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Abstract—We consider a system where inelastic demand for
electric power is met from three sources: the grid, in-house
renewables such as wind turbines or solar panels, and an in-
house energy storage device. In our setting, power demand,
renewable power supply, and cost for grid power are all time-
varying and stochastic. Further, there are limits and efficiency
issues for charging and discharging the energy storage device.
Under such a scenario, at all times across an infinite horizon,
we need to determine how to split power demand among
the various sources. For that, we formulate an optimization
framework that minimizes the long-run average operational cost
subject to satisfying demand and meeting capacity constraints. To
determine the optimal actions, we construct a dynamic program
with parameters estimated from a training data set (that uses
real demand, supply and cost data). As the dynamic program
is computationally intensive for large-scale problems, we explore
an algorithm based on approximate dynamic programming, and
apply it to a test data set. We compare its performance against
other heuristics that may or may not use the training data. In
addition, we ascertain the value of storage as well as the value
of installing a renewable source.

I. INTRODUCTION

In this research, we consider a consumer of electricity with
inelastic power demand, i.e. demand must be satisfied instan-
taneously and cannot be either postponed or cut back. Demand
for power is time-varying and stochastic. Part of the demand
can be met by a renewable energy source (such as photo-
voltaic (PV) solar panels or wind turbines) that is situated
locally and owned by the consumer. Note that renewable power
supply is time-varying and stochastic. Remaining demand (if
any), beyond what the renewable source can supply, is satisfied
either from the grid or by an in-house Energy Storage Device
(ESD) or both. It is also possible to charge the ESD, thus the
ESD is both a source and a sink of power. Like power demand
and renewable supply, price for power from the grid is also
time-varying and stochastic.

In the last few years this problem has received a lot of
attention in the literature. The literature can be broadly divided
into two categories: (i) articles that assume that all parameters
are deterministic time-varying quantities and make strategic
decitions such as whether to invest in renewable sources,
and/or ESDs; what fraction of demand is met by renewable
supply; whether it is possible to go net zero, etc., and (ii)
articles that assume that demand, supply and costs are either
IID or follow stationary Markov chains; these result in Markov

decision processes (MDPs) or Lyapunov-based techniques to
model the storage process.

In particular, [1] considers case (i) with a data center as
the consumer. Besides the modeling nuances we consider, [1]
also models the use of diesel generators and external renewable
sources (besides on-site renewables). They evaluate strategic
decisions such as whether to use renewables, from where,
whether to invest in storage, whether to use diesel generators,
etc. Their key finding is that the results are dependent on the
renewable source’s capacity factor.

For case (ii), there have been recent studies on the op-
eration of consumer-owned ESDs. Threshold structures are
established for the optimal control policy in a variety of MDP
settings without renewable generation [2], [3]. Leveraging
on techniques from queuing theory, a few recent papers
propose a variety of on-line algorithms that are shown to be
asymptotically optimal, as the storage capacity increases to
infinity [4], [5]. Closer to the present paper, the authors of
[5] consider a similar storage operation problem faced by a
consumer who has additional options to sell power back to the
grid (but through the ESD) and to shift demand across time.
Unlike MDP, which is computationally complex and requires
substantial statistical information of the system dynamics,
their method requires no statistical knowledge and uses an
extremely light linear program. The algorithm is expected to
perform well when the storage capacity is significantly larger
than the maximum charging/discharging rates.

While our article considers a single consumer, [6] takes
the perspective of a renewable source (such as a wind farm)
with large storage device. They consider renewable supply to
be controlled and sold/stored, and also negative prices. Their
objective is to develop a fast algorithm to determine how much
to generate and what fraction of that must be sold versus
stored so that revenue is maximized. At each discrete time
instant, they develop three thresholds on the ESD contents
to determine when to: generate, buy and store; generate and
store; do nothing; or sell.

It is our belief that both the deterministic variability and
the stochastic variability are important to determine optimal
operational actions. The contribution of this paper is twofold:
(i) we construct an MDP framework that incorporates the
randomness in consumer demand, renewable generation, and
electricity prices; (ii) using a set of real training data on
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Fig. 1. Schematic representation of scenario and notation

electricity prices, solar generation, and consumer demand,
we numerically compare approaches ranging from Markovian
models, to hybrid methods based on statistics, optimization
and heuristics, to those that require no historical data. The
insight we obtain from these numerical experiments will guide
the design of more efficient heuristics. Interestingly, all the
aforementioned articles in the literature consider wind energy
while our focus for the numerical study is on solar PV.

The storage operation problem is intimately related to
inventory control problems with random production cost and
uncertain demand [7], [8]. We note, however, our model is
significantly different from the setting in the inventory control
literature. In our model, there is no “inventory” holding cost
that is proportional to the storage level; instead, the major
losses resulting from storage operation are due to energy
injection and withdrawal (e.g., ESD charging and discharging).
In addition there is a finite maximum rate at which the ESD
can be charged and discharged.

We describe our problem in Section II. In Section III we
develop a probabilistic model and suggest approaches to solve
it. We consider other heuristic algorithms in Section IV and
demonstrate their quality in Section V by obtaining parameters
using a real training data set and testing them.

II. PROBLEM DESCRIPTION

Before describing our model, we state a few assumptions.
Recall that demand is inelastic. There are no operational
costs for the consumer other than price of electricity from
grid. Price is exogenous and not affected by the consumer’s
decisions. There are inefficiencies in charging and discharging
the ESD. We assume no leakages in the ESD, since the storage
efficiency of many different types of modern batteries (e.g.,
Lead acid, Li-ion and Vanadium redox batteries) is close to
100% [9]. The ESD has a finite energy storage capacity. Power
cannot be sold to the grid (we will relax this assumption in
an extension of this work).

Next we describe some of the notation used in this work
(pictorially described in Fig. 1). We consider a discrete-time
model where time periods are indexed by t = 0, 1, . . .. The
stochastic uncontrollable variables are: Dt, the demand for
energy in period t (in kWh); St, the energy supply from
renewable source in period t (in kWh); Ct, the cost in period
t for a unit of energy from grid (in $ per kWh). Let Ut be
the amount of energy in the ESD at the beginning of period
t (in kWh). We assume that Dt for all t is smaller than the

grid capacity. However there are capacities and constraints in
the ESD charging and discharging processes. A maximum of
K kWh of energy can be stored in the ESD at any time. The
ESD can be discharged and charged at a maximum rate of cdis
and cchar (in kW) respectively. Also, the ESD discharging and
charging efficiencies are ηdis ≤ 1 and ηchar ≤ 1 respectively
(which we explain next). If ρ kW of power is used to charge
the ESD in period t, then Ut+1 − Ut (when Ut+1 ≤ K and
ρ ≤ cchar) is ρηchar hours per unit time. Likewise if ρ kW
of power is needed from the ESD, then Ut+1 − Ut (when
Ut+1 ≥ 0 and ρ ≤ cdis) is −ρ/ηdis hours per unit time. Next
we describe the decision variables under the control of the
consumer. Let Xt, Yt and Zt be the energy drawn (in kWh)
from the grid, renewable source and ESD respectively at period
t. While Xt ≥ 0 and Yt ≥ 0 for all t, Zt can be positive or
negative (latter denoting power used to charge ESD).

Having described the notation, we are in a position to state
the problem we consider. During every period t, given demand
Dt, renewable supply St, cost Ct and ESD charge level Ut,
we need to determine the supply from grid Xt, the draw from
renewable source Yt, and contribution from the ESD Zt so
that the long-run average cost per time period is minimized
subject to satisfying demand, staying within ESD capacities
and other constraints such as dynamics and non-negativity.
This sequential decision making problem can be formulated
mathematically as follows

Minimize limτ→∞
1
τ

∑τ
t=0 CtXt

Subject to the following ∀t ∈ {0, 1, 2, . . .}
Xt + Yt + Zt ≥ Dt

0 ≤ Yt ≤ St
Zt ≤ cdis

−min{Zt, 0} ≤ cchar
ψ(Ut+1 − Ut) = −max{Zt, 0}/ηdis + ηchar min{Zt, 0}

0 ≤ Ut ≤ K
Xt ≥ 0

where ψ is a constant for time-unit conversion, i.e. number of
time units per hour (viz. when Ut is in kWh and Zt in kW, if
length of period t is 1 second then ψ = 3600).

Remark 1: The above formulation has a trivial solution if
Ct stays constant over t. In particular, if Dt > St for all t then
Zt = 0, Yt = St and Xt = Dt−St is the optimal solution with
no need for storage. However, if Ct stays constant over t but
Dt is not always greater than St, then the greedy solution
of charging or discharging at maximum feasible capacities
when Dt is less or more respectively than St is optimal. Thus
for the rest of this article we consider the non-trivial case of
Ct varying with time and the possibility that for some time
periods St can be greater than Dt.

Remark 2: We can reduce the above problem to a 1-
dimensional control in Xt or Zt by realizing that we can let Yt
= St and Zt = Dt - Xt - Yt. However, for ease of presentation



we will use all variables, not just Xt or Zt.
Remark 3: Due to the linear nature of the objective func-

tion and constraints, the value function at every period t is
piecewise-linear in Ut [3]. As a result, given the system state
at period t, namely Dt, St, Ct, and Ut, the optimal policy is
such that Zt is one of the following: (i) zero, (ii) the minimum
of cdis, ψUt and Dt−St, or (iii) negative of certain threshold
that depends on future demand and cost.

III. PROBABILISTIC MODEL WITH CYCLES

Analyzing the data described in [1], the NREL labs
http://www.nrel.gov/midc/ and [10] respectively, it is evident
that demand, solar PV supply and cost are time-varying and
stochastic. However, it is also not unreasonable to assume
that there are daily or weekly seasonality effects. In other
words, there is a deterministic variability as well as stochastic
variability. To model such a phenomenon we consider what
we call probabilistic model with cycles.

Definition 1: An uncontrolled process {Vt, t ≥ 0} is cyclic
with cycle length T if Vt is stochastically identical to Vt+`N
for all ` ∈ {1, 2, . . .}, where N is the number of periods in a
cycle of length T hours, i.e. N = ψT .

Based on the above definition, we assume that {Dt, t ≥ 0},
{St, t ≥ 0} and {Ct, t ≥ 0} are cyclic with cycle length T (T
typically is the equivalent of 1 day or 1 week). Further, we
write down for all t ∈ {0, 1, . . .}, with n = (t mod N),

Dt = dnZ
d
t + δn

St = snZ
s
t

Ct = cnZ
c
t + γn,

where {d1, d2, . . . , dN}, {δ1, δ2, . . . , δN}, {s1, s2, . . . , sN},
{c1, c2, . . . , cN} and {γ1, γ2, . . . , γN}, are sets of determinis-
tic constants while {Zdt , t ≥ 0}, {Zst , t ≥ 0}, and {Zct , t ≥ 0},
are stationary and independent discrete time Markov chains on
discrete state spaces Sd, Ss, and Sc and transition probability
matrices Pd, Ps, and Pc respectively.

One can think of {s1, s2, . . . , sN} as the power supplied by
PV panels on a perfectly sunny day while Ss as a discrete
set of values between 0 and 1. The demand and cost terms
do not have such a nice interpretation and one would have to
model them carefully based on data. In Section V, we will
use training data to estimate dn, δn, sn, cn and γn for all
n ∈ {1, . . . , N} as well as Pd, Ps, and Pc. However, for the
rest of this section we take a probabilistic approach assuming
all the aforementioned parameters are known and formulate
the system as an MDP.

We denote the system state at time t ∈ {0, 1, 2, . . .} as a
5-tuple

xt = {{t/N}+ 1, Zdt , Z
s
t , Z

c
t , Ut}

(where {t/N} denotes (t mod N)) with state space S given
by the cartesian product

{1, 2, . . . , N} × Sd × Ss × Sc × Su

where Su is the discrete set of values between 0 and K that
Ut can take. It is worth noting that the time dependency and

correlations of consumer demand and renewable generation
are incorporated by including in the system state a periodic
Markov chain that describes time evolution.

Let the action at time t denote the amount of power to
be supplied from the grid, i.e. Xt, with action space A
corresponding to the set of all possible non-negative values
that are less than or equal to

ψmin{
K − U{t/N}

ηchar
, cchar}+ max{D{t/N} − S{t/N}, 0},

for all t ∈ {1, 2, . . . , N}. As noted in Remark 2, the energy
drawn from renewable source and ESD at period t is deter-
mined by Xt, i.e., Yt = St and Zt = Dt - Xt - Yt.

For every action Xt ∈ A, x ∈ S, and y ∈ S, we can com-
pute the transition probability Pxy(Xt) using appropriate
Kronecker products of Pd, Ps, Pc and other matrices of zeros
and ones (which are not explained due to space constraints).
The stage cost at time t is the product of the corresponding
power cost in state i times Xt ∈ A, CtXt.

By incorporating the time element into the state of the MDP,
we have indeed formulated an MDP with a “stationary” policy
(the quotes are because the policy is stationary from one cycle
of N values to the next cycle, but not within a cycle). For a
given stationary policy which maps every point in the state
space S to a point in the action space A, the long-run average
cost per unit time corresponds to the objective function of our
optimization problem defined in Section II (and also results in
a feasible solution).

Note that the above MDP has a finite state-space and a finite
action-space. There are many methods to obtain the optimal
action a ∈ A in state i for all i ∈ S. We consider a linear
program (LP) based method described in [11]. The LP can
be solved (especially by packages such as MATLAB) when the
state and action spaces are small, ηchar = ηdis = 1, and Dn

and Sn belong to a small discrete set for all n ∈ {1, . . . , N}.
MATLAB runs out of memory when the dimension becomes
large and approximating by rounding off to integer values
sometimes results in solutions that are too far from being
optimal. A common procedure adopted when one faces such
a curse of dimensionality is the use of Approximate Dynamic
Programming (ADP) (see [12]). While there are several ADP
algorithms to choose from, we select a simple one based on
a single stage look ahead. In this version of ADP which is a
1-step optimization, given the current state, we determine the
best action so that the expected cost for this state and the next
state is minimized.

IV. OTHER HEURISTICS

Before describing two heuristics that we develop to ap-
proximately solve the MDP, we revisit Huang, Walrand and
Ramchandran [5] (details explained in Section I). We call their
algorithm HWR. It is a remarkable online algorithm that does
not use any historical information and makes decisions based
only on current state information (such as Dt, St, Ct and Ut).
As the authors of HWR argue, it is an ideal algorithm under



such situations when there is tremendous variability, and there
may be too many parameters to fit while modeling as an MDP.

With that understanding, we are in a position to describe
two heuristics that use the cyclic structure in Section III.
Under such a setting, we first obtain a fluid model of the
system by taking expectation of Dτ , Sτ and Cτ for all
τ ∈ {1, 2, . . . N}. Note that it is relatively straightforward
to estimate E[Dτ ], E[Sτ ] and E[Cτ ] as the sample mean from
historical observations. Then we can obtain the resulting policy
as the fluid model (FL) with the variables X̄τ , Ȳτ , Z̄τ and Ūτ .

FL: Minimize
∑N
τ=1 E[Cτ ]X̄τ

Subject to the following ∀τ ∈ {1, . . . , N}
X̄τ + Ȳτ + Z̄τ ≥ E[Dτ ]

0 ≤ Ȳτ ≤ E[Sτ ]

Z̄τ ≤ cdis
−min{Z̄τ , 0} ≤ cchar

N

24
(Ūτ+1 − Ūτ ) = −max{Z̄τ , 0}/ηdis + ηchar min{Z̄τ , 0}

0 ≤ Ūτ ≤ K
X̄τ ≥ 0,

where ŪN+1 = Ū1.
The two heuristics that we are about to explain essentially

use the above fluid model’s solution. The idea for the heuristics
is based on Remark 3. The state at time t is the 5-tuple ({t/N},
Dt, St, Ct, Ut). However, it is not easy to determine in
each state which case to choose among (i), (ii) or (iii) of
Remark 3. Thus as an approximation we consider guidelines
provided by the fluid model and propose two heuristics: TBA
(threshold-based approximation) and NOA (naive opportunis-
tic algorithm).

Heuristic TBA: Given the state at time t namely, ({t/N},
Dt, St, Ct, Ut), we determine Zt so that at time t+1, Ut+1 is
as close to Ū{t/N}+1 by appropriately charging or discharging.
The goal is to reach threshold level Ū{t/N}+1 in the next time.
Thus TBA is as follows (with n = {t/N}):

if Ut < Ūn+1, Zt = −min

{
N

24

(Ūn+1 − Ut)
ηchar

, cchar

}
else if Ut = Ūn+1, Zt = 0,
else Zt = min

{
N
24 (Ut − Ūn+1)ηdis, cdis

}
. In all the above

cases, Xt = max {Dt − St − Zt, 0}.

Heuristic NOA: Given the state at time t namely, ({t/N},
Dt, St, Ct, Ut), we adopt a naive (but intuitive) strategy –
if Ct is cheap, charge the ESD as much as possible; and if
Dt is much higher than St, discharge as much as possible;
otherwise do what the fluid model suggests. For that we use
E[CN ] as the grand average cost (computed over entire cycle
N ), and V ar[CN ] the corresponding grand variance; also φc
and φ are parameters to be tuned. It leads to the following
NOA (with n = {t/N}):
if Ct < E[CN ] − φc

√
V ar[CN ], then Zt =

−min
{
N (K−Ut)

24ηchar
, cchar

}
otherwise,

if Dt − St > E[Dn]− E[Sn] + φ
√
V ar[Dn] + V ar[Sn],

Zt = min
{
Dt − St − X̄n,

NUtηdis
24 , cdis

}
else
(i.e. Dt − St < E[Dn]− E[Sn] + φ

√
V ar[Dn] + V ar[Sn])

Zt = min
{

max(St −Dt, Z̄n), cchar,
N(K−Ut)
24ηchar

}
. In all the

above cases, Xt = max {Dt − St − Zt, 0}.

V. NUMERICAL EXPERIMENTATION AND RESULTS

We obtained 26 days of demand, supply and cost data in a
single month that we split into two groups: 16 days for training
our models and 10 days for testing them. Our main purpose
was to get a representative sample that adequately captures the
deterministic and stochastic variability over time. In that spirit
we collected demand data from households (see Acknowledg-
ments section for credits), solar PV supply data from NREL
(http://www.nrel.gov/midc/) and cost data at 2 granularities:
1-hour pricing (https://www.nationalgridus.com) and 5-minute
pricing (http://iso-ne.org/). Next we used the training data to
estimate/fit parameters in the MDP model described in Section
III. To estimate dt and δt for any t ∈ [1, N ], we use D(1, t),
D(2, t), . . ., D(16, t), the 16 realized demands and compute
δt = mini[D(i, t)] and dt = maxi[D(i, t)] − δt. Likewise
for ct and γt. In case of supply st, the minimum value is
zero. Then for the DTMCs {Zdt , t ≥ 0}, {Zst , t ≥ 0}, and
{Zct , t ≥ 0}, we first arbitrarily select the number of states
M . The state space is a set of discrete values 0, 1

M−1 , 2
M−1 ,

. . ., 1. Then we estimate the elements of Pd, Ps, and Pc as
the respective frequency of transitioning based on the 16 days’
data. For all the numerical experiments we use cchar = cdis
and η = ηchar = ηdis.

A. Results of MDP-based Analysis

Recall from Section III that due to curse of dimentionality
we are unable to build very large sized probability matrices.
Using the version of MATLAB installed, the following is the
largest size problem that can be solved before memory limits
are reached: storage efficiency η = 1; 1-hour intervals; and
number of states in demand, storage and cost Markov chain
is (3,3,2). For the analysis we considered the case where the
hours of “average” demand in storage, i.e. K/E[Dn] is 1.64
while the Hours to fully charge/discharge, i.e. K/cchar is 2.
We use the ratio of average PV supply to average demand as
0.59 to avoid non-trivial solution and tractability.

Once the training data is used to model the system, we
perform a simulation (sampling from fitted data). Naturally,
the MDP solution would be the best and we benchmark the
four heuristics ADP, HWR, TBA and NOA. The results
are described in Fig. 2 where we compare the four heuristic
algorithms with the y-axis denoting (b− a)/a where a is the
MDP-based average cost and b is the corresponding heuristic’s
average cost. While the left side display corresponds to the
above conditions and models fitted with training data, the right
side figure is based on 10 randomly generated examples to test.
From the figure it is clear that ADP is reasonable.
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Fig. 2. Performance of heuristics: fraction higher than MDP solution

B. Benchmarking Heuristics Against ADP

Here we compare the four heuristics ADP, HWR, TBA
and NOA but without MDP. Motivated by the excellent
performance of ADP, we compare the other 3 algorithms
against ADP in the next set of experiments. However, unlike
the previous set, here we consider the test model based on
real data (see the discussion at the beginning of Section V
for details). In addition we use storage efficiency η = 0.85,
and also both 1-hour/5-min intervals (corresponding to N =
24, &N = 288). While we will consider variations, we will
mainly consider the baseline of: Hours of “average” demand in
storage, i.e. K/E[Dn] as 2.17; Hours to fully charge/discharge,
i.e. K/cchar as 8; Ratio of average PV supply to average
demand as 0.468. We first estimate parameters using training
data. We tried various alternatives for size of the state space.
We chose number of states in demand, storage and cost
Markov chain to be (4,4,4). Incidentally, when we increased
the number of states to (10,10,10), the results remain the same.

For the testing we used 10 days of demand, supply and cost
data (from the same month as training) assuming U0 = K/2.
For NOA, we selected tolerance parameters φc = φ = 0.25
by testing several options. Interestingly the 0.25 value is
robust and the solutions do not change with much higher or
lower values. Since the ADP algorithm always outperforms
other heuristics, in Fig. 3, 4, and 5, we compare the three
heuristic algorithms against ADP with the y-axis denoting
(b − a)/a where a is the ADP-based average cost and b is
the corresponding heuristic’s average cost. Although HWR
in general performs reasonably well, we observe that TBA
achieves a lower cost than HWR in all the 5-minute cases.
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Fig. 3. Heuristics’ performance over varying storage capacity (via K/E[Dn])
keeping cchar constant

In Fig. 3, we fix the maximum charing rate cchar and vary
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Fig. 4. Heuristics’ performance over varying storage capacity (via K/E[Dn])
keeping K/cchar = 8
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Fig. 5. Heuristics’ performance over varying hours to completely
charge/discharge storage (via K/cchar) keeping K fixed

the storage capacity K. Note that the ratio K/cchar is 4, 8,
16, and 32 hours for the four cases, respectively. We observe
from Fig. 3 that HWR performs reasonably well in all cases,
and yields a 2%− 10% more cost than ADP. In Fig. 4, we fix
the ratio K/cchar = 8 and vary the storage capacity K. This
is a more practical setting since the maximum charing rate
usually grows (nearly) proportionally to the storage capacity.
The performance gap between ADP and the three heuristics
increases with the battery capacity.

Finally, in Fig. 5 we fix the storage capacity K and vary
the capacity to charging rate ratio K/cchar. The parameter
setting in our simulation is motivated by the development of
fast-charging batteries, for example, the lithium-ion titanate
batteries are capable of recharging to 95% of full capacity
within approximately ten minutes [13]. We observe from Fig.
5 that the performance of HWR heavily depends on the ratio
K/cchar: it achieves almost the same performance as ADP
when this ratio is larger than 8 (i.e., it takes more than 8
hours to fully charge the storage); however, for fast-response
storage devices with K/cchar ≤ 1, ADP outperforms HWR.

C. The Value of Storage and PV

Although there is no operational cost other than buying
power from the grid, there are costs to install a solar PV system
and/or an ESD. A natural question to ask is whether the PV
and/or ESD installation was worth it. For that we consider two
parameters: value of storage and value of PV and storage. We
use the same test data as the previous sub-section and policy
based on ADP. In Fig. 6 and 7, the y-axis denotes (a− b)/a
where b is the average cost using both PV and storage, while



a in the left bars correspond to the (optimal) use of only PV1,
and a in the right bars correspond to the use of neither PV
nor storage.

The left bars present the percentage cost savings due the
operation of storage, and can be therefore viewed as an
illustrator on the value of storage. Similarly, the right bars
illustrates the value of storage and PV. We observe from Fig.
6 that the value of storage increases sharply with the storage
capacity K, when the maximum charging rate cchar grows
in proportional to K. Fig. 7 shows that both the value of
storage and the value of PV increases with average solar PV
generation.
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Fig. 6. Value of storage/PV over varying storage capacity (via K/E[Dn])
keeping K/cchar = 8
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Fig. 7. Value of storage/PV over varying ratio of average solar supply to
average demand

VI. CONCLUSION

Although deceptively easy to state, the problem of determin-
ing energy mix from the grid, renewable source and storage
device is a fairly complex one to solve. We explored four
heuristics ADP, HWR, TBA and NOA. The following were
our findings. ADP outperforms the other three heuristics in all
cases, but the algorithm is relatively low in fidelity (because
of poor fitting). Except when charging/discharging rates are
high, in general all algorithms perform well for 1-hour data.
NOA performs quite poorly in some of the 5-minute data cases
(but NOA does well when others fail). Tuning tolerance and
coefficient parameters had virtually no effect on NOA.

HWR is an easily implementable algorithm that needs no
training. Its performance to a large extent depends on the
number of hours to fully charge storage (i.e. K/cchar). It

1We note that without storage, the optimal operation of PV is trivial: simply
use as much solar generation as possible to fulfill the current demand.

achieves almost the same average cost as ADP when K/cchar
is large (e.g. > 8). On the other hand, ADP significantly
outperforms HWR for the case with K/cchar ≤ 1. The insight
we obtain from numerical comparisons has led to on-going
efforts to design new ADP-based heuristics to better explore
the flexibility provided by energy storage.

Under the simple one-step look-ahead (ADP) algorithm,
value of storage is not too high. Demand and PV supply
are correlated making a case for PV value. Value of storage
would improve greatly if the storage size increases along with
speed of charging and discharging. As solar penetration goes
higher, storage has more value.
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