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Abstract

We consider a web server that supports two classes of requests, streaming and elastic. Due to the varying Quality
of Service requirements and analytical complexity involved, there is little research that considers a single model
capturing the needs of all classes of requests. The shortcoming in addressed as follows: (i) a matrix geometric method
is used to analytically derive performance measures, (ii) a mathematical model is formulated that caters to the multiple
objectives, (iii) a cost model is developed to obtain an admission control policy that utilizes the processing capacity
optimally. Further, we compare our policy against existing priority and resource partitioning policies.

Keywords: Stochastic Processes / Queuing Theory, Performance Evaluation, Resource Sharing.

1 Introduction

On one hand the Internet users and applications are growing at an exponential rate and on the other hand the economy
is slowing down tremendously. This has created a shift in paradigm in the way organizations view resources. In
particular, companies are focusing on utilizing resources efficiently and squeezing the most out of them. This is done
not only spatially where bandwidth, buffer space, etc. are effectively consumed, but also temporally by appropriately
tuning resources over time under varying load conditions. In fact, with the emphasis on energy conservation, it is now
critical to not only plan for resources during peak periods but also optimally turn resources off during lean periods. We
address a piece of this important problem by considering a webserver that supports multi-class requests and developing
techniques to utilize processing capacity effectively over time.

We consider multiple classes of requests with varying Quality of Service (QoS) needs. Specifically, there are two main
request classes, one is a streaming class that has bandwidth requirements, and the other is elastic class that utilizes
the processing capacity not used by the streaming requests. The crucial point is that the objectives for both classes
are considered for optimization, i.e. the blocking probability of streaming requests and the delay of elastic requests
are both minimized. The motivation for this comes from the fact that most web pages have both streaming as well
as elastic requests that need to be delivered to the users. Therefore it is critical to give importance to both classes of
requests. In networking community, the literature especially on analytical models for multi-class requests, falls under
one of two categories: loss networks and delay networks.

Researchers focusing onloss networksconsider only the objectives of the streaming traffic and ignore the needs of the
elastic traffic. Several articles (such as [11], [10] and [2]) on the stochastic knapsack problem,G/G/C/C queueing
models, etc., deal with the streaming traffic alone and solve several optimization problems with the understanding that
any unused bandwidth will be consumed by elastic traffic. However, these articles do not consider the needs of the data
traffic. Further, researchers that focus ondelay networksassume that a portion of bandwidth is reserved for streaming
traffic and the remaining is consumed by the elastic traffic. Thereby these researchers focus on obtaining the delay
faced by elastic traffic and ignore any available resources not used by the streaming traffic.

One of the caveats of combining loss and delay networks is to devise a common denominator for the analysis. In
that light, we use bandwidth to analyze data traffic following [5] where they model data file sizes (as opposed to
transmission time) according to an exponential distribution. If the transmission speed is not constant (due to varying
bandwidth availability), then the time to transmit the data is not necessarily exponential. Another caveat as pointed
by [1] is that even with two distinct streaming classes with priorities it is not possible to obtain closed-form algebraic
expressions for performance measures. Similarly, we modeled and found that it is not possible to obtain closed-form
expressions for the performance measures.

The rest of the paper is organized as follows. In section 2, the problem that we are considering is explained with all
the notation used. Also, we define the measures that we will be using to evaluate the performance of the system. In



Table 1: Notation

Var Explanation

λ1 Arrival rate of class 1 requests
λ2 Arrival rate of class 2 requests

1/µ1 Average holding time of class 1 request
1/µ2 Average class 2 file size

n Maximum no. of class 1 requests allowed simultaneously
b Bandwidth allocated to each class 1 request when admitted
c Minimum bandwidth for class 2 requests
S Total processing capacity of the web server

X(t) No. of class 1 requests ongoing at timet
Y (t) No. of class 2 requests ongoing at timet
θi Rate of completion of class 2 requests when there arei requests
pn Steady state probability that there aren class 1 ongoing requests
W Average delay of class 2 requests
S(i) State space withi class 2 requests
π(i) Steady state probability vector for state spaceS(i)

R Auxilliary matrix in matrix geometric method

Section 3, we develop an analytical model of the process and provide the formula to calculate the loss probability of
streaming requests. In section 4, we discuss a method to calculate the average delay of the elastic requests. In section
5, a mathematical model with multiple objectives is formulated and a cost model is developed to combine multiple
objectives into a single objective to obtain an admission control policy that utilizes the processing capacity in an
optimal manner. Single-period analysis is also discussed with examples. Finally, in section 6, we present concluding
remarks and possible extensions of this work.

2 Problem Definition

2.1 Notation

Consider a web server with the following “static" admission control policy. The maximum number of class 1 requests
allowed simultaneously is ‘n’. That is, an arriving class 1 request is rejected if there are ‘n’ ongoing class 1 requests
at that time, else the arriving request is admitted and allocated a fixed bandwidth ‘b’. All arriving class 2 requests are
admitted into the system. That is accomplished by choosingc > 0 such thatS = nb + c, whereS is the processing
capacity of the webserver.

At any given timet, letX(t) andY (t) be number of ongoing class 1 and class 2 requests respectively. We consider the
following processor sharing mechanism for class 2 requests. Class 2 requests share the processing capacity not used
by class 1. Therefore, since the unused capacity after allocatingX(t) class 1 requests isR−b X(t) = [n−X(t)]b+c,
each class 2 request is allocated a bandwidth[[n −X(t)]b + c]/Y (t), wheneverY (t) > 0. The notation used above
and throughout the paper is summarized in Table 1.

2.2 Performance measures

1. Loss probability of class 1 requests: A request is rejected or a call is blocked if and only if there are ‘n’ ongoing
calls at the time of arrival of that new call. The probability of a call getting rejected is calledloss probability
or blocking probability. In steady state, under certain conditions such as homogenous arrivals, it is equal to the
fraction of time when the system has ‘n’ class 1 calls.

2. Average delay of class 2 requests: There is no loss or blocking in class 2 as all the calls are accepted but the time
to transfer the file increases when new calls arrive. Hence, the measure chosen to represent the performance of
class 2 is‘average latency’or ‘average delay’. The service rate changes dynamically and is dependent on the
number of the class 1 users at that instant. So it is a non-trivial task to calculate average delay a class 2 user
experiences.



3 Analytical Model

Let the request arrivals in both class 1 and class 2 be according to Poisson processes with ratesλ1 andλ2 respectively.
Also, let the holding time of class 1 requests be exponentially distributed with mean1/µ1 and let the file size of class
2 be exponentially distributed with mean size1/µ2. The exponential distribution is assumed so as to keep the analysis
tractable.

3.1 Blocking probability of class 1

To obtain the blocking probability of class 1 requests, we only need to consider transitions of class 1 requests as they
are not affected by the class 2 requests. Note (from Table 1) thatX(t) is the number of ongoing class 1 requests at
time t. The process{X(t), t > 0} is modelled as a Continuous Time Markov chain (CTMC) with transitions out of
stateX(t) = i represented asi → i+1 : λ1 andi → i− 1 : iµ1. This is a birth and death process with birth rateλ1

and death rateiµ1. From a queuing standpoint, this is a standardM/M/n/n system and the loss probability is given
by pn = 1/n!(λ1/µ1)

n∑n
k=0 1/k!(λ1/µ1)k wherepn denotes the steady state probability that there aren ongoing class 1 requests.

This is the well known Erlang B formula ([11], [3]) for theM/M/n/n queuing system. In our analysis, we consider
holding times to be exponentially distributed in order to keep the class 2 analysis tractable. We now shift our attention
to the other performance measure stated in section 2, viz., average latency or delay of class 2 calls.

3.2 Bivariate stochastic process

For class 2 analysis, it is important to consider class 1 as well due to the inherent dependence. As stated in 2.1, let
X(t) andY (t) be the number of class 1 and class 2 requests respectively ongoing at timet. The bivariate stochastic
process{(X(t), Y (t)), t ≥ 0} is a CTMC. The value ofX(t) varies from 0 ton where asY (t) can be anywhere from
0 to∞. So the state spaceS = {(0,0),(1,0),....(n,0), (0,1), (1,1),....(n,1), (0,2),(1,2),....(n,2).....}. For0 < i < n and
j > 0, the transition rates are as follows:(i, j) → (i + 1, j) : λ1, (i, j) → (i − 1, j) : iµ1, (i, j) → (i, j + 1) : λ2

and(i, j) → (i, j − 1) : µ2[(n− i)b + c]. The first three transitions are relatively straight forward. The transition rate
from (i, j) to (i, j − 1) can be obtained as follows. The available bandwidth for each ofj files in class 2 when there
arei class 1 requests is[(n − i)b + c]/j. So the average rate of transfer of a single class 2 file isµ2[(n − i)b + c]/j.
So the transition rate fromj to j − 1 is j[µ2[(n − i)b + c]/j], which isµ2[(n − i)b + c] and is denoted byθi. It is
easy to show thatθi is also exponentially distributed. Wheni = 0 or i = n, there are no transitions fromi to i− 1 or
i to i + 1 respectively. Also, whenj = 0, there is no transition fromj to j − 1 and The transition rates are adjusted
accordingly. Thus, the above system has been modelled as 2-dimensional infinite state CTMC.

4 Calculation of Average Delay for Class 2

There does not exist any closed form solution for the steady state joint probability{X(t), Y (t)}. Therefore, the
average delay of class 2 requests cannot be obtained in closed form. The bivariate stochastic process modelled in
Section 3.2 is a Quasi-birth-death (QBD) process. Since QBD has a special structure, a technique called Matrix
Geometric Method (MGM ) can be used to solve that 2-dimensional CTMC. The general theory ofMGM and how
it is applied to our problem is explained in Section 4.2

4.1 Quasi-Birth and death process

As per [4], the definition for quasi birth-death process is as follows:

Definition: A continuous time Quasi-Birth-Death (QBD) process is a continuous time Markov process whose in-
finitesimal generator matrix is of the block partitioned form

QQBD =


B1 A0 0 0 0 . . .
A2 A1 A0 0 0 . . .
0 A2 A1 A0 0 . . .
...

...
...

...
...

...


whereA2, A1 andA0 andB1 are matrices.

After partitioning the states into subsetsl(i) = {(i, j); i ≥ 0, 1 ≤ j ≤ m} called levels, positionj within the level is
termed as phase. The process can jump down one level, stay in the same level or jump up one level and the rate that
these transitions occur are given byA2, A1 andA0 respectively. The process is said to be skip free between levels.



4.2 Matrix Geometric Method for QBD

Matrix geometric methods are widely used for the exact analysis of a general and frequently encountered type of
queuing models. TheMGM can only be applied if the system can be decomposed into two parts: the initial portion
and the repetitive portion. One main advantage is that it can overcome the rapid growth of the state space while
constructing the infinitesimal generator matrix of the birth-death process.

There exists a matrix geometric relation among the stationary probabilities which simplifies the algebraic expressions.
In matrix geometric method, an auxiliary matrix calledR is used in the calculation of stationary probabilities and other
measures of interest like waiting time and mean queue length. We have a level-independent infinite-level quasi-birth-
death process. The main step here is to find a matrix calledR which is used in the computation of the steady state
probability vector and other measures of interest.

Computation of matrixR: The matrixR have a following quadratic relation ([8], [9]):A0 + RA1 + R2A2 = 0. Neuts
[7] defines infinite-state Markov chains with a repetitive structure with state space partitioned into the boundary states
S(0) = {s0

0, ....., s
n
0} and a set of statesS(i) = {s0

i , ....., s
n
i }, that correspond to the repetitive portion of the chain. Let

π(i) be the steady state probability vector of statesS(i). Thenπ(i) = π(1) Ri−1 ∀ i ≥ 1. SolvingπQQBD = 0 will
give bothπ(0) andπ(1). The following set of equations are obtained.

π(0)B0 + π(1)A2 = 0
π(0)A0 + π(1)(A1 + RA2) = 0

π(0)e + π(1)(I −R)−1e = 1 (1)

Onceπ(0) and π(1) are obtained, the expected holding time of a job in the system can be calculated as follows:
W = λ−1

2 (π1(I−R)−1e+π1R(I−R)−2e) whereW is the average delay or holding time ande is the column vector
of ones.

We apply the above method to our problem. RecallA0, A1, A2 andB1, which were defined as the elements ofQQBD

earlier in this section. The structure of the infinitesimal generator for thisQBD problem is shown below:

A0 =


λ2 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ2 . . . 0
...

...
...

...
...

0 0 . . . 0 λ2

, A1 =


−λ1 − θ0 λ1 0 . . . 0

µ1 s(1) λ1 . . . 0
0 2µ1 s(2) λ1 . . .
...

...
...

...
...

0 0 . . . nµ1 s(n)

,

A2 =


θ0 0 0 . . . 0
0 θ1 0 . . . 0
0 0 θ2 . . . 0
...

...
...

...
...

0 0 . . . 0 θn

 andB1 =


−λ1 λ1 0 . . . 0
µ1 u(1) λ1 . . . 0
0 2µ1 u(2) λ1 . . .
...

...
...

...
...

0 0 . . . nµ1 u(n)


wheres(i) = −λ1 − θi − iµ1andu(i) = −λ1 − iµ1. Thus, substituting the above matrices in the set of equations (1),
we getπ(0) andπ(1). Then, we obtain the average delay for class 2 requests .Thus, substituting the above matrices in
the set of equations (1), we getπ(0) andπ(1). Then, we obtain the average delay for class 2 calls.

5 Resource Optimization

5.1 Choosing optimaln

The analysis so far has been done assuming that all parameters are given and are fixed. It is reasonable to considerS
andb to be fixed by infrastructure and applications respectively. However,n could be chosen such that the processing
capacity is utilized optimally. Note that oncen is determinedc = S − nb. If n is increased, there is a decrease inc
and thus the probability that class 1 user is rejected decreases while average class 2 file transfer time increases.

There are two objectives viz., minimize the loss probability of class 1 requests and minimize the average delay of
class 2 requests. Thus, it becomes a multi-criteria decision model with two conflicting objectives. With increase in



n, the loss probability of class 1 requests reduces but at the same time the average delay of class 2 requests increases.
The two objectives can be combined into one objective of maximizing the total revenue or minimizing the total cost
incurred by rejecting a class 1 request or delaying the class 2 request for one more unit time. We attach some weights
that translate to price or penalty for a rejection of class 1 request and unit delay cost for class 2 request. Letr be the
cost of rejection of a class 1 request and leth be the holding cost per unit time of delay of class 2 request. Then, the
total cost incurred per unit time is given byC = λ1 r pn + λ2 h W. It can be observed that at somen = n∗, the cost
C is minimized. In this way, we can choose optimaln value to minimize the total cost.

5.2 Single Period Analysis

We compare our policy with two other policies. The first policy (Priority policy, Section 5.2.1), is based on the loss
networks where only the bandwidth-sensitive class 1 requests is considered. The second policy (Resource partitioning
policy, section 5.2.2) is based on research in the area of delay networks where the bandwidthS is partitioned for the
two classes. It is to be noted that the priority policy and resource partitioning policy are a consequence of the current
modelling approaches, however they have not been explicitly considered in the literature. The main purpose is to
illustrate the benefits of using our policy.

In our policy, class 2 utilizes the unused bandwidth left by class 1. The purpose of this policy is to utilize the bandwidth
efficiently and also provide QoS to both the classes simultaneously. The processing capacity is taken asS = 24 and
the bandwidth is taken asb = 5 in all the cases. The costsr andh are taken to be 5 and 1 respectively. We have looked
at many examples and all of them indicate that our policy performs better than the other two policies. But due to lack
of space, we present only a few examples to illustrate that.

5.2.1 Policy 1: Priority

In this policy, class 1 is given absolute priority over class 2. The class 2 requests are ignored and only class 1 requests
are considered important with respect to QoS. The total bandwidth is allocated such that all class 1 requests are
accepted until no more can be accepted. That is,n is the largest integer such thatn.b < S or n = bS

b c denoted byn∗1.
The remaining bandwidth is allocated to class 2 and no QoS is provided to class 2 users.

Table 2 illustrates how our policy does better than the policy in which absolute priority is given to class 1. Letn∗ and
mincost denote the optimumn value and cost at that optimumn respectively. Similarlymincost1 denotes the cost
whenn = n∗1 for priority policy. As the average file size increases, it can be seen thatmincost increases at a steady
rate whereasmincost1 increases rapidly. It can also be seen thatmincost is always less thanmincost1 in all cases.

5.2.2 Policy 2: Resource partitioning

In this policy, class 1 and class 2 are dealt separately. The total bandwidth is split into two partitions: class 1 is
allocated a bandwidth ofn.b and class 2, a bandwidth ofc. The bandwidth unused by class 1 is not utilized by class 2.
Thus, class 2 will always have a bandwidth of exactlyc.

Table 3 shows how our policy does better than this case. Here,n∗2 is the optimal value ofn where we get minimum
cost (denoted bymincost2) with the partitioned policy. In most of the cases, it can be seen thatmincost2 is far more
thanmincost. That means, our policy performs a lot better than resource partitioning policy also.

6 Concluding remarks

In this paper, we considered a web server with two classes viz., bandwidth-sensitive or streaming requests and elastic
requests that utilizes the unused processing speed by the real-time requests. The performance measures chosen were
loss probability for elastic requests and average delay for the data traffic. The paper focusses on obtaining the average
delay of the data traffic. Matrix geometric method was used to analytically solve a 2-dimensional infinite state Markov
chain. A multi-objective optimization model involving the performance measures was developed and converted into a
single objective cost model.

The following are some possible extensions. It is quite common that the arrival rates change according to time of
the day and day of the week ([6]). We have peak and non-peak periods when the parameters like arrival rate change



Table 2: Policy 1: Absolute priority for class 1

λ1,µ1, λ2, µ2 n∗ mincost n∗1 mincost1

3, 1, 20, 2.5 3 7.06 4 9.13
3, 1, 20, 2.0 3 9.05 4 19.94
3, 1, 20, 1.9 2 9.81 4 27.05
3, 1, 20, 1.8 2 10.14 4 41.33
3, 1, 20, 1.7 2 10.59 4 76.23
3, 1, 20, 1.6 2 11.27 4 185.84

Table 3: Policy 2: Partitioned processing speed

λ1,µ1, λ2, µ2 n∗ mincost n∗2 mincost2

2, 1, 10, 2 4 1.80 2 9.56
2, 1, 20, 2 3 4.74 1 28.89

2, 1, 10, 0.8 2 6.61 1 25.89
2, 1, 30, 2 1 9.50 1 119.17
6, 1, 3, 2 4 14.39 4 15.89
6, 1, 10, 2 4 16.97 2 27.16

over time. Then, based on the above optimization procedure, the value ofn can be optimized after every time interval
autonomically. The data of the arrival times for a small window of time can be taken and updated arrival rates can be
calculated. The time interval should not be very big so that we have stale information. At the same time, we assume
that the time period is long enough that steady state is reached.

It has been assumed till now that all class 2 requests are admitted at all times. A variation of the problem is to have
some admission control policy for admitting class 2 requests. The acceptance or rejection of requests of both classes
can be interactively controlled. Based on the number of class 1 and 2 requests and average delay experienced by
class 2 requests, the admission of arriving requests of both the classes can be controlled. In the problem, the file size
distribution is assumed to be exponential. So, similar analysis could be tried if the file size is a non-exponential. It
may be possible to extendMGM using phase type distributions as well.
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