It is worth noting that unlike MDP, ORA does not discretize
the storage level in priori. Under ORA, the (finite) set of next-
stage storage levels in S̄(x) is determined by the set of actions
Ā(x) as well as the current states Ut, Dt, and St.

IV. OTHER HEURISTICS

As a one-step rollout policy on top of certainty equivalent
control, ORA uses the Markovian structure of our model
(via the state transition probability from stage t to t + 1).
To assess how our key algorithm ORA performs with real
data, we compare it against other certainty equivalence based
algorithms that use neither the discrete framework nor the
Markovian structure. For that, in this section we leverage upon
existing approaches to develop two heuristic policies: TBA
(threshold-based approximation) algorithm and NOA (naive
opportunistic algorithm).

For both the heuristic TBA and NOA algorithms, we
first solve the following (unconditioned) certainty equivalence
(UCE) problem to obtain the variables X̂τ , Ŷτ , Ẑτ , and Ûτ ,
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for τ = 1, 2, . . . , N .

UCE: Minimize{X̂τ ,Ŷτ ,Ẑτ ,Ûτ}
∑N
τ=1 β

τ−1 E[Cτ ]X̂τ ,

Subject to ∀τ ∈ {1, . . . , N},
X̂τ + Ŷτ + Ẑτ ≥ E[Dτ ],

0 ≤ Ŷτ ≤ E[Sτ ], (17)

ψẐτ ≤ cdis,
−ψmin{Ẑτ , 0} ≤ cchar,

Ûτ+1 − Ûτ = −max{Ẑτ , 0}/ηdis − ηchar min{Ẑτ , 0},
0 ≤ Ûτ ≤ K,
X̂τ ≥ 0,

where ÛN+1 = Û1.

Heuristic TBA: Given the state at time t, namely, ({t/N},
Dt, St, Ct, Ut), we determine Zt so that at time t+1, Ut+1 is
as close to Û{t/N}+1 by appropriately charging or discharging.
The goal is to reach threshold level Û{t/N}+1 in the next time.
Thus TBA is as follows (with n = {t/N}):

if Ut < Ûn+1, Zt = −min

{
Ûn+1 − Ut
ηchar

, cchar/ψ

}
else if Ut = Ûn+1, let Zt = 0,

else Zt = min
{
ηdis(Ut − Ûn+1), cdis/ψ

}
. Then, Xt =

max {Dt − St − Zt, 0} and Yt = St.

Heuristic NOA: Given the state at time t, namely, ({t/N},
Dt, St, Ct, Ut), we adopt a naive (but intuitive) strategy – if
Ct is cheap, charge the ESD as much as possible; and if Dt is
much higher than St, discharge as much as possible; otherwise
do what the certainty equivalence model suggests. For that we
use E[CN ] as the grand cost (computed over entire cycle N ),
and V ar[CN ] the corresponding grand variance; also φc and
φ are parameters to be tuned.5 It leads to the following NOA
(with n = {t/N}):
if Ct < E[CN ]− φc

√
V ar[CN ], then

Zt = −min {(K − Ut)/ηchar, cchar/ψ} otherwise,
if Dt − St > E[Dn]− E[Sn] + φ

√
V ar[Dn] + V ar[Sn],

Zt = min
{
Dt − St − X̂n, Utηdis, cdis/ψ

}
else
(i.e. Dt − St < E[Dn]− E[Sn] + φ

√
V ar[Dn] + V ar[Sn])

Zt = min
{

max(St −Dt, Ẑn), cchar/ψ, (K − Ut)/ηchar
}

.
Then Xt = max {Dt − St − Zt, 0} and Yt = St.

Heuristic HWR: Before ending this section, we revisit the
algorithm proposed in Huang, Walrand and Ramchandran [17],
which is referred to as HWR in this paper. The algorithm will
be numerically tested in the next section. It is a remarkable
online algorithm that is based on Lyapunov optimization.
The algorithm proposed in [17] does not use any historical

5We note that both parameters φc and φ are non-negative and bounded from
the above. Since NOA is computationally simple, one can use the training data
to test the performance of NOA under a finite set of feasible parameters φc
and φ.

information and makes (myopic) decisions based only on
current state information (such as Dt, St, Ct and Ut).

We now briefly outline the algorithm HWR. At each stage
t = 0, 1, . . ., the algorithm solves the following LP:

Min(αHt ,β
H
t ,γ

H
t ,δ

H
t ) Hc

t β
H
t −Hs

t γ
H
t +Hr

t δ
H
t

Subject to βHt + δHt ≤ cchar,
γHt ≤ cdis,

δHt ≤ max(St −Dt, 0), (18)

αHt + γHt = max(Dt − St, 0),

αHt ≥ 0, βHt ≥ 0, γHt ≥ 0, δHt ≥ 0,

where Hc
t = ηchar(Ut−θ)+Ct/ε, Hs

t = (Ut−θ)/ηdis+Ct/ε,
and Hr

t = (Ut − θ)/ηdis, with θ = K − ηcharcchar/ψ, and

ε = supu≥0 Cu/
[
ηchar(θ −min(supu≥0Du, cdis)/(ηdisψ))

]
.

The parameters (Hc
t , H

s
t , H

r
t ) are designed to approximate

the total operational cost. The relation between the decision
variables of HWR and those used in this paper is

Xt = αHt + βHt , Zt = γHt − βHt − δHt .

For t+ 1 the algorithm updates the storage level as follows:

ψUt+1 = ψUt − γHt /ηdis + ηchar(β
H
t + δHt ).

It is shown in [17] that HWR achieves asymptotic optimality
as the capacity of ESD K grows to infinity (when θ is big and
ε is small). In the next section we will numerically compare
the performance of HWR against the MDP and other heuristic
policies in a setting with finite storage capacity.

V. NUMERICAL EXPERIMENTATION AND RESULTS

In Section V-A, we compare the performance and com-
putational time of heuristic algorithms against MDP, under
different sizes of discretized state spaces (for demand, so-
lar generation, and cost). Our numerical results show that
compared to MDP, the ORA algorithm requires much less
computational time and only slightly increases the total cost
(by less than 2%). Motivated by the excellent performance of
ORA, in Section V-B we benchmark the performance of OLA,
HWR, TBA and NOA against ORA under a variety of param-
eter settings on storage capacity, charging/discharging rates,
and average solar generation. In Section V-C, we numerically
explore the value of storage and solar generation under the
same set of parameter settings considered in Section V-B.

Before representing the numerical results, we would like
to briefly discuss the data we obtained and the way we train
our algorithms. Our main purpose was to get a representative
sample that adequately captures the deterministic and stochas-
tic variability over time. All algorithms are implemented in
Matlab R2014a on an Intel Core i7-3740 2.70GHz PC with
16GB memory.

For 5-minute granularity we obtained 26 days of demand,
solar generation and cost data in a single month. In that spirit
we collected demand data from households (http://www.doc.
ic.ac.uk/∼dk3810/data/), solar PV supply data from NREL
(http://www.nrel.gov/midc/) and 5-minute electricity prices
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from New England ISO (http://iso-ne.org/). Note that for 5-
minute granularity we have ψ = 12. We used 16 days of
collected data to train the model, i.e., estimate/fit parameters
in the MDP model (described in Section III) and the NOA
algorithm (described in Section IV). We then use real data in
the 10 remaining days (from the original 26 days) for testing.
The length of the truncated horizons used in our simulation is
long enough to evaluate the steady-state performance of the
tested heuristic policies, with a discount factor β = 0.99.

For 1-hour granularity we obtained 5 years of 3 months’
data of demand, solar generation and cost in June, July,
and August of 2010-2014. We collected demand and (day-
ahead hourly) price data from PJM (http://www.pjm.com/
markets-and-operations/energy.aspx). For solar generation, we
collected measurements of solar irradiance under the coverage
of PJM, for the same 15-month period (http://www.nrel.gov/
midc/bsc/). For 1-hour granularity we have ψ = 1. We used
the first 12 months of collected data to train the model, and
use real data in the 3 remaining months for testing.

To estimate dt and δt for any t ∈ [1, N ], we use D(1, t),
D(2, t), . . ., D(16, t), the realized demands in 16 days, to
compute δt = mini[D(i, t)] and dt = maxi[D(i, t)] − δt.
Likewise for ct and γt. In case of supply st, the minimum
value is zero. Then for the DTMCs {W̃ d

t }∞t=1, {W̃ s
t }∞t=1, and

{W̃ c
t }∞t=1, we first select the number of states M + 1. The

state space of these three DTMCs is a set of discrete values
0, 1/(M − 1), 2/(M − 1), . . ., 1. Then we estimate the
elements of Pd, Ps, and Pc as the respective frequency of
transition based on the 16 days’ data (for the 5-min case) and
the 12 months’ data (for the 1-hour case). For all the 1-hour
test cases, we use the weekdays’ and the weekends’ data (of
demand and cost) to train two different transition matrices
for weekdays and weekends, respectively. The objective is to
capture the weekly fluctuation of demand and electricity prices
through the constructed MDP model. For all the 1-hour test
cases, each algorithm (MDP, ORA, OLA, HWR, TBA, NOA)
makes storage operation decisions based on the corresponding
transition matrix (of demand and cost) in weekdays and
weekends.

For MDP, we consider 13 discretized actions that are
uniformly distributed in the continuous action space expressed
in Eq. (9). Given the current system state, ORA considers a
finite number of possible next system states resulting from a
set of 7 actions,6 and chooses the action that minimizes the
approximated cost-to-go. For the data set we use, increasing
the number of explored actions (beyond 7) leads to negligible
improvement in the performance of ORA. The OLA algorithm
takes into account the same set of 7 actions as the ORA
algorithm. The other three heuristic polices (HWR, TBA, and
NOA), on the other hand, do not discretize the action space.
For all the numerical experiments we use cchar = cdis and
η = ηchar = ηdis.

A. Benchmarking Heuristics Against MDP

In this subsection, we will 1) compare the performance

6Note that the choice of these 7 actions depends on the current system state
Ut, Dt and St (cf. the discussion at the end of Section III).

of MDP and ORA under the daily model (where a single
transition matrix is trained using real data) and the weekly
model (where two different transition matrices are trained
using weekday’s and weekends’ data, respectively), and 2)
benchmark the performance and computational time of heuris-
tic algorithms against MDP under different sizes of discretized
states.

All numerical results presented in this subsection have
a 1-hour interval. The two representative parameter settings
considered in this subsection are:

1) η = 1, K = 600 kWh, cchar = cdis = 300 kW,
K/E[Dt] = 1.0572, E[St]/E[Dt] = 0.5357;

2) η = 0.85, K = 800 kWh, cchar = cdis = 100 kW,
K/E[Dt] = 2.17, E[St]/E[Dt] = 0.468.

For MDP, we use 7 discretized storage levels under the first
parameter setting, and 9 discretized storage levels under the
second parameter setting. (Note that the other heuristic policies
do not discretize storage level.)
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Fig. 2. Total cost resulting from MDP under the daily and weekly models
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Fig. 3. Total cost resulting from ORA under the daily and weekly models
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Fig. 4. Cost comparison under the weekly model and various sizes of
discretized states

In Fig. 2 and 3 we present the total discounted cost resulting
from MDP and ORA under the daily model and weekly model.
We note from these figures that the incorporation of weekly
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TABLE II
COMPUTATIONAL TIME UNDER THE FIRST PARAMETER SETTING (IN

SECOND)

(3,3,3) (4,4,4) (5,5,5) (6,6,6)
MDP 25.72 345.48 4516.00 21880
ORA 14.46 22.57 45.3 63.08
HWR 2.023 2.023 2.023 2.023
TBA 0.001 0.001 0.001 0.001
NOA 0.0016 0.0016 0.0016 0.0016
OLA 0.069 0.07 0.071 0.073

fluctuation mildly improves the performance of MDP and
ORA (by about 1−2.5%). We will therefore apply the weekly
model for MDP and ORA in all our 1-hour tests throughout
the section. Here we do not include the comparison for OLA
because incorporating weekly fluctuation leads to negligible
performance improvement for OLA.

In Fig. 4 and 5 we compare the total discounted cost
resulting from all algorithms under different sizes of the
discretized states (of demand, solar generation, and cost). We
observe from Fig. 4 that while the performance of MDP is
slightly improved as the number of discretized states increases,
the performance of other heuristic policies are not sensitive to
the size of state space. We observe from Fig. 5 that ORA
achieves the best performance: the gap between ORA and
MDP is almost always less than 2% (except in the (6, 6, 6)
case under the second parameter setting). OLA is the second
best, and results in about 1 − 4% more cost than MDP.
HWR achieves similar performance as OLA under the second
parameter setting, but leads to much higher cost than OLA
under the first parameter setting. This is in correspondence
with the observation in Section V-B: HWR performs well
when the number of hours needed to fully charge the storage,
K/cchar, is big. We have implemented the ORA and OLA
algorithms with much larger state space (up to (40, 40, 40));
the performance of both algorithms remains almost the same as

TABLE III
COMPUTATIONAL TIME UNDER THE SECOND PARAMETER SETTING (IN

SECOND)

(3,3,3) (4,4,4) (5,5,5) (6,6,6)
MDP 57.76 1376.6 29671 117081
ORA 11.07 21.89 65.72 94.5
HWR 1.834 1.834 1.834 1.834
TBA 0.001 0.001 0.001 0.001
NOA 0.0014 0.0014 0.0014 0.0014
OLA 0.072 0.0908 0.0962 0.1123

the size of state space increases from (6, 6, 6) to (40, 40, 40).
In Table II and III we compare the computational time of all

algorithms for the scheduling of one-week storage operation.
While the size of discretized states significantly (mildly)
increases the computational time of MDP (ORA, respectively),
it has little influence on the computational time of the other
heuristic algorithms. We note that the computational time of
MDP is much higher under the second parameter setting,
mainly because of the high value of K/cchar that leads to
more discretized states of storage level. It is also worth noting
that ORA takes much less computational time than MDP in
all cases, and that somewhat surprisingly, OLA is faster than
HWR.

In summary, ORA is comparable to MDP: with problem
sizes of (3, 3, 3) and (4, 4, 4), it leads to 0.2 − 2% more
total cost than MDP, and is faster than MDP in the (4, 4, 4)
case. OLA leads to 1 − 4% more total cost than MDP, and
requires negligible computational time. HWR achieves similar
performance as OLA under the second parameter setting with
K/cchar = 8, and leads to significantly higher cost than OLA
under the first parameter setting with K/cchar = 2.

B. Benchmarking Heuristics Against ORA

Here we compare the five heuristics ORA, OLA, HWR,
TBA and NOA but without MDP. Motivated by the excel-
lent performance of ORA (cf. Section V-A), we compare
the other four algorithms against ORA in the next set of
experiments. In addition we let storage charging/discharging
efficiency η = 0.85, and consider both 1-hour/5-min intervals
(corresponding to N = 24 and N = 288, respectively). We
vary the storage capacity K and scale the average PV supply
E[St] based on the average demand E[Dt]. While we will
consider variations, we will mainly consider the baseline of:
Hours of “average” demand in storage, i.e. K/E[Dt] as 2.17;
Hours to fully charge/discharge, i.e. K/cchar as 8; Ratio of
average PV supply to average demand, E[St]/E[Dt], as 0.468.

We first estimate the state transition matrices (of demand,
solar generation, and cost) using training data. We tried
various alternatives for size of the state space. We chose
number of states in demand, renewable generation, and cost
Markov chain to be (4,4,4). Incidentally, when we increased
the number of states to (10,10,10), the results approximately
remain the same.
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Fig. 6. Heuristics’ performance over varying storage capacity (via K/E[Dt])
keeping cchar constant

The simulation results are described in Fig. 6-9 where we
compare the five heuristic algorithms with the y-axis denoting
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Fig. 8. Heuristics’ performance over varying hours to completely
charge/discharge storage (via K/cchar) keeping K fixed

(b− a)/a where a is the minimum total discounted cost (that
is obtained by the ORA algorithm) and b is the corresponding
heuristic’s total discounted cost. While the left side displays
correspond to the 1-hour case, the right side figures are based
on 5-min real data.

For the testing we let U0 = K/2, i.e., the initial storage
level is 50% of storage capacity. For NOA, we selected
tolerance parameters φc = φ = 0.25 by testing several options.
Interestingly the 0.25 value is robust and the solutions do not
change with much higher or lower values of φ. We observe
from these four figures that for most all 1-hour cases, the ADP-
based OLA algorithm performs slightly worse than ORA, and
yields the minimum total discounted cost among the four
heuristics. In many 5-minute cases, however, OLA algorithm
performs worse than some other heuristics (e.g., TBA). This is
intuitive since OLA always treats the next stage (the next five
minutes in 5-minute case) as the terminal stage and completely
ignores the system dynamics after the next stage.

In Fig. 6, we fix the maximum charging rate cchar and
vary the storage capacity K. Note that the ratio K/cchar is
4, 8, 16, and 32 hours for the four cases, respectively. We
observe from Fig. 6 that HWR performs reasonably well in
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Fig. 9. Heuristics’ performance over varying ratio of average solar supply to
average demand (via E[St]/E[Dt])

all cases, and yields 2% − 13% more cost than ORA. Also,
we observe that TBA achieves the minimum cost (among the
four heuristics) in the 5-minute case. In Fig. 7, we fix the
ratio K/cchar = 8 and vary the storage capacity K. This
is a more practical setting since the maximum charging rate
usually grows (nearly) proportionally to the storage capacity.
The performance gap between ORA and the four heuristics
increases with storage capacity.

In Fig. 8 we fix the storage capacity K and vary the
capacity to charging rate ratio K/cchar. The parameter setting
in our simulation is motivated by the development of fast-
charging batteries [31].7 We observe from Fig. 8 that the
performance of HWR heavily depends on the ratio K/cchar:
the performance gap between HWR and ORA is mild when
this ratio is larger than 8 (i.e., it takes more than 8 hours to
fully charge the storage); however, for fast-response storage
devices with K/cchar ≤ 2, both ORA and OLA significantly
outperform HWR.

Finally, in Fig. 9, we vary the ratio of average solar supply to
average demand (E[St]/E[Dt]) while fixing the other param-
eters. The parameter setting is motivated by the fast growing
installment of solar panels on the consumer side. We note
that as the solar penetration increases, ORA still outperforms
the other four heuristics (including OLA), especially in the
5-minute case.

C. The Value of Storage and PV

There are costs to install a solar PV system and/or an ESD.
A natural question to ask is whether the PV and/or ESD
installation was worth it. For that we consider two parameters:
value of storage and value of PV and storage. We use the same
test data as the previous sub-section and policy based on ORA.
In Fig. 10-13, the y-axis denotes (a−b)/a where b is the total
discounted cost using both PV and storage, while a in the left
bars correspond to the (optimal) use of only PV,8 and a in the
right bars correspond to the use of neither PV nor storage.

Hours of mean demand stored
1.08 2.17 3.25 4.34

S
av

in
gs

 th
ro

ug
h 

G
rid

+
P

V
+

S
to

ra
ge

0

0.1

0.2

0.3

0.4

0.5

0.6
Grid+PV Grid

Hours of mean demand stored
1.08 2.17 3.25 4.34

S
av

in
gs

 th
ro

ug
h 

G
rid

+
P

V
+

S
to

ra
ge

0

0.1

0.2

0.3

0.4

0.5
Grid+PV Grid

1-hour intervals 5-minute intervals

Fig. 10. Value of storage/PV over varying storage capacity (via K/E[Dt])
keeping cchar constant

The left bars present the fractional cost savings due the
operation of storage, and can be therefore viewed as an
illustrator on the value of storage. Similarly, the right bars
illustrates the value of storage and PV. We observe from Fig.

7For example, the lithium-ion titanate batteries are capable of recharging
to 95% of full capacity within approximately ten minutes [31].

8We note that without storage, the optimal operation of PV is trivial: simply
use as much solar generation as possible to fulfill the current demand.
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Fig. 11. Value of storage/PV over varying storage capacity (via K/E[Dt])
keeping K/cchar = 8
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Fig. 12. Value of storage/PV over varying hours to completely
charge/discharge storage (via K/cchar) keeping K fixed

10-13 that the value of storage is much higher in 5-minute
cases, due to the higher variability in costs under 5-minute
real-time pricing than that under hourly pricing.

As shown in Fig. 10, the values of storage and PV do not
increase appreciably with increase in storage size (without
increasing rates of charging/discharging). We observe from
Fig. 11 that the value of storage increases sharply with the
storage capacity K, when the maximum charging rate cchar
grows in proportional to K. We observe from Fig. 12 that
the values of storage and PV increase with the maximum
charging/discharging rate of the storage. Fig. 13 shows that
the values of storage and PV increase with average solar PV
generation.

VI. CONCLUSION

Although deceptively easy to state, the problem of determin-
ing energy mix from the grid, renewable source and storage
device is fairly complex to solve. We implemented six policies
MDP, ORA, OLA, HWR, TBA and NOA, and compared their
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performance using real data of energy demand, renewable
generation, and electricity prices.

The following were our findings.
1) ORA outperforms the other four heuristics in all cases,

and at the same time, requires the most computing power
among the five heuristics. For 1-hour cases, ORA results
in 0.2− 2% more total cost than MDP, and OLA leads
to 1−4% more total cost than MDP. For many 5-minute
cases, however, ORA significantly outperforms OLA;
this is intuitive, since OLA always treats the next stage
(the next five minutes in this case) as the terminal stage
and completely ignores the system dynamics after the
next five minutes. TBA performs well in some 5-minute
cases. Tuning tolerance and coefficient parameters had
virtually no effect on NOA.

2) HWR is an easily implementable algorithm that needs
no training. Its performance to a large extent depends
on the number of hours to fully charge storage (i.e.
K/cchar). It achieves almost the same total discounted
cost as ORA when K/cchar is large (e.g. > 8). On the
other hand, the two ADP-based algorithms, ORA and
OLA, significantly outperform HWR for the case with
K/cchar ≤ 2.

3) Under the one-step roll-out algorithm (ORA) and hourly
pricing, value of storage is not too high with K/cchar =
8. Value of storage is much higher in 5-minute cases, be-
cause the cost is much more fluctuating under 5-minute
real-time pricing than that under hourly pricing. Value
of storage would improve greatly if the storage size
increases along with speed of charging and discharging.
As solar penetration goes higher, storage has more value.
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control of end-user energy storage,” IEEE Tran. Smart Grid, vol. 4,
no. 2, pp. 789–797, 2013.

[21] P. Harsha and M. Dahleh, “Optimal management and sizing of energy
storage under dynamic pricing for the efficient integration of renewable
energy,” IEEE Tran. Power Systems, vol. 30, no. 3, pp. 1164–1181, 2015.

[22] Y. Xu and L. Tong, “On the operation and value of storage in consumer
demand response,” Proc. of 53th IEEE Conference on Decision and
Control (CDC), 2014.

[23] R. Wilson, “Architecture of power markets,” Econometrica, vol. 40,
no. 4, pp. 1299–1340, 2002.

[24] K. C. Divya and J. Østergaard, “Battery energy storage technology for
power systems - an overview,” Electric Power Systems Research, vol. 7,
no. 4, pp. 511–520, 2009.

[25] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam, “Carbon-
aware energy capacity planning for datacenters,” in IEEE 20th Interna-
tional Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012, pp. 391–400.

[26] D. P. de Farias and B. V. Roy, “The linear programming approach
to approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, 2003.

[27] S. M. Ross, Introduction to Stochastic Dynamic Programming. Aca-
demic Press, 1983.

[28] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2005, vol. I.

[29] D. P. Joseph and T. J. Tou, “On linear control theory,” AIEE Transac-
tions: Applications and Industry, vol. 80, no. 4, pp. 193–196, 1961.

[30] L. Xie and M. D. Ilic, “Model predictive economic/environmental
dispatch of power systems with intermittent resources,” in IEEE Power
and Energy Society General Meeting, 2009.

[31] M. Etezadi-Amoli, K. Choma, and J. Stefani, “Rapid-charge electric-
vehicle stations,” IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 1883–
1887, 2010.


