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Abstract

In this paper stochastic models for high-speed networks viz. traffic models, buffer
content process models, LAN models, etc are considered. The stochastic models are
used to obtain end-to-end Quality-of-Service (QoS) measures that the network must
guarantee users in the future. The QoS measures or performance measures can be
used in optimal design problems and admission control problems. Other aspects such
as TCP, routing, leaky buckets, wireless networks, etc are also considered.
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1 Introduction

One of the greatest success stories for stochastic models in engineering is in the field of

telecommunications. Discrete and fluid queueing models have played a major role in the

development of computer and communication networks. There are several branches of

telecommunications that use stochastic models, however, in this paper the main focus is

in networking systems and other stochastic systems that aide high-performance networking.

A few other applications are briefly mentioned later in this introduction.

There are several interesting scenarios in the Internet and the emerging next generation

networks (such as Internet2, NGI, etc) where stochastic modeling is applicable. The future

networks will carry a wide variety of traffic (Data, Voice, Video, etc) and the users will

demand very high-quality from the networks. Therefore it is very important to consider

certain performance issues known as Quality-of-Service (QoS). There are four well-known

end-to-end QoS measures, viz., loss probability, delay, delay-jitter and bandwidth. They are

briefly described as follows:

When messages flow from a source to a destination (end-to-end) through a network,

parts of a message or the whole message may be dropped due to unavailable resources

(buffer capacity) to store the messages. The probability of delivering a message with some

data loss is termed as loss probability. The time between the source sending a message and

the destination receiving it is called latency or delay. Typically real-time or multimedia

traffic (such as live video conference) can tolerate some loss but have very stringent delay

requirements. However data traffic such as emails, fax, file transfers, etc can tolerate some

delay but almost zero loss. The other QoS measures are delay-jitter (which is a measure of the

variation in the delay) and bandwidth (which is the rate at which messages are processed).

The message flow (will be called traffic henceforth) and the network conditions are ex-

tremely stochastic in nature. Given the growth in the Internet as well as users demanding

QoS for their applications, it is important to be able to predict the QoS measures as they

will have to be guaranteed to the users. Also the QoS measures can be used for optimal

design and admission control of the networks. Some of the main design aspects include

buffer sizes, link capacities, network parameters, traffic shaping parameters, etc. While ex-

ercising admission control, the network either rejects an incoming request for connection

or accepts it (and provides the required QoS).

As mentioned earlier, the main concentration of this paper will be on high-speed telecom-
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munication networks. Other applications of stochastic processes in communications include

coding theory, signal processing, image processing, pattern recognition, speech recognition,

etc. Stochastic models using hidden Markov processes (for a thorough exposition of hidden

Markov models, see Rabiner [68]), hidden semi-Markov models, Markov decision processes,

etc are used in signal processing, image processing, pattern recognition and speech recogni-

tion.

Broadly there are three types of telecommunication networks – telephony (telephone

networks for voice calls, fax, and also dial-up connections), cable-TV networks (cable, web-

TV, etc), and high-speed networks such as the Internet. This paper focuses on high-speed

networks with the motivation that in the very near future, internet telephony, video-on-

demand, networked homes, multimedia applications, etc will possibly replace telephone and

cable-TV networks due to low cost. However, unless the performance of high-speed networks

improves greatly this will not be possible!

2 Traffic Models

Traffic flowing through the networks can be classified into several types. Two of the most

common traffic types are ethernet packets/frames and ATM cells. Depending on the network

segment, all messages are broken down into either packets or cells. The length or size of an

ethernet packet ranges anywhere from 60 bytes to 1500 bytes and generally follows a bimodal

distribution. The length of ATM cells is fixed at 53 bytes. Therefore the network traffic

comprises of millions and billions of these little packets or cells!

One of the most important tasks before evaluating the performance of telecommunication

networks is to fit appropriate models for traffic to capture their stochastic nature. Data can

be obtained by using “sniffers” on the network and analyzing a “dump” of all the packets

or cells that were generated during the time the sniffer was used. The information that can

be obtained about each packet or cell by sniffing include: its arrival time, its source, its

destination, its length, its type, etc. To fit traffic models, only the time of arrival and packet

size are sufficient.

2.1 Hierarchical Networks

Telecommunication networks are typically hierarchical in nature. Generally, traffic can be

classified into four levels :
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• Application Level : The traffic generated by an application, say, http or telnet or ftp

which can vary significantly based on the protocols they follow.

• Source Level : Each workstation or computer can be thought of as a source that

generates traffic. This traffic comprises of the traffic generated by different applications

that are running on the source. Therefore the traffic that flows on a link that exits the

computer is a mixture of the different applications. The process of mixing is known as

multiplexing.

• Aggregate Level : Several computer, printers, etc are connected together to form a

local area network (LAN). The traffic on a LAN pipe is the aggregated traffic that is

multiplexed from all the sources.

• Backbone Level : The LANs are connected together by means of a backbone (say, the

Internet backbone), and this forms the Metropolitan Arean Networks (MANs) or the

Wide Area Networks (WANs). The traffic on a MAN/WAN pipe is the combination

of the traffic from several LANs.

Appropriate traffic models can be used depending on the levels being considered. Some

frequently used stochastic models for traffic flow are explained in the next section. Although,

different researchers prefer to use different traffic models, the models can be broadly classified

into two parts, discrete models and fluid models. In the discrete model each packet or cell

is assumed to be a discrete entity that can be of varying sizes. In the fluid models it is

assumed that the packets or cells are packed so close to each other that the traffic flow can

be assumed to be a fluid flowing across a pipe, maybe at different rates.

2.2 Fluid-flow Traffic Models

In the fluid-flow models it is assumed that traffic is in the form of fluid which flows through

a pipe at different rates at different times. For example, fluid flows at rate r(1) bytes per

second for a random amount of time t1, then flows at rate r(2) bytes per second for a random

amount of time t2, and so on. This behaviour can be captured as a discrete stochastic process

that jumps from one state to another whenever the traffic flow rate changes. This can be

formalized as a stochastic process {Z(t), t ≥ 0} that is in state Z(t) at time t. Fluid flows in

the pipe at rate r(Z(t)) at time t. Researchers have used different models for the {Z(t), t ≥ 0}
process that are summarized in the following description :
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2.2.1 DTMC environmental processes

Consider a DTMC where a transition occurs every θ seconds. When the DTMC is in state

i, θr(i) bytes flow through the pipe. Let P = [pij] be the transition probability matrix,

where pij is the probability that the DTMC goes from state i to state j in one-step. For an

irreducible, aperiodic and positive recurrent DTMC, let π be the steady-state distribution

such that π = πP and πa = 1 with a being a column vector of ones.

2.2.2 CTMC environmental processes

Let {Z(t), t ≥ 0} be an irreducible, finite state CTMC with generator matrix Q. When the

CTMC is in state i, traffic flows at rate r(i). Let R = diag[rii], where rii = r(i). Let p be the

stationary distribution of the CTMC such that pQ = 0 and pa = 1 with a being a column

vector of ones.

2.2.3 Alternating Renewal environmental processes

This is sometimes known as the on-off traffic where traffic either flows at the maximum link

(or pipe) capacity r bytes per second or no traffic flows. The up times or on times (when

traffic flows through the pipe) are distributed according to a general CDF U(·). The down or

off times (when traffic does not flow through the pipe) are distributed according to a general

CDF D(·).

2.2.4 SMP environmental processes

Consider a Semi-Markov Process (SMP) {Z(t), t ≥ 0} on state space {1, 2, ..., �}. Fluid is

generated at rate r(i) at time t when the SMP is in state Z(t) = i. Let Sn denote the time of

the nth jump epoch in the SMP with S0 = 0. Define Zn as the state of the SMP immediately

after the nth jump, i.e.,

Zn = Z(Sn+).

Let

Gij(x) = P{S1 ≤ x; Z1 = j|Z0 = i}. (1)

The kernel of the SMP is

G(x) = [Gij(x)]i,j=1,...,� .
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Note that {Zn, n ≥ 0} is a discrete time Markov chain (DTMC) which is embedded in the

SMP. Assume that this DTMC is irreducible and recurrent with transition probability matrix

P = G(∞).

Let

Gi(x) = P{S1 ≤ x|Z0 = i) =
�∑

j=1

Gij(x)

and the expected time the SMP spends in state i be

τi = E(S1|Z0 = i).

Let

πi = lim
n→∞P{Zn = i}

be the stationary distribution of the DTMC {Zn, n ≥ 0}. It is given by the unique non-

negative solution to

π = πP and
∑

i

πi = 1.

The stationary distribution of the SMP is given by

pi = lim
t→∞P{Z(t) = i} =

πiτi

�∑
m=1

πmτm

. (2)

2.2.5 MRGP environmental processes

Consider a regular Markov regenerative process {Z(t), t ≥ 0}. For the definition of MRGP

see Cinlar [20], who calls it a semi-regenerative process. Also see Heyman and Sobel [42]

and Kulkarni [51]. Let {(Yn, Sn), n ≥ 0} be an embedded Markov renewal sequence in the

MRGP. Assume that {Yn, n ≥ 0} has a finite state-space {1, 2, ..., �}. From the definition of

the Markov renewal sequences,

P{Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i, Sn, ..., Y0, S0} = P{Y1 = j, S1 ≤ x|Y0 = i} (3)

for all x ≥ 0, and i, j = 1, 2, ..., �. Furthermore, given the history {Z(t), 0 ≤ t ≤ Sn}
and {(Yk, Sk), 0 ≤ k ≤ n}, the future of the Z(t) process, viz., {Z(t), t ≥ Sn}, depends on

the past only via Yn. Assume that the MRGP is regular, i.e., Sn → ∞ with probability

1 as n → ∞. It is clear from Eq. (3) that {Yn, n ≥ 0} is a discrete time Markov chain
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(DTMC). Assume it is irreducible. Let µk = E[S1|Y0 = k], π = (πk) is a positive solution to

π = πG(∞), and,

αkj = E( time spent by the Z(t) process in state j during [0, S1)|Y0 = k).

Then,

pj = lim
t→∞P{Z(t) = j} =

∑
k πkαkj∑
k πkµk

.

2.3 Discrete Traffic Models

In the discrete traffic models it is assumed that the packet flow is in the form of discrete

entities (like cars going on a highway) through the pipes. Therefore it is important to

characterize the arrival process and the size of the packets. Some typical arrival processes,

frequently used by researchers are explained below. The packet size distribution is usually a

bimodal empirical distribution and is not discussed here.

2.3.1 Poisson Process

If the interarrival distribution of the packets can be modeled using an independent and

identically distributed exponential distribution, then the packet arrival process can be char-

acterized as a Poisson process with parameter λ, where λ is the mean arrival rate (in terms

of number of packets per unit time).

2.3.2 MMPP (Markov-Modulated Poisson Process)

Whenever a new connection is established through a pipe or an existing connection is ter-

minated, the mean packet flow rate (number of packets per unit time) increases or decreases

respectively. To account for this behavior, the traffic arrival process is modeled as an MMPP.

Consider a CTMC {Y (t), t ≥ 0} with generator matrix Q. When the CTMC is in state i,

packets flow according to a Poisson process with mean rate λ(i). This captures the change

in mean arrival rates effectively.

2.3.3 BMAP (Batch Markovian Arrival Process)

The batch Markovian arrival process (BMAP) is explained in detail in Lucantoni [58]. The

BMAP is a generalization of the Markovian arrival process (MAP) which was introduced by

Lucantoni et al [57]. A special case of the MAP are the phase type renewal processes and
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the MMPP. The following definition and properties of BMAP is reproduced from Lucantoni

et al [59].

Consider a series of m × m matrices Dk, k ≥ 0, such that D0 has negative diagonal

elements and nonnegative off-diagonal elements and for k ≥ 1, Dk are nonnegative. Define

an irreducible infinitesimal generator D such that

D =
∞∑

k=0

Dk.

To assure that arrivals will occur assume that D �= D0.

Consider a two-dimensional Markov process {N(t), J(t), t ≥ 0} on the state space {(i, j) :

i ≥ 0, 1 ≤ j ≤ m} with an infinitesimal generator Q given by

Q =




D0 D1 D2 D3 . . .
D0 D1 D2 . . .

D0 D1 . . .
D0 . . .

. . .




Here, N(t) counts the number of attivals in time t and J(t) represents a state or phase. For

example, a transition from state (i, j) to state (i + k, l), k ≥ 1, 1 ≤ j, l ≤ m denotes a batch

arrival of size k and thus the batch size can depend on j and l. The matrix D0 is nonsingular

and the sojourn time in the set of states {(i, j) : 1 ≤ j ≤ m} is finite w.p. 1. Thus the

arrival process does not terminate.

Let π denote the stationary probability vector of the Markov process with generator D

such that

πD = 0, πe = 1.

The mean arrival rate of the process is hence

λ = π
∞∑

k=1

kDke = πd.

One can think of D0 as governing transitions in the phase process which do not generate

arrivals and Dk as the rate of arrivals of size k (with the appropriate phase change). As a

simple example, for Poisson arrivals with mean arrival rate λ, m = 1, D0 = −λ, D1 = λ and

Dk = 0 for all k ≥ 2.

2.3.4 Fractals or Self-similar Arrival Process

Willinger et all [79] describe the latest developments and advances in using self-similar traffic

for performance modeling of high-speed telecommunication networks. Here, the notations
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and descriptions follow Willinger and Paxson [78].

Experimental traces of traffic processes exhibit high spatial variability and long-range

dependence (autocorrelations with a power law decay). Heavy-tailed distributions (such as

Pareto distributions) with infinite variance are used to model the extreme spacial variability.

Typical probability distributions [F (·)] are of the form

1 − F (x) = κ1x
−β,

where κ1 is a positive (finite) constant independent of x and the tail index β is such that

0 < β < 2. A fractional Gaussian noise is used to model the fractal or long-range dependent

or self-similar behavior. A covariance-stationary Gaussian process X = (Xk : k ≥ 1) is

called a fractional Gaussian noise with Hurst parameter H ∈ [0.5, 1) if the autocorrelation

between Xn and Xn+k, k ≥ 0, is given by

cor(Xn, Xn+k) = 0.5
{
(k + 1)2H − 2(k)2H + (k − 1)2H

}
.

The Hurst parameter H quantifies the strength of the fractal scaling.

A discrete-time, covariance-stationary, zero-mean stochastic process X = (Xk : k ≥ 1)

is called exactly self-similar or fractal with scaling parameter H ∈ [0.5, 1) if for all levels of

aggregation (or resolution), m ≥ 1,

X(m) = mH−1X,

where the aggregated processes X(m) are defined by

X(m)(k) =
X(m−1)k+1 + . . . + Xkm

m
, k ≥ 1.

For an exactly self-similar process with scaling parameter H,

V arX(m) = κ1m
2H−2.

2.3.5 Fractional Brownian Motion vs. Levy Processes

The following is directly adapted from Konstantopoulos and Lin [48]. A Levy motion {Zt}
is a process with stationary independent increments, and its marginal distribution is a stable

random variable (invariant under affine transformations). It is a self-similar process with

Hurst constant 1/α : {Ztx, t ≥ 0} D
= {x1/αZt, t ≥ 0}. Here, {Zt} is a zero mean process and

Z1 has finite β-moments for any 0 < β < α. Since α > 1, {Zt} is a martingale, in fact an
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Lβ martingale for any 1 < β < α. Note that the fractional Brownian motion is not even a

semi-martingale. Konstantopoulos and Lin [48] consider multiplexing of multiple number of

sessions such that the sessions arrive according to a Poisson process with mean rate λ and

each session remains active for a random time T with a heavy-tailed distribution

1 − F (x) = P{T > x} ∼ κx−α, as x → ∞

for a fixed 1 < α < 2. Also, when each session is active, traffic is generated at the rate of 1

per unit time. Konstantopoulos and Lin [48] show that (i) in the limit the arrival processes

converge to a Levy motion with stable non-Gaussian independent increments, and, (ii) the

autocorrelation function is asymptotically that of a fractional Brownian motion and not a

Levy motion!

3 Network Performance Using Traffic Models

When an application (also called source) sends a message to a destination, the message tra-

verses several nodes (also called hops or network interfaces) before reaching the destination.

The messages are stored in buffers at the nodes briefly before proceeding on to the next hop.

At these nodes, traffic from other applications are either superposed along with or split from

this application’s traffic. In this section the traffic models considered in Section 2 will be

used to model buffer content processes and evaluate performance measures.

3.1 Single Class Single Buffer Content Processes

To begin the analysis, first concentrate on the simplest model: a network with a single node,

a single class of traffic, hence a single buffer. The main aim is to obtain the probability

distribution of the buffer contents in the long-run given a traffic model of the input to the

buffer and the buffer emptying scheme.

3.1.1 Effective bandwidths of all the traffic model types

First consider the source generating traffic into the buffer. The concept of effective bandwidth

of traffic generated by a source or traffic stream flowing through a telecommunication pipe

or link is explained. Let A(t) be the total amount of traffic (fluid or discrete) generated by a

source or flowing through a pipe over time (0, t]. For the following analysis consider a fluid

model. Note that it is straightforward to perform similar analysis for discrete models as well.
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Consider a stochastic process {Z(t), t ≥ 0} that models the traffic flow. Also let r(Z(t)) be

the rate at which the traffic flows at time t. Then

A(t) =
∫ t

0
r(Z(u))du. (4)

The asymptotic log moment generating function (ALMGF) of the traffic is defined as

h(v) = lim
t→∞

1

t
log E{exp(vA(t))}. (5)

Using Equation (5) one can show that h(v) is an increasing, convex function of v and for

all v > 0,

rmean ≤ h′(v) ≤ rpeak. (6)

where

rmean = E(r(Z(∞))),

rpeak = sup
z
{r(z)},

and h′(v) denotes the derivative of h(v) with respect to v.

The Effective Bandwidth of the traffic is defined as

eb(v) = h(v)/v. (7)

It can be shown that eb(v) is an increasing function of v and

rmean ≤ eb(v) ≤ rpeak,

and,

lim
v→0

eb(v) = rmean and lim
v→∞ eb(v) = rpeak.

It is not easy to calculate the effective bandwidths using Equation (7). However, when

{Z(t), t ≥ 0} is a Continuous Time Markov Chain (CTMC), or a regenerative process, or

a Markov Regenerative Process (MRGP), one can compute the effective bandwidths more

easily. The methods are illustrated briefly.

1. CTMC Source : Elwalid and Mitra [27], and Kesidis et al [47], use eigenvalue tech-

niques to show how to compute the effective bandwidths of sources that are modulated

by CTMCs as follows. Let {Z(t), t ≥ 0} be an irreducible, finite state CTMC with

generator matrix Q. When the CTMC is in state i, the source generates fluid at rate
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r(i). Let R = diag[rii], where rii = r(i). Let e(M) denote the largest real-eigenvalue

of a square matrix M . Then,

h(v) = e(Q + vR). (8)

2. MRGP Source : Kulkarni [50] and Gautam [33] show how to compute the effec-

tive bandwidths of sources that are modulated by Markov Regenerative Processes and

Regenerative Processes. Let {Z(t), t ≥ 0} be an m-state Markov Regenerative Pro-

cess (MRGP). Let {(Yn, Sn), n ≥ 0} be an embedded Markov renewal sequence in

the MRGP. Assume that {Yn, n ≥ 0} is an irreducible Discrete Time Markov Chain

(DTMC) with a finite state-space {1, 2, . . . , m}. Let

F1 =
∫ S1

0
r(Z(t))dt

be the total fluid generated by the source during [0, S1]. Define

Λij(u, v) = E{e−uS1+vF1 ; Y1 = j | Y0 = i}, (9)

for i, j = 1, 2, . . . , m and −∞ < u, v < ∞. Let

Λ(u, v) = [Λij(u, v)]

be an m × m matrix. Let e(Λ(u, v)) be the largest real-positive eigenvalue of Λ(u, v).

u  (v) u

1

e  (v)

*

*

e(  (u,v))Λ

Figure 1: e(Λ(u, v)) vs u

Define

e∗(v) = sup
{u>0:e(Λ(u,v))<∞}

{e(Λ(u, v))}
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and

u∗(v) = inf{u > 0 : e(Λ(u, v)) < ∞}.

Then for a given v,

(a) if e∗(v) ≥ 1 (see Figure 1), h(v) is a unique solution to e(Λ(h(v), v)) = 1,

(b) if e∗(v) < 1 (see Figure 2), h(v) = u∗(v).

u

1

u  (v)*

e  (v)*

e(  (u,v))Λ

Figure 2: e(Λ(u, v)) vs u

3. Regenerative Source : Assume that {Z(t), t ≥ 0} is a regenerative process with

regeneration epochs {Sn, n ≥ 0}, with S0 = 0. Let

F1 =
∫ S1

0
r(Z(t))dt

be the total fluid generated by the source during [0, S1]. Define

Λ(u, v) = E{e−uS1+vF1}. (10)

Since Λ(u, v) is a scalar, e(Λ(u, v)) = Λ(u, v). Following the technique in the MRGP

case above, define

e∗(v) = sup
{u>0:e(Λ(u,v))<∞}

{e(Λ(u, v))}

and

u∗(v) = inf{u > 0 : e(Λ(u, v)) < ∞}.

For a given v,
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(a) if e∗(v) ≥ 1, h(v) is a unique solution to e(Λ(h(v), v)) = 1,

(b) if e∗(v) < 1, h(v) = u∗(v).

Table 1 summarizes the effective bandwidths of some discrete ATM traffic in the forms

of cells (see Krishnan et al [49] for the calculation of effective bandwidths for traffic modeled

by fractional brownian motion).

SOURCE TYPE EFFECTIVE BANDWIDTH
constant arrival rate of R cells/second R
Poisson source with intensity

R cells/second R(eδ−1)
δ

irreducible and aperiodic discrete-time
Markov source with transition probability
matrix P, rate matrix ψ = diag(ψ1, . . . , ψm)
where m is the size of the state space of
of the DTMC, ψi is the number of cells
that arrive when in state i, and

ρ(A) is the spectral radius of matrix A R log[ρ(eδψP)]
δ

Markov Modulated Poisson Process (MMPP)
with intensity ψ = diag(ψi), where ψ is
a function of a CTMC with infinitesimal
generator Q, and µ(A) is the largest

eigenvalue of the matrix A µ(Q+(eδ−1)ψ)
δ

Table 1: Effective Bandwidth of Input Sources.

3.1.2 Approximate Methods And Bounds (via martingales)

Z  (t)

Z  (t)

X(t)
C

1Z  (t)

2

K

Figure 3: Single Buffer Fluid Model

Consider a single buffer that admits a single-class traffic from K independent sources,

each driven by a random environment process {Zk(t), t ≥ 0} (see Figure 3). Note that Zk(t)

can be thought of as the state of the kth input source (k = 1, 2, . . . , K) at time t. When
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source k is in state Zk(t), it generates fluid at rate rk(Zk(t)) into the buffer. Let X(t) be

the amount of fluid in the buffer at time t. The buffer has infinite capacity and is serviced

by a channel of constant rate c. The dynamics of the buffer-content process {X(t), t ≥ 0} is

described by
dX(t)

dt
=

{ ∑K
k=1 rk(Zk(t)) − c if X(t) > 0

{∑K
k=1 rk(Zk(t)) − c}+ if X(t) = 0.

(11)

where {x}+ = max(x, 0). The solution is given by (see Kulkarni and Rolski [54])

X(t) = sup
0≤u≤t

(
Y (t),

∫ t

u

(
K∑

k=1

rk(Zk(s)) − c

)
ds

)
,

where

Y (t) = X(0) +
∫ t

0

(
K∑

k=1

rk(Zk(s)) − c

)
ds.

It has been shown in Kulkarni and Rolski [54] that the buffer-content process {X(t), t ≥
0} is stable if

K∑
k=1

E{rk(Zk(∞))} < c, (12)

in which case X(t) → X in distribution with

X = sup
u≤0

∫ 0

u

(
K∑

k=1

rk(Zk(s)) − c

)
ds. (13)

Exact expressions for the buffer content distribution P{X > x} can be obtained only for

special environment processes like CTMCs.

Let hk(v) and ebk(v) be the ALMGF and effective bandwidths of source k respectively.

In Kesidis et al [47], it is shown that

lim
B→∞

P (X > B)eBθ → ω, (14)

for some positive finite constant ω, where θ is the solution to

K∑
k=1

hk(θ)

θ
= c. (15)

Therefore the effective bandwidth approximation states that one can show that in the long-

run, the buffer content distribution P (X > B) ≈ e−Bθ (neglect the effect of ω by setting it

to 1).
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CDE Approximation

It can be shown that the effective-bandwidth approximation is very conservative for

most engineering applications, mainly because the statistical multiplexing gains are not

taken advantage of. In this subsection the use of Chernoff Dominant Eigenvalue (CDE)

approximation (see Elwalid et al [30] and [28]) to further fine tune the effective-bandwidth

analysis is explained.

Consider the model in Figure 3. The CDE approximation for the tail probability is given

by

P{X > x} = lim
t→∞P{X(t) > B} ≈ L e−θB (16)

where L is the fraction of the fluid that would be lost if there was no buffer and θ is as in

Equation (15). Note that L is an estimate of ω in Equation (14).

Mathematically, L can be written as

L = lim
t→∞

∫ t
0

{[∑K
k=1 rk(Zk(t))

]
− c

}+
dt∫ t

0

{∑K
k=1 rk(Zk(t))

}
dt

. (17)

Note that L is a function of c and the parameters of each of the K sources. Typically it may

not be computationally simple to calculate L exactly in many applications. Hence Elwalid

et al [30] suggest a method of estimating L by using Chernoff’s theorem.

The input sources are characterized by a function mk(w), which is similar to the ALMGF

(hk(v)), and is defined as

mk(w) = lim
t→∞ log E{exp(wrk(Zk(t)))}. (18)

Let

s∗ = sup
w≥0

{
cw −

K∑
k=1

mk(w)

}
.

and w∗ be obtained by solving
K∑

k=1

m′
k(w

∗) = c.

Then the Chernoff estimate of L as given in Elwalid et al [30] and [28] is

L ≈ exp(−s∗)

w∗σ(w∗)
√

2π
, (19)

where

σ2(w∗) =
K∑

k=1

m′′
k(w

∗).
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The main problem in the above analysis is computing mk(w). If {Zk(t), t ≥ 0} can be

modeled as a stationary and ergodic process with state space S and stationary probability

vector, π, then

mk(w) = log{∑
jεS

πj
k ew rk(j)}. (20)

SMP Bounds

Consider the case when {Zk(t), t ≥ 0} (k = 1, 2, . . . , K) are independent semi-Markov

processes (SMPs) with state space Sk = {1, 2, . . . , �k} and kernel Gk(x) = [Gk
ij(x)]. The

expected time the kth SMP spends in state i is τ k
i . The stationary distribution of the kth

SMP {Zk(t), t ≥ 0} is pk, where

pk
i = lim

t→∞P{Zk(t) = i}.

First the computation of ebk(v) is described. Let G̃ij(s) be the Laplace Stieltjes transform

(LST) of Gij(x). For a given v > 0, define

χk
ij(v, u) = G̃k

ij(−v(rk(i) − u)),

χk(v, u) = [χk
ij(v, u)].

Then ebk(v) is given by the smallest positive number such that the Perron Frobenius eigen-

value of χk(v, ebk(v)) is one. Let η be a solution to Equation (15), and denote Φ(η) =

χ(η, ebk(η)). Let hk be the left eigenvector of Φ(η) corresponding to the eigenvalue 1, i.e.,

hk = hkΦk(η).

Also,

P k(i, j) = [Gk(∞)]ij. (21)

Also define

Hk =
�k∑

i=1

hk
i

η(rk(i) − ebk(η))


 �k∑

j=1

(φk
ij(η)) − 1


 , (22)

Ψk
min(i, j) = inf

x




hk
i e

−η(rk(i)−ebk(η))x
∫∞
x eη(rk(i)−ebk(η))ydGk

ij(y)
pk

i

τk
i

∫∞
x dGk

ij(y)


 , (23)

and

Ψk
max(i, j) = sup

x




hk
i e

−η(rk(i)−ebk(η))x
∫∞
x eη(rk(i)−ebk(η))ydGk

ij(y)
pk

i

τk
i

∫∞
x dGk

ij(y)


 . (24)
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From Gautam et al [31],

C∗e−ηx ≤ P (X > x) ≤ C∗e−ηx, x ≥ 0, (25)

where

C∗ =

∏K
k=1 Hk

minA
∏K

k=1 Ψk
min(ik, jk)

, C∗ =

∏K
k=1 Hk

maxA
∏K

k=1 Ψk
max(ik, jk)

,

A =

{
(i1, j1), (i2, j2), . . . , (iK , jK) : ik, jk ∈ Sk,

K∑
k=1

rk(ik) > c and ∀k, P k(ik, jk) > 0

}
. (26)

Computation of Ψmax and Ψmin :

Consider a nonnegative random variable Y with distribution Gij(x)/Gij(∞) and density

gij(x) =
dGij(x)

dx

1

Gij(∞)
.

The failure rate function of Y is defined by

λij(x) =
gij(x)

1 − Gij(x)

Gij(∞)

. (27)

Y is said to be an increasing failure rate (IFR) random variable if

λij(x) ↑ x

and Y is said to be a decreasing failure rate (DFR) random variable if

λij(x) ↓ x.

It is possible to obtain closed form algebraic expressions for Ψmax(i, j) and Ψmin(i, j) in

Equations (24) and (23) respectively if a random variable Y with distribution Gij(x)/Gij(∞)

is an IFR or DFR random variable. The following notation is used to compute Ψmax(i, j)

and Ψmin(i, j) in those cases. Let x∗ and x∗ be such that

x∗ = arg sup
x

{
hi

∫∞
x eη(ri−c)ydGij(y)

pi

τi
eη(ri−c)x

∫∞
x dGij(y)

}
(28)

and

x∗ = arg inf
x

{
hi

∫∞
x eη(ri−c)ydGij(y)

pi

τi
eη(ri−c)x

∫∞
x dGij(y)

}
. (29)

If Y is IFR or DFR, then Ψmax(i, j) and Ψmin(i, j) in Equations (24) and (23) respectively

occur at x values given by the following table
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IFR DFR
ri > c ri ≤ c ri > c ri ≤ c

x∗ 0 ∞ ∞ 0

Ψmax(i, j)
φij(−η(ri−c))τihi

pijpi

τihiλij(∞)

pi(λij(∞)−η(ri−c))

τihiλij(∞)

pi(λij(∞)−η(ri−c))

φ̃ij(−η(ri−c))τihi

pijpi

x∗ ∞ 0 0 ∞
Ψmin(i, j) τihiλij(∞)

pi(λij(∞)−η(ri−c))

φ̃ij(−η(ri−c))τihi

pijpi

φ̃ij(−η(ri−c))τihi

pijpi

τihiλij(∞)

pi(λij(∞)−η(ri−c))

where

λij(∞) = lim
x→∞λij(x).

3.2 Multiple Class (Single) Node Models With Multiplexing

1
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1
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K2
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B2
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NB

KN

2
1
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Figure 4: The Multi-class Node Model

In this section the single class model results obtained in Section 3.1 to solve scenarios in

multi-class nodes by making suitable transformations. Consider the model of a multi-class

node illustrated in Figure 4. The node consists of N input buffers, one for each class of traffic.

The input to buffer j (j = 1, . . . , N), is from the Kj sources of class j. The ith source of

class j is driven by an independent random environment process Zij = {Zij(t), t ≥ 0} for

i = 1, 2, . . . , Kj. At time t, source i of type j generates fluid at rate rij(Zij(t)). Let Xj(t)

be the amount of fluid in buffer j at time t. All the classes of fluids are served by a single

channel of constant capacity c, using a specified service scheduling policy. Three policies

are studied here: timed round robin (polling) policy, static priority service policy, and,

generalized processor sharing (GPS) policy.

Assume that all N buffers are of infinite capacity. If Bj is the actual size of buffer j

(j = 1, 2, . . . , N), then

lim
t→∞P{Xj(t) > Bj} = P{Xj > Bj}
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is the steady state approximation of the overflow probability from buffer j. Let εj be the

cell loss probability target for class j traffic (j = 1, 2, . . . , N). The Quality of Service (QoS)

criterion for loss probability that need to be satisfied class j traffic is

lim
t→∞P{Xj(t) > Bj} = P{Xj > Bj} < εj. (30)

Note that although bounds can be obtained for the delay, explicit expressions for delay QoS

is a research issue that needs to be addressed. Also, delay-jitter QoS measures are research

problems to be studied.

The three service scheduling policies, timed round robin policy, static priority service

policy, and, GPS policy are discussed. Note that the effective bandwidth and the SMP

bounds analysis for the multiclass model is not a trivial extension of that of the single

class model. The output channel capacity for each buffer is not a constant in the multiclass

node model. Therefore the model requires a careful transformation that results in a constant

output channel capacity model for each of the buffers. From the transformed models, P{Xj >

Bj} needs to be computed.

3.2.1 Timed Round Robin (Polling)

Consider the multi-class node model described in Section 3.2 and illustrated in Figure 4. All

classes of fluids are multiplexed using a Timed Round Robin service scheduling policy which

is described as follows. The scheduler allocates the entire output capacity c to each of the

N buffers in a cyclic fashion. In each cycle, buffer j gets the entire capacity for an interval

of length τj. Note that during this interval, buffer j could be empty. Hence the scheduler is

not work conserving.

Let tso be the total switch-over time during an entire cycle. Assume that tso does not

change with time. The cycle time T is defined as the amount of time the scheduler takes to

complete a cycle, and is given by

T = tso +
N∑

j=1

τj. (31)

First assume that all buffers are of infinite capacity. The dynamics of the buffer-content

process {Xj(t), t ≥ 0} is described by

dXj(t)

dt
=




∑Kj

i=1 rij(Zij(t)) − c if X(t) > 0 and scheduler serving buffer j{∑Kj

i=1 rij(Zij(t)) − c
}+

if X(t) = 0 and scheduler serving buffer j∑Kj

i=1 rij(Zij(t)) if scheduler not serving buffer j.

(32)
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Assume that the following stability condition is satisfied for buffer j, (j = 1, . . . , N)

Kj∑
i=1

E{rij(Zij(∞))} < c
τj

T
. (33)

Effective Bandwidth Analysis

If given τ1, τ2, . . ., τN and tso are given, then the buffer contents of a given buffer (say j)

and its dynamics do not depend on the parameters of any other buffer (say i �= j). Therefore,

it is convenient to analyze each buffer separately. Buffer j can be modeled as a single-buffer-

fluid model with variable output capacity and input from Kj different sources, such that

source i of class j is modulated by an environmental process {Zij(t), t ≥ 0}. The output

capacity alternates between c (for τj units of time) and 0 (for T − τj units of time).

Note that the effective-bandwidth approximation and the SMP bounds assume that the

output channel capacity is a constant. Therefore to utilize those techniques, one needs to

first transform the model into an appropriate one with a constant output channel capacity

as follows :

Consider a single-buffer-fluid model for buffer j with a constant output channel capacity

c whose input is generated by the original Kj sources and a fictitious compensating source.

The compensating source is such that it stays on for a deterministic amount of time T−τj and

off for a deterministic amount of time τj. When the compensating source is on, it generates

fluid at rate c and when it is off it generates fluid at rate 0. Note that the compensating

source is independent of the original Kj sources. Clearly, the dynamics of the buffer-content

process (of buffer j) in Equation (32) remain unchanged for this transformed single-buffer-

fluid model with Kj + 1 input sources (including the compensating source) and constant

output capacity c. Refer to Figure 5 for an illustration of the transformed model for buffer

j.

Xj (t)

1
2

Kj
Compensating Source

C

Figure 5: Transformed Buffer j Model

Using the effective bandwidth computations in Kulkarni [50], one can show that the

effective bandwidth of the compensating source described above is given by

ebs
j(v) =

c(T − τj)

T
. (34)
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Note that the effective bandwidth of this deterministic source is indeed its mean traffic

generation rate. Let the effective bandwidth of source i (i = 1, 2, . . . , Kj) of class j be

ebij(v). Therefore P (Xj > Bj) ≈ e−Bjηj , where ηj (using Equation (15)) is obtained by

solving
Kj∑
i=1

ebij(ηj) + c
(T − τj)

T
= c. (35)

The loss probability QoS criteria for all the classes of traffic are satisfied if for all j =

1, 2, . . . , N ,

e−Bjηj < εj. (36)

Hence Equation (35) indicates that the QoS guarantee using the effective-bandwidth

approximation technique depends only on the ratio τj/T and not the individual values of

τj or T . Consider two instances, one with large τj and T and the other with small τj

and T , such that the ratio τj/T is the same in both instances. The effective bandwidth

approximation implies that the loss probability will be less than εj in both instances. This

goes against intuition. It is theoretically valid since the effective-bandwidth analysis assumes

that Bj → ∞. However in practice, this cannot be valid due to finite buffers.

Therefore the effective-bandwidth approximation technique fails for moderate to large

sized buffers and works only for extremely large sized buffers! The Chernoff dominant

eigenvalue approximation (see Elwalid and Mitra [28]) also faces the same problem. The

SMP bounds below resolve this issue.

Semi-Markov Process (SMP) Bounds Analysis

Consider the transformed model of buffer j (j = 1, 2, . . . , N) illustrated in Figure 5.

Assume that the {Zij(t), t ≥ 0} processes (i = 1, 2, . . . , Kj) are semi-Markov processes.

Therefore there are Kj + 1 independent sources modulated by SMPs (including the com-

pensating source) that generate traffic into buffer j whose the output capacity is a constant

c.

For the SMP bounds analysis for buffer j, follow the single-class traffic analysis in Section

3.1.2 for a buffer with input generated by independent semi-Markovian sources multiplexed

together. Let ηj be the smallest positive solution to Equation (35).

Using Equations (22), (23) and (24), one can obtain H ij, Ψij
min and Ψij

max respectively for

source i (i = 1, 2, . . . , Kj) of class j. The corresponding expressions Hsj, Ψsj
min and Ψsj

max for
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the jth compensating source are

Hsj =
1 − exp

(
−ηjc

T−τj

T
τj

)
ηjc

[
T 2

(T − τj)τj

]
, (37)

Ψsj
min =


 0 T exp

(
−ηjc

T−τj

T
τj

)
T exp

(
−ηjc

T−τj

T
τj

)
0


 , (38)

Ψsj
max =

[
0 T
T 0

]
. (39)

Letting s = Kj + 1, the bounds on the limiting distribution of the buffer content process

{Xj(t), t ≥ 0} as

Cj∗e−ηjx ≤ P (Xj > x) ≤ C∗
j e

−ηjx,

where, ηj is from Equation (35),

C∗
j =

∏Kj+1
k=1 Hkj

minAj

∏Kj+1
k=1 Ψkj

min(lk,mk)
, (40)

C∗j =

∏Kj+1
k=1 Hkj

maxAj

∏Kj+1
k=1 Ψkj

max(lk,mk)
, (41)

and

Aj =


(l1, m1), (l2, m2), . . . , (lKj+1, mKj+1) : lk, mk ∈ Sk,

Kj+1∑
k=1

rkj(lk) > c and ∀k, P kj(lk, mk) > 0


 .

(42)

The QoS criteria for all the classes of traffic are satisfied if, for j = 1, 2, . . . , N ,

C∗
j e

−ηjBj < εj. (43)

Clearly, Hsj and Ψsj
min are functions of τj, T and τj/T . Hence, C∗

j is a function of both τj

and T and not simply of the ratio τj/T .

3.2.2 Static Priority Service Policy

In this section, consider a Static Priority Service Policy (for the model in Section 3.2 and

illustrated in Figure 4) to multiplex the multi-class traffic which operates as follows. Under

this service policy, traffic of class j has higher service priority over traffic of class i, if i > j.

The scheduler serves the traffic of class j only if there is no fluid of higher priority in the

buffers. Thus all the available channel capacity (a maximum of c) is assigned for the class-1

fluid and the leftover channel capacity (if any) that class-1 does not need, to class-2 fluid.
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Any leftover channel capacity that class-1 and class-2 do not need, is assigned to class-3

fluid, and so on.

For a comprehensive study on effective bandwidths with priorities, see Berger and Whitt

[8] and [9]. See Gautam and Kulkarni [52] for the study of effective bandwidth and CDE

approximations for the static priority case. Here a two-class traffic case is explained, although

the analysis can be extended to more than 2 classes. The Kj class-j sources, j = 1, 2,

are independent and identical on-off sources with exponential on and off times, on-time

parameter αj, off-time parameter βj and on-time rate rj.

1
2

1
2

K

K
c

1

2

c

B1

B2

X (t)

X (t)1

2

Figure 6: The Transformed Model

Consider the transformed model in Figure 6. The sample paths of the buffer content

processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0} in this model are identical to those in the

original model in Figure 4 (for N = 2). This observation is made in Elwalid and Mitra [28]

and is immensely useful in the analysis. Note that the output from buffer 1 can be modeled

as an SMP. Hence, the input to buffers 1 and 2 can be modeled as ones with multiplexing

independent SMP sources.

Buffer 1 : If K1 ≤ c/r1, then P{X1 > B1} = 0, since buffer 1 will always be empty. Now

for the case K1 > c/r1, the steady-state distribution of the buffer-content process is bounded

as

C∗1e−η1B1 ≤ P{X1 > B1} ≤ C∗
1e

−η1B1 ,

where

η1 =
K1(cα1 + cβ1 − K1β1r1)

c(K1r1 − c)
. (44)

C∗
1 =

(
K1r1

K1r1−c
α1

α1+β1

)K1

(
cα1

β1(K1r1−c)

)� c
r1

� ,

and

C∗1 =

(
K1r1β1

c(α1 + β1)

)K1

.
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Buffer 2 : First model the K2 exponential on-off sources as a single (K2+1)-state SMP with

the states denoting the number of priority-2 sources that are on and then derive expressions

for H1, Ψ1
max(i, j) and Ψ1

min(i, j) as defined in Equations (22), (23) and (24). In Kulkarni

and Gautam [52] it is shown that the output process from buffer 1 can be modeled as an

SMP. The corresponding expressions H2, Ψ2
max(i, j) and Ψ2

min(i, j) for the SMP model of

the output from buffer 1 can be derived. Therefore one can analyze the input to buffer 2 as

traffic from two sources (output from buffer 1 and the (K2 +1)-state SMP), each modulated

by an SMP.

Begin by obtaining η2. Note that η2 solves either

K1 eb1(η2) + K2 eb2(η2) = c and η2 ≤ v∗ (45)

or
v∗

η2

K1 eb1(v
∗) + K2 eb2(η2) =

cv∗

η2

and η2 > v∗, (46)

where

v∗ =
β1

r1

(√
cα1

β1(K1r1 − c)
− 1

)
+

α1

r1


1 −

√
β1(K1r1 − c)

cα1


 ,

and for j = 1, 2

ebj(v) =
rjv − αj − βj +

√
(rjv − αj − βj)2 + 4βjrjv

2v
. (47)

Therefore using the expressions for H1, Ψ1
max(i, j), Ψ1

min(i, j), H2, Ψ2
max(i, j) and Ψ2

min(i, j)

we have

C∗
2 =

H1H2

min(i1,j1),(i2,j2):min{i1r1,c}+i2r2>c,pi1j1
>0,pi2j2

>0 Ψ1
min(i1, j1) Ψ2

min(i2, j2)

and

C∗2 =
H1H2

max(i1,j1),(i2,j2):min{i1r1,c}+i2r2>c,pi1j1
>0,pi2j2

>0 Ψ1
max(i1, j1) Ψ2

max(i2, j2)
.

3.2.3 Generalized Processor Sharing (GPS)

Consider the multi-class node model described in Section 3.2 and illustrated in Figure 4.

All classes of fluids are multiplexed using a generalized processor sharing service scheduling

policy which is described in the following manner. Consider preassigned numbers φ1, φ2, . . .,

φN for each of the N classes numbers such that if all the input buffers have traffic entering,

the scheduler allocates output capacity c in the ratio φ1 : φ2 : . . . : φN to each of the N
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buffers. If one or more of the buffers are empty and no traffic enters those buffers, then the

capacity c is divided in the ratio of φj’s of the remaining buffers.

The discrete version of the GPS is called the Packetized General Processor Sharing

(PGPS). The PGPS service policy is based on the generalized processor sharing approach

explained in Parekh and Gallager [66]. The Quality-of-Service aspects, effective bandwidths,

admission control, etc for the GPS and PGPS have been addressed in detail in de Veciana

et al [24] and [25]. The PGPS is also known as “weighted fair queueing” in the literature.

3.3 Network of nodes models with single and multiple class models

SOURCE DESTINATION

ROUTER/SWITCH INTERFACE

ROUTER/SWITCH ROUTER/SWITCH ROUTER/SWITCH

Figure 7: Example Scenario

The scenario for this section is depicted in Figure 7. Consider data flowing from a

source to a destination through routers and switches in a high speed network handling

multiple classes of traffic. The different classes of traffic are differentiated according to the

priorities they receive. For example critical information could receive very high priority,

latency sensitive applications moderately high priority, and latency insensitive applications

such as email very low priority. When packets belonging to different classes or priorities

arrive at a router or switch interface, the packets are flushed out of the interface buffer

using a given scheduling mechanism (such as static priority, round-robin polling, generalized

processor sharing, etc). Traffic belonging to all classes are multiplexed when they leave a

router or switch interface. However when the traffic stream encounters another router or

switch interface downstream, it gets demultiplexed into its original classes. The objective of

the network is to provide guaranteed end-to-end QoS.

For the single class case, the following is the analysis for determining the effective band-

width of the output traffic from a buffer. The output traffic from a buffer acts as input

traffic for a downstream node in a network. Typically, it may not be possible to characterize
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some output processes as tractable stochastic processes and compute the effective band-

widths. Consider a network with nodes in tandem where the output from one buffer acts

as input to another buffer. Clearly, the output cannot be characterized by simple processes

like a CTMC. Although it can be shown to be a regenerative source, the characterization is

intractable.

h (v)

h (v)

v v

A

D

*

Figure 8: hA(v) and hD(v) vs v

Chang and Thomas [15], Chang and Zajic [16] and de Veciana et al [22], derive the

effective bandwidths of the output of a node in terms of the input source. Let A(t) be

the total input to the buffer over (0, t] and D(t) be the total output from the buffer of a

single-buffer-fluid model over (0, t]. The capacity of the output channel is c. Analogous to

Equation (5), define the ALMGF of the output as

hD(v) = lim
t→∞

1

t
log E{exp(vD(t))}. (48)

If hA(v) is the ALMGF of the input to a buffer then the ALMGF of the output (of capacity

c) from the buffer is given in terms of hA(v) by

hD(v) =

{
hA(v) if 0 ≤ v ≤ v∗

hA(v∗) − cv∗ + cv if v > v∗,
(49)

where v∗ is obtained by solving for v in the equation,

d

dv
[hA(v)] = c.

Figure 8 illustrates the relationship between hA(v) and hD(v). The QoS problem for

different types of single-class networks are studied by de Veciana et al [22] and [24] and

26



Gautam [33]. Essentially the sum of the effective bandwidths of all the traffic sources into

a buffer should be compared to the output capacity. Also since the route taken by a traffic

stream is known, it is easy to use the effective bandwidth of the output from a node to derive

the effective bandwidth of a downstream node.

One of the important research issues is to obtain end-to-end performance measures in

multi-class networks. Since the multiple classes of traffic use a common service scheduling

mechanism that would result in a low volume of a particular class and high volume of traffic of

another class. Intuitively the multiple classes of traffic are negatively correlated. This could

potentially be used to obtain conservative estimates of QoS measures by exploiting stochastic

monotonicity properties. Using the results in Puhalskii and Whitt [67] for functional large

deviations principle for waiting and departure processes, it is possible to obtain the required

performance measures.

4 LAN (multiaccess communication) models

4.1 Slotted and Unslotted Aloha

One of the foremost multiaccess communication protocol is the Aloha, developed in the

University of Hawaii. The following stochastic models for slotted and unslotted Aloha are

adapted from Kulkarni [51]. Assume that there are N users at geographically diverse loca-

tions that transmit messages (in the form of packets) via satellites. In the slotted Aloha

version, it is assumed that the clocks of all users are synchronized. Therefore at time slots

n = 1, 2, 3, . . ., each user, independent of other users, transmits a packet with probability

p. If more than one user transmits a packet during a given slot, then a collision results

between all the packets and the resulting message is garbled. All the users involved in a

collision retransmit at the beginning of a slot with probability r, however, if a user has a

message to retransmit no new messages are transmitted by this user. If a user has a packet

to retransmitted, then this users is termed a “backlogged” user. Let Xn be the number of

backlogged users at the beginning of the nth slot. Clearly there will be N −Xn unbacklogged

users at the beginning of the nth slot. It can be shown that the process {Xn, n ≥ 0} is a

DTMC (as shown in Kulkarni [51]) with transition probability matrix that can be derived

using:

P{Xn+1 = i − 1|Xn = i} = (1 − p)N−ii r (1 − r)i−1
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P{Xn+1 = i + 1|Xn = i} = (N − i)p(1 − p)N−i−1(1 − (1 − r)i)

P{Xn+1 = i + j|Xn = i} =

(
N − i

j

)
pj(1 − p)N−i−j 2 ≤ j ≤ N − i

P{Xn+1 = i|Xn = i} = (N − i)p(1 − p)N−i−1(1 − r)i + (1 − p)N−i(1 − i r (1 − r)i−1).

There are several modifications to the slotted Aloha that have eventually resulted in efficient

satellite communications.

One of the unslotted Aloha versions considers a system where each user, when not

backlogged, generates messages according to a Poisson process. Message transmission times

are according to an exponential distribution. A collision results when a user attempts to

transmit while another user is transmitting. If a collision results, all transmissions are

terminated instantaneously. All messages involved in a collision wait for an exponential time

before attempting to retransmit. If X(t) denotes the number of backlogged messages at time

t and Y (t) a binary variable that denotes whether or not a message is under transmission

at time t. It is possible to model {(X(t), Y (t)), t ≥ 0} as a CTMC. Using the steady

state probability distributions of the DTMC for the slotted Aloha and the CTMC for the

unslotted Aloha, performance measures such as throughput (expected number of successful

transmissions per unit time), satellite utilization, expected number of backlogged messages,

expected delay in successfully transmitting a message, etc can be computed. Using the

performance measures it is possible to derive optimal designs for the Aloha systems.

4.2 Ethernet models

The most popular local area network (LAN) is the Ethernet (see Walrand and Varaiya

[77]). The popularity is due to the high performance and low cost. The protocol used

in Ethernet is CSMA/CD (Carrier Sense Multiple Access with Collision Detection). The

following is a simplified model of an Ethernet where there are a number of identical nodes

(say N) connected onto a common cable. A significant portion of the following description

is adapted from Bertsekas and Gallager [10].

When one node transmits a packet (and the others are silent), all the other nodes hear

that packet. In addition, a node can listen to the cable before transmitting (i.e., conceptually,

0, 1, and idle can be distinguished). Finally, because of the physical properties of the cable,

it is possible for a node to listen to the cable while transmitting. Thus, if two nodes start

to transmit almost simultaneously, they will shortly detect a collision in process and both

cease transmitting. This technique is called CSMA/CD. On the other hand, if one node
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Figure 9: A simplified model for Ethernets

starts transmitting and no other node starts before the first node’s signal has propagated

throughout the cable, the first node is guaranteed to finish its packet without collision. Thus,

the first portion of a packet can be viewed as making a reservation for the rest of the packet.

Slotted CSMA/CD in Ethernet, DTMC model: For analytic purposes, it is easier

to visualize Ethernet in terms of megaslots and minislots. The minislots are of duration β,

which denotes the time required for a signal to propagate from one end of the cable to the

other and to be detected. If the nodes are all synchronized into minislots of this duration,

and if only one node transmits in a minislot, all other nodes will detect the transmission

and not use subsequent minislots until the entire packet is completed. If more than one

node transmits in a minislot, each transmitting node will detect the condition by the end of

the minislot and cease transmitting. Packets or messages are backlogged for retransmission

when there is a collision.

To model the system, first assume that the minislots could be of 3 types – no transmission

(idle), one transmission (one) and many transmissions (many). An idle-minislot is followed

by another idle-minislot if none of the users (backlogged or non-backlogged) decide to trans-

mit. An idle-minislot is followed by a many-minislot if many of the users (backlogged or

non-backlogged) decide to transmit which results in a collision and messages are backlogged.

An idle-minislot is followed by a one-minislot if exactly one of the users (backlogged or

non-backlogged) decides to transmit. A one-minislot is always followed by a megaslot (when

the entire packet is transmitted without collision). A many-minislot is always followed by

an idle-minislot. All minislots (idle, one and many) are of duration β. The megaslot is of

random duration with mean α (here it is assumed that megaslots are of constant duration

α) during which only one message is transmitted successfully. A megaslot is always followed

by an idle-minislot. It is assumed that at the end of an idle-minislot, each backlogged user

will attempt to retransmit with probability r and each non-backlogged user will attempt to

transmit with probability p. The system can be modeled as a DTMC where the state of the

DTMC at the end of a slot is the number of backlogged users and the type of slot (idle, one,
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many, mega).

Unslotted CSMA/CD in Ethernet, CTMC model: Messages (packets) are generated

by each of the N nodes according to Poisson processes. As soon as a message (packet)

is generated, the node attempts to transmit it onto the cable. If the node detects the

transmission of another packet during the attempt, it withdraws the attempt and this packet

is backlogged. There are also backlogged packets whenever a collision occurs. If the node

does not detect the transmission of another packet and there are no other packets starting

to transmit then this packet begins transmission starting with an initial phase. If during the

initial phase (analogous to a minislot) there are no collisions then the packet is transmitted

successfully in the final phase. Assume that during the initial phase of transmission, none

of the other nodes can detect the packet being transmitted whereas during the final phase

all nodes can detect packet transmission. Also assume that collisions that occur during

the initial phase can be immediately detected! Note that the initial and final phases are

each exponentially distributed. All backlogged packets wait for a random amount of time

(distributed exponentially with mean 1/θ) before retransmission. The system can be modeled

as a CTMC where the state of the CTMC at the end of a slot is the number of backlogged

users and the type of slot (idle, initial and final).

For both the DTMC and the CTMC models, performance measures such as through-

put (expected number of successful transmissions per unit time), cable utilization, expected

number of backlogged messages, expected delay in successfully transmitting a message, etc

can be computed. Using the performance measures it is possible to evaluate optimal de-

signs for the Ethernet systems. See Bertsekas and Gallager [10] for modified versions and

approximations.

4.3 Token Rings

Besides Ethernet, the other commonly used LAN architecture and protocol is the Token

Ring, developed by IBM. Here a simplistic model for a token ring is explained and is based

on the description in Roy [72]. Consider N independent and identical users that are arranged

logically in the form of a ring (see Figure 10).

Unlike the Ethernet model where all the users are allowed to transmit simultaneously

which could potentially result in collisions, the token ring scheme is such that at a time there

is at most one user generating a message over the cable or ring (thus there are no collisions).
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Figure 10: Model of a token ring LAN

A designated user generates a “free” token into the ring. This token traverses the ring in a

given direction. When a user with a message to transmit receives the free token, the user

holds on to the token (now called “busy” token) and transmits the message onto the ring or

cable. There are two basic types of implementation, the exhaustive and the gated service.

In the exhaustive service a user that receives a free token transmits packets until there are

no packets to transmit, however in the gated service case, only the packets that arrived prior

to receiving the free token are transmitted and the packets arriving during the transmission

will be transmitted during the next free token arrival to the user! Once the user completes

transmission, the busy token is converted into a free token and passed along the ring.

To model the system as a CTMC, one could assume that the packets are generated

according to a Poisson process, the length of the packets are exponentially distributed, and,

the propagation time (including latency at the user) is also exponentially distributed. Since

all the users are identical, a CTMC of the form {(X(t), Y (t), t ≥ 0} modeled where X(t) is

the number of messages in the network and Y (t) is the status of the token (free or busy)

at time t. Using the steady state distribution of the CTMC, performance measures such as

throughput, delay, and blocking probability (if the users have finite buffers) can be computed.

Realistically speaking users may belong to multiple classes and are not necessarily identi-

cal. Also, the exponential distribution may not be the most appropriate. Several researchers

have addressed these shortcomings (see Chae and Nilsson [18] for the performance analysis

of a prioritized token ring with reservation model) and there are other interesting problems

to be addressed in the future.
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5 Other Topics And Models

5.1 TCP and flow control

When a message needs to be sent from a source to a destination, it is broken down into

small packets and transported from the source to the destination. The protocols responsible

for this transport of packets over networks are user datagram protocol (UDP) and transmis-

sion control protocol (TCP). Certain applications (typically real-time) use UDP where the

destination does not acknowledge the receipt of packets to the source. Therefore in UDP

the source does not know if the message sent, firstly reached the destination, and if it did,

whether it reached without any losses.

On the other hand, TCP is an acknowledgement (ACK) based protocol. Every packet

that reaches the destination is acknowledged. Therefore TCP is useful for applications that

cannot tolerate losses, at the same time can tolerate slow transmission. There has been

tremendous amount of research in the area of speeding up TCP, and also modeling it for

different networks such as ATM, wireless, etc. A simplified version of TCP is explained

below. Readers are encouraged to refer to Van Jacobson [44] and [45], Romanow and Floyd

[70], Stevens [74], etc for a detailed description.

Instead of waiting for an ACK for every packet sent, the source sends n packets to

the destination before receiving an ACK. These n packets constitute the window with n

as the window size. The window size is not a constant throughout the connection. If the

connection is across a network with low congestion then the window size gradually increases

upto a prenegotiated maximum Wmax. However if congestion develops and packets are lost,

TCP backs off the packet generation by reducing the window size to half. The backing off

is performed using a timer so that if the source does not receive an ACK before a certain

time (this is also variable, in fact it depends on the connection and round trip time between

source and destination for packets), the source retransmits with a smaller window.

Marsan et al [60] develop an approximate CTMC model for performance analysis of TCP

connections in high-speed ATM networks. The modeling takes into account the slow start

(initially the window size increases slowly), fast recovery, and congestion-avoidance (window

size reduction) strategies commonly used in TCP. The sparse but regular structure of the

infinitesimal generator matrix is taken advantage of in the analysis.

Misra and Ott [62] analyze the stationary behavior of the TCP congestion window.

Most of the earlier analysis assumed that the loss probability is constant with respect to
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window size. With the development of Random Early Detection (RED) it is important to

consider the loss probability that varies with respect to the window size (as the window size

increases, the loss probability increases in a stochastic sense). A Markov process that is

further approximated as a continuous time, continuous state space system is modeled. The

stationary distribution of the process is analyzed.

Kumar [55] studies the performance of various TCP versions such as TCP-OldTahoe

(uses timeout recovery), TCP-Tahoe (uses fast retransmit), TCP-Reno (uses fast retransmit

and fast but conservative recovery), and, TCP-NewReno (uses fast retransmit and fast recov-

ery). A stochastic model (Markov renewal reward process) is used to study the throughput

performance of the different TCP versions in the presence of random loss on a wireless link.

The main results include the following: TCP-Reno performs no better or worse that TCP-

Tahoe for large packet loss probability. TCP-NewReno is a considerable improvement over

TCP-Tahoe.

Baccelli and Bonald [7] consider window flow control in lossless packet-switched networks

(essentially applicable to TCP). However the window is assumed to be static and all packets

follow the same route between a source and destination. There is also exogenous traffic along

the route. General stochastic processes that are stationary and ergodic are used to model

input processes. The stability of the system is evaluated and performance measures such as

bounds on the maximal throughput are obtained.

5.2 Routing

Routing in the current version of the Internet uses best effort schemes and does not use

any congestion avoidance mechanisms. The routers in the Internet use a learning process

to develop a routing table. Based on the routing table an incoming packet is delivered

to the appropriate neighboring router. This procedure continues from the source to the

destination. The final source-destination route is usually the minimal hop path. In the case

of a breakdown, the routers reconfigure their routing tables appropriately. The benefits to

the best effort scheme are: easy implementation, fast learning (or recovery after breakdown),

and fairness.

However in circuit-switched networks where the network topology is known and the num-

ber of circuits ni of each link i between a pair of switches is given. Assume that the rate of

call requests per unit time between every pair of source and destination is given. Consider
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a source S and a destination D between which there are R possible routes. Any message

between S and D is sent across route j with probability pj(SD). Therefore when a new

connection needs to be established between S and D, a random number is generated and

the resulting route is selected. However if that route is not free, the call for connection is

blocked or rejected. This is the static routing policy which could potentially result in a large

number of rejected calls. Optimal values of pj(SD) (for j = 1, . . . , R) are selected based on

minimizing the total cost.

Gibbens et all [35] developed the dynamic alternate routing (DAR) strategy where the

(stochastic) k-shortest paths are obtained between all sources and destinations at all points

of time. Clearly the paths vary dynamically. Then calls between a source and destination

are routed through the current shortest path or current second shortest path. If both are

full then the calls are rejected. In Gibbens et al [36] some of the consequences for dynamic

routing schemes for dual- and multi-parented networks (where a call can enter or leave the

network in two or more points) are considered. Bounds are obtained for optimal dynamic

routing strategies. The robustness is also illustrated. Gibbens and Kelly [37] use stochastic

analysis of dynamic routing for classical mathematical programming (optimization) to design

networks. The methods used are network flow optimization and Markov decision processes for

bounds on dynamic routing strategies. In Dasylva and Srikant [21], non-trivial lower bounds

on the lost revenue under any routing scheme in a multi-class loss network are obtained. The

bound is used to obtain linear programs which give bounds for sparsely connected networks

with multiple classes and alternate routing.

One of the key factors that will enable networks to provide guaranteed QoS is the concept

of QoS routing. Suppose an application desires the following QoS measures between the

source and destination: maximum loss rate ε, maximum delay δ and maximum jitter ρ.

Then the QoS routing problem is to send the message from the source to destination by the

least expensive route such that the loss rate is less than ε, delay is less than δ and jitter is

less than ρ, each with probability, say 0.9999. This is an important problem to be addressed

and is being actively pursued. See Apostolopoulos et al [5] for a description of QoS routing,

cost function, comparisons to best-effort routing, etc.
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5.3 Leaky bucket policing

5.3.1 Description

The proliferation of the Internet and its excessive congestion has led researchers working on

emerging high-speed telecommunication networks to develop tools to police and control the

traffic at the user or source end. These policing mechanisms need to not only ensure that

the telecommunication network traffic generated by the sources are kept below a negotiated

threshold but also ensure that the users receive the Quality of Service (QoS) that they have

been promised. One such policing mechanism is the leaky bucket (see Cidon and Gopal [19],

Gu et al [39], Gün et al [40], Vamvakos and Anantharam [75], Butto et al [11], Callegati et

al [12], Holtsinger and Perros [43], Sohraby and Sidi [73], Wu and Mark [80], and, Yin and

Hluckyj [81]).

A leaky bucket is essentially a credit management mechanism that controls the traffic

entering the network. A single or a series of leaky buckets can be used to optimally regulate

the source traffic in communication networks (see Anantharam and Konstantopoulos [3]). In

the recent literature a few researchers have proposed models to optimally select leaky bucket

parameters (see Anantharam and Konstantopoulos [1], Raha et al [69], Elwalid and Mitra

[29], Gorinsky et al [38], de Veciana [23], etc).

Here stochastic fluid-flow models are used to describe the traffic flow, following the large

literature using fluid-flow models for communication systems (see Anick et al [4], Elwalid

and Mitra [26], etc). Chen and Yao [13] and [14], Ott and Shanthikumar [65], Harrison [41],

Chen and Mandelbaum [17], etc, demonstrate how to convert any discrete arrival system

into a fluid-flow system and apply the fluid-flow model results.

“Leaky Bucket” is a control mechanism for admitting data into a network. It consists of

a data buffer and a token pool as shown in Figure 11. Use a fluid-flow leaky bucket model

assuming that the data traffic and tokens can be modeled as fluids. Tokens are generated

continuously at a fixed rate γ into the token pool of size M . The new tokens are discarded if

the token pool is full. External data traffic enters the data buffer (of size BD) from a source

modulated by an environmental process {Z(t), t ≥ 0}. Traffic is generated by this source at

rate r(Z(t)) at time t.

If there are tokens in the token pool, the incoming fluid takes an equal amount of tokens

and enters the network. Broadly, there are two types of leaky buckets, the buffered and the

unbuffered leaky buckets. If the token pool is empty then two alternative implementations
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Figure 11: Fluid model of a leaky bucket

are considered:

• Buffered Leaky Bucket: the packets wait in the infinite capacity data buffer (BD = ∞)

for tokens to arrive,

• Unbuffered Leaky Bucket: there is no data buffer (BD = 0) for the packets and any

packet that does not find a token enters the network carrying a “violation” tag. Later

such violation traffic can be dropped if congestion develops.

The buffered and unbuffered leaky bucket models are described in the following sections,

and their respective output processes are studied.

5.3.2 Buffered Leaky buckets

The output from a buffered leaky bucket acts as an input to a downstream network node.

Hence, in this section the output from the leaky bucket is characterized. Refer to Figure 11.

Let X(t) be the amount of traffic in the data buffer at time t. Let Y (t) be the amount of

tokens in the token pool at time t (Y (t) ≤ M). Note that fluid starts accumulating in the

data buffer (X(t) > 0) only when the token pool is empty (Y (t) = 0). As long as tokens are

available (Y (t) > 0), fluid does not wait at the data buffer (X(t) = 0). Therefore X(t)Y (t)

= 0, for all t. Clearly, when the token pool is not empty (Y (t) > 0), the output from the

leaky bucket is at rate r(Z(t)) at time t and when the token pool is empty, the output from

the leaky bucket is at rate γ. Hence the output rate from the leaky bucket at time t, R(t),
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is given by

R(t) =

{
γ if Y (t) = 0
r(Z(t)) if Y (t) > 0.

(50)

Define a process {W (t), t ≥ 0} (see Anantharam and Konstantopoulos [2]) as

W (t) = X(t) + M − Y (t). (51)

First characterize the {W (t), t ≥ 0} process. The dynamics of the X(t) and the Y (t)

processes are given by

dX(t)

dt
=

{
r(Z(t)) − γ if X(t) > 0
0 if X(t) = 0,

(52)

dY (t)

dt
=




γ − r(Z(t)) if 0 < Y (t) < M
−{r(Z(t)) − γ}+ if Y (t) = M
0 if Y (t) = 0 .

(53)

From Equation (51),

W (t) > M ⇒ X(t) > 0 and Y (t) = 0

0 < W (t) ≤ M ⇒ X(t) = 0 and 0 < Y (t) < M

W (t) = 0 ⇒ X(t) = 0 and Y (t) = M .

Therefore,

dW (t)

dt
=

dX(t)

dt
− dY (t)

dt

=




r(Z(t)) − γ if X(t) > 0 and Y (t) = 0
r(Z(t)) − γ if X(t) = 0 and 0 < Y (t) < M
{r(Z(t)) − γ}+ if X(t) = 0 and Y (t) = M

=

{
r(Z(t)) − γ if W (t) > 0
{r(Z(t)) − γ}+ if W (t) = 0 .

(54)

Thus the dynamics of the W (t) process are identical to those of the buffer-content process

of an infinite-sized buffer with output capacity γ and input rate r(Z(t)) at time t. Therefore

to obtain the properties of the W (t) process, for example its probability distribution, all one

needs to do is look up the vast literature on the buffer-content process of an infinite sized

buffer with output capacity γ and input rate r(Z(t)). The structure of the {W (t), t ≥ 0}
process is exploited in the analysis that follow.

Sample paths of Z(t), X(t), Y (t), and W (t) are shown in Figure 12. Define the first

passage time V (see Figure 12) as

V = inf{t > 0 : W (t) = 0|W (0) = 0,W (0+) > 0}. (55)
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Figure 12: Z(t), X(t), Y (t), and W (t) for Buffered Leaky Buckets

Let Θ(V ) be the total amount of traffic output from the leaky bucket in time V . During

the time interval (0, V ), W (t) > 0 and token pool is non-full. Hence the tokens enter the

token pool at rate γ during the time interval (0, V ). Since the token pool is full at times 0

and V , the total number of tokens removed from the pool over (0, V ) must be the same as

the total number of tokens that entered the pool over (0, V ). Hence

Θ(V ) = γ V. (56)

Define A(t) as the total fluid arrival into the leaky bucket from the source in time t. Also, let

O(t) be the total fluid output from the leaky bucket in time t. Using the result in Equation

(56), the following result states the effective bandwidth of the output of the leaky bucket

when {Z(t), t ≥ 0} is a semi-Markov process (SMP). Note that de Veciana [23] derives a
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similar expression for the effective bandwidth of the output of the leaky bucket for a discrete

traffic model.

Let {Z(t), t ≥ 0} be an SMP on a finite state space S. Let O(t) be the total output from

the leaky bucket over [0, t]. The effective bandwidth of the output of the leaky bucket

ebO(v) = lim
t→∞

1

vt
log E{exp(vO(t))}

is given in terms of the effective bandwidth of the input, ebA(v), as

ebO(v) =

{
ebA(v) if 0 ≤ v ≤ v∗
v∗
v
ebA(v∗) − γ v∗

v
+ γ if v > v∗,

(57)

where v∗ is obtained by solving
d

dv∗ [v∗ebA(v∗)] = 0

and

ebA(v) = lim
t→∞

1

vt
log E{exp(v

∫ t

0
r(Z(t))dt)}.

For a proof of the above result refer to Gautam [32].

Therefore, given the effective bandwidth of the input traffic to the leaky bucket, it is

easy to obtain the effective bandwidth of the output traffic from the leaky bucket by simply

replacing the leaky bucket by a single infinite capacity buffer with capacity γ and measuring

the output effective bandwidth of this infinite capacity buffer in terms of its input. When

the environmental processes of the input traffic can be modeled as Continuous time Markov

Chains, Semi-Markov Processes, Markov Regenerative Processes (MRGP) or regenerative

processes, etc, one can compute their effective bandwidths using the results shown in Elwalid

and Mitra [27], Kesidis et al [47], Kulkarni [50], etc.

5.3.3 Unbuffered Leaky buckets

For the unbuffered leaky bucket, consider only the case when the environmental process

governing the fluid input from a source, {Z(t), t ≥ 0}, is a 2-state on-off process (Z(t) = 0 or

1, which implies whether the source is off or on respectively at time t). Therefore the fluid

input is from a general on-off source with on time distribution U(·) (with mean τU) and off

time distribution D(·) (with mean τD). When the source is on it generates traffic at rate r

and at rate 0 when off. Therefore r(Z(t)) = r Z(t).

In this unbuffered leaky bucket case, a packet that arrives at the leaky bucket is sent

into the network with a “violation” tag if no tokens are available at the time of its arrival.
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Figure 13: W (t) process for unbuffered leaky bucket

The emphasis will be on the untagged packets as the tagged ones would be dropped in the

event of a congestion. Note that X(t) = 0 for all t in this unbuffered leaky bucket case. The

sample path of W (t) is shown in Figure 13. Since there is no data buffer, W (t) = M − Y (t)

and W (t) ranges from 0 to M . Note that W (t) process is identical to a buffer content process

of a fluid queue with on-off input, constant output with rate γ, and, a finite buffer of size

M .

To obtain the effective bandwidth of the output process, the output rate from the leaky

bucket is R(t) at time t and is given by

R(t) =




γ if W (t) = M
r if W (t) < M and Z(t) = 1
0 if W (t) < M and Z(t) = 0.

(58)

Let V be as in Equation (55). Then Equation (56) remains valid in the unbuffered case.

Hence the effective bandwidth of the output process from the unbuffered leaky bucket is

equivalent to that of of the output process from a single finite buffer (of size M) with general

on-off source input and output capacity γ. However, the effective bandwidth of the output

cannot be easily written in terms of that of the input due to the fluid loss (as a result of

untagged traffic) at the input buffer.

Closed-form algebraic expressions for ebO(v) are intractable even when the sources are

exponential on-off sources. For general on-off sources, an approximation is developed in

Gautam [32].
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5.4 Wireless Network Models

One of hottest research topics in telecommunications is wireless communications technology

and a survey paper would certainly be incomplete without describing some of the on-going

research work in mobile communications. However, the field is relatively new and most of the

techniques are not well-established. Therefore only a brief summary of some of the current

papers in the area of stochastic models in wireless networks are presented here. Almost all

the forementioned traffic models, performance analysis, flow control, congestion control, etc

do not make any assumptions about whether the networks are at least partially wireless or

not. It is to be noted that mobile communications where the users (sources and destinations)

are mobile are called wireless communication here. Since the sources and destinations are

not static an important problem is to locate the users to send and receive messages.

A theoretical framework for the study of mobility tracking based on user (or for that

matter service or host) location probability distributions are provided in Rose and Yates

[71]. Using stochastic ordering and information theory, quantitative comparisons of various

mobility schemes are demonstrated and insights are obtained into the mobility tracking

problem over a wide range of mobility characteristics.

Awduche et al [6] describe location management issues that involve tracking compo-

nents that maintain dynamic data on the locations of mobile stations through a distributed

database. The main focus is on a search component that prescribes the manner in which

the wireless network is to be paged so as to determine the location of mobile stations whose

whereabouts are unknown. The methods used are based on search theory where a stochastic

sequential framework that systematically determines the location of mobile stations situated

within a group of cells. Search algorithms are hence developed.

A Poisson-arrival location model (PALM) was introduced in Massey and Whitt [61] in

which customers arrive according to a nonhomogeneous Poisson process and move indepen-

dently through a general location state space according to a location stochastic process.

That was extended to a version of PALM to study communicating mobiles on a highway.

Leung et al [56] stress the need for combining teletraffic theory and vehicular traffic theory.

Their numerical results indicate that both the time-dependent behavior and the mobility of

vehicles play important roles in determining the system performance.

41



5.5 Other Topics

There have been several important topics that have been left out of this exposition. Some

of the topics are listed below:

• One of the most critical factor that will enable QoS provisioning in high-speed networks

is pricing. F.P. Kelly and colleagues have developed some optimal pricing models (see

Kelly [46] for an example).

• ATM switch design and router design involve significant amount of stochastic modeling,

particularly queueing. All the multiclass scheduling policies (polling, static priority,

waited fair queueing, etc) can be implemented on the currently available switches and

routers.

• All the models considered here were unicast where traffic flows from a single source to

a single destination. There are interesting stochastic models for multicasting (single

source and a few destinations like an Internet classroom with students globally located)

and for broadcasting (single source and all nodes as destinations) applications.

• Congestion control aspects at the packet level have not been addressed. The most

common scheme is to have small buffers and if the buffer overflows, newly arriving

packets are dropped. Modifications of that model include dropping from the beginning

of the queue and RED (Random Early Detection: where packets from a non-full buffer

are dropped with probability p(n) if there are n packets in the buffer).

• Several scenarios in telecommunication networks (such as client-server systems) can be

modeled as Queueing Networks. Walrand [76] provides several applications of Queueing

Networks in Telecommunications.
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