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Abstract

In this paper, we consider a queue whose service speed chaogerding to an external
environment that is governed by a Markov process. It is ptesshat the server changes its
service speed many times while serving a customer. We dastand second moments of the
service time of customers in system using first step analgsibtain an insight on the service
process. In fact, we obtain an intriguing result in that themments of service time actually
depend on the arrival process! We also show that the meaitseate is not the reciprocal of
the mean service time.

Further, since it is not possible to obtain a closed form esgion for the queue length dis-
tribution, we use matrix geometric methods to compute perémce measures such as average
gueue length and waiting time. We apply the method of larggatiens to obtain tail distrib-
utions of the workload in the queue using the concept of gfledandwidth. We present two
applications in computer systems: 1) Web server with maldtss requests and 2) CPU with
multiple processes. We illustrate the analysis and vanoethods discussed with the help of
numerical examples for the above two applications.

Keywords: Markov modulated processes, first step analysis, matrixngéic method,
large deviations.
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1 Introduction

There are several articles in the literature that talk albow-varying arrival rates into queues,
for example, non-homogeneous Poisson processes, Markdulated Poisson process, Markov-
ian arrival processes, variable rate fluid arrival procgsstate-dependent arrival processes, etc.
However, relatively little work has been devoted to timeyuag service rates (exceptions include
the state-dependent service rate case and the serviceordtelcase). In fact, most papers and
books that deal with properties such as stability of timeavey systems, mainly derive results for
time-varying arrivals. One of the reasons for this can bébatied to the fact that in most situations
the service speed does not arbitrarily change with timeg@xsay in computer processors, web
servers, etc. where a single processor works on multipkeijoparallel.

In this paper, we consider a single server queueing systémimfinite waiting space where
customers bring a random amount of work. The server proséissevork at different speeds which
are piecewise constant over random periods of time. Thesgyjgical in computer systems where
processors serve several applications in parallel, of kvirie are interested in one application’s
performance. The amount of processor speed availableifoapiplication depends on the number
and type of other applications running on the processohanlight we model the processor as a
single server with processing speeds that vary accordiagstochastic environment process. For
this single server queueing model with time-varying sexvates, our aim is to obtain the following
performance measures: (i) mean and variance of the seimieein steady state using first-step
analysis; (ii) average queue length and average waiting tising matrix geometric methods; (iii)
tail distribution of the system workload under steady stesi@g large deviations theory.

From a methodological standpoint, all three techniquest (§irep analysis, matrix geometric
methods as well as large deviations) have been used ex¢gnisithe literature to solve problems
in queueing theory. The key contribution of this paper, tesiinnovatively using the above three
methods, is to open a new avenue of research problems, asthastically varying server speed
problem has received very little attention. There are a fewlas that are related. The first is
Zhou and Gans [28], where the authors state that time-vgsgrnvice rate problems have not been
studied in the literature.

The key difference between Zhou and Gans [28] and ours isttiet consider service speeds
that change only when a customer completes service. Sdkeunliour paper, the server speed
cannot change during the middle of a service. In additior, gérvice rates mainly take only
two values in Zhou and Gans [28]. Boxma and Kurkova [5] comsican)/ /G /1 queue where
the speed of the server alternates between two values vgthdpieed periods having exponential
distribution and low speed periods having a general digioh. Motivated by the transportation
system where if an incident occurs on a road segment all thieles on the road have to lower their
speed until that incident is cleared, Baykal-Gursoy an X8 considers a//M /oo queueing
system subject to random interruptions of exponentiatibisied durations. Another related article
is Nufiez-Queija [20] where the author considers a specsd ohwhat we consider in this paper,
namely the environment process is a specific birth and deatteps (i.e. queue length process
of an M /M /c/c queue). For that system the author uses matrix geometricadeto derive the
mean waiting time and mean number in the system. In this pamegeneralize the environment
process to any Markov process, and also obtain other peafozenmetrics such as the service time
moments and tail distribution of the workload in steadyestat



Before describing how this paper is organized, we touch woome of the related work. There
are several articles in literature that consider queuels twite varying arrival times. There are
many articles (for e.g. Takahashi and Wang [26], Ahn and J2Prthat analyze queues with
Markov modulated arrivals. Some researchers like Adan arkiafni [1], and Cidon et al [6], an-
alyze queues that have inter-arrival times and servicestolependent on each other. On the whole,
researchers have focussed more on analyzing queues wilvairying and Markov modulated ar-
rivals. On the other hand, there have been very few artiatelarkov modulated service times
and rates (besides Zhou & Gans [28], Nufiez-Queija [20], Bo¥rKurkova [5], and Baykal-
Gursoy & Xiao [3]). However, there are several articles awvise rate control where service rate
is time-varying (for example, Sharma [25]). Some paperes Massey [18] talk about queues with
deterministic time varying rates in telecommunication eled Also, Collings and Stoneman [7]
considers a\//M /oo queue with deterministic time varying arrivals and serviates. But, the
Markov Modulated service rate problem in which the servates vary according to an environ-
ment process is still unexplored to the best of our knowledge

The rest of the paper is organized as follows. In Section & ptioblem under consideration
is described in detail with all the notation (in Table 1). Tapplications related to the problem
are described in Sections 2.1 and 2.2. In Section 3, we déve/érst and second moments of the
service time of customers in system using first step analy$&ing obtained some idea on the
service process, we look at some performance measures/ékage waiting time in system and
average queue length using matrix geometric method in @edti In Section 5, we apply large
deviation analysis to obtain tail distribution of the warll in system. Finally, in Section 6, we
conclude our paper with ideas on some extensions and futonie w

2 Problem Description

The purpose of this paper is to study a queue whose servigeitaparies over time. That is,
the speed of the server with which it serves a customer, exmgted by an external environment
process. In particular, we assume that the server speegehaccording to a Continuous Time
Markov Chain (CTMC) that is independent of the arrival pssand service requirements of the
customer. Each customer brings a certain random amount i, Wiowever, the rate at which
this work is completed is time-varying. For example, the/eeserves at different rates (bytes per
second) over time to serve a request that needs a certainenailyytes of work. Other than that,
the queue is a fairly standard one. We assume that the custamtbe queue are served in a First
Come First Served (FCFS) manner. For this model, we obtandimd second moments of the
service times, average steady state number in system, ibdstabutions of workload in system.

The system is represented schematically in Figure 1. Cuetatrive into the queue according
to a Poisson process with mean rateustomers per unit time. Each arriving customer brings a
certain amount of work distributed exponentially with melgiu. Let X (¢) be the number of
customers in queue at tinte Let Z(¢) be the state of the environment process which governs
the server speed at tintesuch that{ Z(¢), t > 0} is an ergodic CTMC. When the state of the
environment process(t) = i, the service speed availabléjs That is, the server can dpamount
of work per unit time. Let; be the instantaneous service completion rate when theoemagnt is
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Figure 1. Schematical representation

in state:. Typically, 6y = pbz). The bivariate stochastic procegsZ (t), X (t)),t > 0} is also

a CTMC. However, closed form solution for the steady statdability distribution is difficult.

In steady state, wheh— oo, the processeX (¢) — X andZ(t) — Z under certain conditions
of stability discussed in Section 4. We will discuss and imeegrocess (Z(t), X (¢)),t > 0} in
Sections 3 and 4. All the notation described in this sectrahthe rest of the paper is summarized
in Table 1. Before analyzing the system and deriving perforoe measures, we present two
examples below that motivated this research. These examyllebe used throughout the paper
for numerical results.

2.1 Application 1: Web Server with Multiclass Requests

The above scenario can be applied to a web server processjngsts of different classes. We
consider multiple classes of requests with varying Qualftiservice (QoS) needs. Specifically,
there are two main request classes, onesseamingclass that has bandwidth requirements, and
the other is amlasticclass that utilizes the processing capacity not used bytteaming requests.
The motivation for this comes from the fact that most web gaugve both streaming as well as
elastic requests that need to be delivered to the users.elndimmunication networks commu-
nity, researchers have considered both these classeataypdor analysis. Research focusing
on streaming traffic can be categorized as ‘loss networlke® Ross [24], Roberts [23], Kaufman
[12]) while research that caters to the needs of elastifidi@dn be categorized as ‘delay networks’.
Bonald and Proutiere [4] considered a queueing network watiging flow-rate (elastic traffic as
the primary flow) and studied flow-level dynamics. Howevearwfew articles (such as Quieja
[20]) have considered both traffic simultaneously for as@ly

In this system, there ar®’ types of requests within the streaming class. Tygéor ¢ =
1, 2, ..., N) streaming requests arrive according to a Poisson procgissmean arrival rate\;.
The requests (if accepted) are served in parallel as sobregpsairive. Let the server capacity Be
bytes per second. Each typstreaming request consumes a fraction (sdoytes/sec) of the server
capacity. Each typéstreaming request stays for a time exponentially distebutith meant / ;.
The remaining capacity unused by the streaming requesifered to elastic requests which arrive



according to a Poisson process with mean pagnd request files exponentially distributed with
meanl/u. The speed at which the server works on the elastic traffiesaver time, depending
on the number and type of streaming requests present.

First, consider a case wheré = 1. Consider a web server with the following “static” ad-
mission control policy. The maximum number of streaminguesis allowed simultaneously is
‘n’. That is, an arriving streaming request is rejected if ¢hare 1’ ongoing streaming requests
at that time, else the arriving request is admitted and atexta fixed bandwidth-;’. All arriving
streaming requests are admitted into the system. That @gdshed by choosing > 0 such
thatS = nr; + ¢, whereS is the processing capacity of the web server. The processahg the
streaming requests does not depend on the elastic reqAesisif there aren streaming requests
being served upon an arrival of a new streaming request,@lwaequest is blocked. Thus, in this
example, theZ(t) (environment) process is the queue length process &f AW /n/n queue. This
special case is solved by Nufiez-Queija [20] using matrixggtac method. In this paper, we have
a more general case, where the generator majrig,not just that of an\//M /n/n queue.

For our example, we considér = 2 where there are two bandwidths for the streaming traffic.
This is very common in websites that broadcast sports (famge, World cup soccer and cricket)
over the internet. The users are given an option to seleabithe two bandwidths offered depend-
ing on their connection speed. Let us denote the two bantwiolyr, = 0.265 (low bandwidth)
andr, = 0.350 (high bandwidth). Let the processing capacity of the welbesebe S = 0.650.
The arrival rates of requests for the two bandwidths (low laigth respectively) are exponentially
distributed with parameters, = 1, A, = 2. The holding times are exponentially distributed with
parameterg;; = 2, u, = 3 for the two bandwidths respectively. The arrival rate ang size of
elastic traffic are exponentially distributed with respexparameters = 3 andu, = 8. The possi-
ble states of the environment process (i.e. state of streatraffic) are(0,0), (1,0), (2,0), (0, 1),
(1,1), where the first tuple represents the number of ongoing lowdWwalth requests, and the sec-
ond one represents the number of ongoing high bandwidtresgguThe corresponding available
bandwidths for the elastic traffic abg, o) = 0.650, b0y = 0.385, b2,y = 0.120, b1y = 0.300,
andb(, 1y = 0.035. So, the infinitesimal generator matixis given by

—A1 — Ao A1 0 A2 0 -3 1 0 2 0

M1 —H1 — )\1 - )\2 )\1 0 )\2 2 -5 1 0 2

Q= 0 211 2 0 0 =l 0 4 -4 0 0
125 0 0 — U2 — )\1 )\1 3 0 0 —4 1
0 15 0 M1 —p1 — fi2 o 3 0 2 =5

We will look at this example later again in Sections 3, 4 and 8litain performance measures
for the elastic traffic queue.

2.2 Application 2: CPU with Parallel Processes

Another application where the problem in Section 2 can be edhiately applied is a Central
Processor Unit (CPU) of a computer which runs multiple psses in parallel. The process that
is of our interest is a software agent that submits taskse¢d2AU continuously throughout the
day. Assume that the software agent submits tasks accomiadPoisson process and each task



hasexp(u) work in it that the CPU has to perform. If the only process iingron the CPU is that
of the agent, it receives all the CPU speed. However if thexdeav other processes running on
the CPU, only a fraction of the CPU speed is available. Henmetd various processes running
at the same time, the processing speed for the agent tasks waer time. This system can be
modeled as a queue with time varying service rates. Thecgeraies vary according to an exter-
nal environment process, which is due to the other procekseésun on the CPU. Note that it is
not necessary that the CPU is shared equally among all mesedVe use a very generic model
for the available processing capacity of the CPU. Let thelavi@ capacity vary according to a
CTMC {Z(t), t > 0} with generator matrix) such that at time the available processing speed
for the agent tasks is,(;). Thus, this can also be modeled as a queueing system deseadeer

in Section 2.

Throughout the paper, we will consider the following nuroatiexample for illustration pur-
poses. For numerical examples, we will consider various$oof () andb ). We present an
example to illustrate how this application boils down to temsidered problem. There are 5 pos-
sible server speeds, i.€/(t) takes values 1 to 5. They abe = 1, by = 2, b3 = 3, by = 4, and
bs = 5. The infinitesimal generator matr{y is a 5x5 matrix given by

6 2 1 2 1
1 -7 3 2 1
Q=1 3 2 -8 2 1
2 1 1 -5 1
3 4 1 2 -10

The mean arrival rate is = 2.5 and the mean task siz2¢u = 1.

3 Finding First and Second Moments of Service Time

Let us consider the problem described in Section 2. Sincedihwce rate keeps changing according
to an external environment, it is not clear how long each estjis served. We will hence derive

the first and second moments of service time experienced hybétnary customer in steady state.

Finally, we will apply the results developed in Section 2ihtimerical examples.

3.1 Conditional moments

Consider an arbitrary customer in the queue in steady dtateder to obtain the moments of the
service time experienced by this customer, we need to knewttite of the environment process
when the service starts. Hence, we begin by deriving regultihe first and second moments of
service time and when the service begins with environmestiitei, denoted by (7;) and £(77?)
respectively. We now state and prove a theorem to obtain téieaind second moments of this
conditional service timef(T;) andE(T7). Letg;; be the element of the generator matghof the
environment process that correspondstiborow and;jth column and ley;= —¢;;. Also, letd; be
the rate of completion when there anequests.



Table 1: Notation

H

| Variables | Explanation
A Arrival rate of requests
1/u Average work requested per customer
Z(t) State of the environment process at titne
Z Whent — oo Z(t) — Z
X(t) Number of requests in system at tithe
X Whent — oo X (t) — X
b; Service capacity whef (t) =i
0; Rate of completion of requests when thereiameuests
Q Infinitisemal generator matrix of the environment process
%% Average delay of requests
S State space withrequests
7@ Steady state probability vector for state space
Di Steady state probability that = i
i Steady state probability that a customer sges iat the beginning of service
T; Service time of a customer whose service begins With i
S Total processing capacity of the web server
n Maximum no. of streaming requests allowed simultaneously
r; Bandwidth allocated to each streaming request of iypken admitted in example
c Minimum bandwidth for elastic requests in example 1
by Arrival rate of typei of streaming requests in example 1
R Auxilliary matrix used in calculating average delay
A(t) Total amount of traffic generated by a source over tithe]
eb(v) Effective bandwidth with parameter
W (t) Amount of workload at time
R Diagonal rate matrix
e(M) Largest eigen value of square matfik
W Amount of work brought in byth customer




Theorem 1 The first and second moments of the service time conditiontlestate of the envi-
ronment process being “i” at beginning of service, are obtd by solving the set of equations

fiE(Ti)_ZQijE(Tj) = 1 1)
J#

and E(T?) is obtained by solving the set of equations

RE(TE) = f;Y_aiB(TY) = 2(1+) q¢;E(Ty)), 2)
i i

wheref; = ¢; + ;.

Proof.

The proof applies first step analysis (Dorman [9], Kulkadr&]) based on the Laplace Stieltjes
transform (LST) of the conditional service time. LEtbe the random variable denoting total
service time that begins in statéor an arbitrary customer in steady state. Lgbe the service
time if the CTMC were always in state Clearly,V; is exponentially distributed with parameter
0;. Let fi= 32,4, qi; + 0; = q; + 0;. Let Ry; be the random variable denoting the time between state
change from to j. Hence, we have

T, =min(V;, Riiiz) —+ | F 1
( J(J#)) { T; w.p qz'j/fi Vj # .

Taking LSTs on both sides, we get

Ji 0; n > i Gi B (e757T9)

—sT; - %[22
Ble™) = s+ fi [fz i

].

Arranging terms, we have

0; n Dt C_Iz'jE(e_STj)‘

E(eh) = 3
(e™™) ST " 3)

Taking derivative of Equation (3) with respectdpand substituting = 0, we have
FE(T) =>4 BE(T) = 1. @

J#i

This is identical to Equation (1). By solving Equation (4ewetE(T;) Vi =1, 2, ..., n,
wheren is the number of states of the environment process. Takiegékoond derivative of the
LST in Equation (3) w.r.t, and substituting = 0, we get

RE(TE) = f;Y_aiB(TY) = 2(1+) q;E(Ty)). (5)
i i



Solving Equation (5), we gef(77?) Vi =1, 2, ..., n.
]
Now, in order to derive the unconditional first and secondisertime momentsf(7") and
E(T?) respectively, we use

-

.
I
—

B(T?) = Y #E(T?) ()

-

.
I
—

wherer; is the probability that a customer sees the environmenggom state at the beginning
of service.

For Equations 6 and 7 we need to obtain an expressiort;foOur conjecture is that; is
related top;, which is the steady state probability that the environnieint statei. Thep;’s can
be obtained by solvingy;|@Q = 0 and}", p; = 1. We devote the next section to obtainifig the
probability that a customer’s service begins when envirenthprocess in state

3.2 Computing 7;

Upon running extensive simulations (as shown in Sectiorl3.8%e observe that; is not only a
function ofp; but it also depends oA, the arrival rate. This is indeed an intriguing result, as the
service time is in fact a function of the arrival rate! Retabty, we find that it is intractable to
obtain a closed-form expressions®f(except for some special cases, which we will show next)
in terms of \. We now analytically illustrate howt; is different for two special cases — 0
and)\ — oo. Later in Section 3.3.1, we suggest that we could use oneeddpiiecial cases as an
approximation.

3.2.1 Special Case 1: Arrival rate approaching zero
For this special case of — 0, we use the notatiof,” for 7;, i.e.

~0 . A

;0 = lim 7;.
(2 X0 7

The following theorem derives an expression4gt.

Theorem 2 In the asymptotic case @f when\ — 0, ;" = p,, wherep; steady state probability
that the environment is in state

Proof.

When A — 0, we can say that each arrival will see the queue empty w.p. theater-
arrival times are very large. Therefore for the customezsyise will begin as soon as an arrival
takes place. In addition, due to PASTA, an arriving customiirsee the environment process
{Z(t), t > 0} in statei w.p. p;. Hence, service will begin when environment process isadtest
w.p. p;. Therefores,” = p;.

[

Remark 1: From Theorem 2, wheh — 0, E(T') = >, p, E(T;).



3.2.2 Special case 2: Arrival rate approaching infinity

Let us consider another asymptotic case in which the raternfas approaches infinity. Since
A — 00, we can also say that the number in queue waiting for sersia#inite, or X (¢) = co.
This means that the server would serve non-stop. For thisapsase ofA — oo, we use the

notationr;* for 7;, i.e.

;0 = lim 7.
A—00

We now present a theorem that relatgs to p;.

Theorem 3 The relationship between the service start probabilities and stationary probabil-
ities p; is given byr;> = p;0; /Z _, p;¥;, wheref); is the rate of service completion when the
environment process is in state

Proof.

Let S,, denote the time when theth event occurs where theth event can be either a state
change in the environment process or a service completiery,,. = Z(S,,+) be the state of the
environment process just after theh event took place. Consider a Markov regenerative seguenc
{(Yn, Sm), m > 0} from which we can build a semi Markov process (SMP). Theesfare have

P{Sn > t‘Yn = ’L} = 6_(0i+Qi)t’
whereg; = 3°,..; ¢;; = —gi:. The kernel of the SMP is

qij _ o (qi+0i)t . . .
Gii(t) = P{Yp41 = 7,5, < t|Y, =i} { m(l e~ (ai+ )) Zf j#z,

The steady state probability that the SMP defined above isate 5is same as that of the
environment process. Hence we hayas the probability that the SMP is in state steady state.
Let G(o0) = [G;j(00)]. What is unknown at this time i&;, the probabilities that the SMP is in
statei at the beginning of an epoch. It can be obtained by solving AG(o0) and}” A; = 1.
However, what we are interested is in the relation betwéerandp;. Using SMP results (see
Kulkarni [15]), we have

b= Aif(0i + ¢) _
LN 0/(0;+ )

Notice that a fractlor;T of state changes in the SMP correspond to a service commpletio
Since there are infinite customers in the queue, beginnisgmice of a new customer starts im-
mediately after a service completion. So, the fractatéfn of state changes in the SMP correspond
WE?O/@Z'

Hencep;, = <++-—,
) A Zj 7r]C?o/‘gj

to a new customer beginning service. Therefore, we have- A, (

i.e.p; x wi >/, or wi x p;0;. Therefore, by normalizing we have

T = pibi) > p;b;
=1

10
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Remark 2: From Theorem 3, wheh — oo, E(T) = I, piti E(T3)/ 375, p,0;. Using result
from point processes it is possible to show thdfl") will converge to the reciprocal of the time-
average service rate. This will be addressed in Section Bh&hwve discuss time-average service
rate.
Remark 3: Clearly from Remarks 1 and Z(7") depends on the choice af

3.3 Simulation experiments, approximations and numericaéxamples

In Section 3.2, we derived; for special cases of arrival rates (namgly- 0 and\ — o). We ran
simulation experiments to study the effect of arrival raten the average service time. Further,
we investigate good approximations fgrfor any general arrival rate. In Section 3.3.1, we discuss
the simulation results and in Section 3.3.2, we provide somoee interesting numerical results for
the examples given in Sections 2.1 and 2.2.

3.3.1 Simulation results

Simulation runs were conducted to observe the trend of thedird second moments of service
time with respect to variations in the inter-arrival time afstomers in to the system. A plot
with interarrival time (in appropriate units of time) on Xia and average service time on Y-axis
is shown in Figure 2. The observations from the simulatian as follows. For the run when
interarrival time is just more than the average service tobtined for case. — oo, it was
observed that the queue is stable, and the average semieeastiapproximately the same as that
of A — oo. When inter-arrival times are increased, it was observatlttie average service time
also increases but not as much as inter-arrival times. Whten-arrival times are very large, the
average service times almost remain unchanged and asyoafifotonverge to the average service
time obtained for the case — 0 as seen in Figure 2. For Figure 2(T') when\ — oo is 0.307
sec andt/(T") when\ — 0 is 0.360 sec. For largg, the £(T") corresponding to. — oo would

be a good approximation. We will revisit this again whileatdissing stability condition in Section
4.3.

3.3.2 Numerical results

Based on the findings in Section 3.3.1, we know that for lowriarrival timesz° can be used
as an approximation fat;. So, in this Section, we make use of that approximation telsmme
insights on the service process. Using Equations 6 and 7 btanofirst and second moments of
the service time as 0.3069 and 0.3081 respectively foregmin 1 in Section 2.1 as well as 0.3640
and 0.3298 respectively for application 2 in Section 2.2s0Althe mean and variance of service
time increase with /u, the mean amount of work brought in by a customer. Howevés, ribt
clear how the service process is affected by the ratiQ okrsus\. To address this, we consider
cases when th&(t) process changes quicker and slower than¥lig process. This is done when
the magnitude of all the values in matidxare increased and reduced respectively. Let us say that
the factor of magnification of) matrix bem, i.e. the new) matrix ism(@. In Table 2, we vary
m from 0.001 to 1000 and illustrate this. As — 0 andm — oo, the second moment stabilizes
to two values. The first moments (mean) of service time fongdas in Sections 2.1 and 2.2 are

11
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Figure 2: Interarrival time vs Average service time

respectively 0.3069 and 0.3640 for all the cases. It is degtralsn increases, the second moment
(and thereby variance) of the service time decreases.

Table 2: Second moment of service time

m 0.001 | 0.01 0.1 1 10 100 1000
Second moment (Application 1)0.4527| 0.4219| 0.3081| 0.2193| 0.1928| 0.1888| 0.1884
Second moment (Application 2)0.3651| 0.3603| 0.3298| 0.2813| 0.2669| 0.2652| 0.2650

4 Performance Measures: Average Delay and Queue Length

Having derived the moments of service time, we now concentna obtaining system performance
measures such as mean delay in this section (average qugile éan be easily computed using
Little’s law). For this, we need to analyze the stochastimcpss{(Z(t), X(¢)),t > 0}, a two
dimensional CTMC, which is also a Quasi-birth-death (QBD)gess. It is not possible to use
generating function or other such techniques to obtaineddsrm expression for steady state
probabilities. Additionally, we cannot model thé(¢) process as an//G/1 queue and use the
first and second moments of service time, as the service ireg®t iid. Hence we resort to Matrix
Geometric method (MGM), which we will explain in detail. $8QBD has a special structure,

12



MGM can be used to obtain the desired performance measuranderstand the QBD process,
we review the concept of birth-death process first and theb Qi cess (Section 4.1), which will
be useful while applying MGM. The general theory of MGM andawibis applied to our problem
is explained in Section 4.2. Although we understand that MiSM mature tool, we feel that a
brief explanation would ensure smoother reading.

4.1 Quasi-birth and death process

In order to understand Quasi-birth-death process, we vt svith the definition of birth-death
process as per Thorne [27].

Definition: The continuous-time Markov proc€ss(¢) : ¢t > 0} is a birth-death process if the
only two possible transitions are — n + 1 with birth ratesq(n,n + 1),n > 0, andn — n — 1
with death rateg(n,n — 1),n > 1. If S is the state space, the infinitesimal generator matrix for a
birth-death process is as follows:

—¢(0,1) ¢(0,1) 0 0 0
Q(LO) _Q(1> Q(172) 0 0

0 Q(Qv 1) _Q<2) Q(273> 0

0 0 Q<37 2) _Q<3) Q<37 4)

whereq(j) = q(j,7 — 1)+ q(5,7 + 1) Vje S and j>0.
The above process cannot skip adjacent states and hencalleis “skip free” in the states. Birth-
death process is a special case of more general class calkesi-Qirth-death process. As per
Latouche et al [17], the definition for quasi birth-deathqass is as follows.
Definition: A continuous time Quasi-Birth-Death (QBD) pess is a continuous time Markov
process whose infinitesimal generator matrix is of the bjmakitioned form

B, A4 0 0 0
A, Ay A 0 O
0 Ay A A O

QQBD =
0 0 Ag A1 AO

whereA,, A, A, and B, aren x n matrices

After partitioning the states into subsets called levalghsthat a position within the level is
termed as phase. The process can jump down one level, staysame level or jump up one level,
and the rate that these transitions occur are givedfyAd; and A, respectively. The process is
said to be skip free between levels.
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4.2 Matrix Geometric Method for QBD Analysis

There exists a matrix geometric relation among the statjom@babilities of the[ (Z(¢), X (¢)),t >

0} process. In matrix geometric method, an auxiliary matrilechR is used in the calculation of
stationary probabilities and other measures of interkstwaiting time and mean queue length.
The main computational effort is in obtainidg) which is frequently done numerically. For a level
independent infinite level CTMQ is obtained as follows.

Computation of matrix R: The matrixR has a following quadratic relation (Ramaswami [21],
Riska [22]):

Ag+ RA, + R*Ay, = 0. (8)

Equation (8) has to be used recursively to solve Ror There is a lot of research going on to
find R efficiently but we will not go into those details in this papé&feuts [19] defines infinite-
state Markov chains with a repetitive structure with statsce partitioned into the boundary states
SO = {5l .....sn} and a set of state&?) = {s!,....., s7} Vi > 1, that correspond to the repetitive
portion of the chain. Let® be the steady state probability vector of stat¢®. Then

70 = MR-y >,

SolvingmQqpp = 0 will give both 7(® and=("). The following set of equations are obtained:

W(O)Bo+ﬂ(1)A2 = 0,
W(O)A0+7T(1)(A1+RA2) = 0,

Qe+ 7W(I - R)te = 1. (9)

Oncer® andr? are obtained, the expected waiting (including servicegtiria job in the system
can be calculated as follows:

W =\"Y7W(I - R) e+ 7WR(I — R)2%e) (10)

whereW is the average delay or holding time ands the column vector of ones. This is how
average delay can be computed.

Now, we resort to our QBD proceg$Z(t), X (t)), t > 0}, which indeed is a CTMC. Recall
that the environment proce$6Z(t), X (t)),t > 0} is a CTMC withg;,;, the rate of transitioning
from state; to statej. Also ) is the arrival rate of requests afidis the rate of completion of
requests when there areequests. The following theorem derivég, A, A,, B; matrices for our
QBD process in terms of, ; andg;;.

Theorem 4 The structure of the infinitesimal generator for tii$3 D problem is shown below:

A0 0 ... 0 s(1) q2  qus e Qn

Oox 0 ... 0 @1 s(2) g3 e Qon
Ay = 00 X ... 0 A = gs1 Q32 8(3) q34

0O 0 ... 0 A Gn,1 qn,2 s Qnn—1 S(n)

14



wheres(i) = — >, ., q;; — A — 6; and

91 0 0 ... 0 u(l) d12 q13 N din

0 92 0O ... 0 421 u(2) g23 . Gon
A,=| 0 0 03 ... 0 B, = @1 g2 u(3) gu

o o0 ... 0 6, i Qn2 - Gnn u(n)

whereu(i) = — 3, qij — .

Proof.

Consider the CTMQ(Z(t), X (t)), t > 0}. Rearranging the states of the CTMC suitably, we
can write down its generator matrix in QBD form. From that nxatve can obtaimd,, A, A,, B;
matrices as given in the theorem.

|

Note that{(Z(t), X(¢)), t > 0} is a level independent infinite-level QBD process. Hence,
substituting the above matricel, A;, Ay, B, in the set of Equations (9), we get” andz™.
Then, from Equation (10), we obtain the average delay. Tleeage delay assumes that the QBD
is ergodic. We now state the condition for stability for &/ (¢), X (¢)), t > 0} process with the
understanding th&tZ(t), ¢t > 0} is ergodic.

4.3 Stability condition for the system

Note that the average service rate offered by the queu&'is; ). The following theorem states
the stability condition.

Theorem 5 The necessary and sufficient condition for the stabilithefqueue with queue length
process{ X (t), t > 0} is

# < 1
pEbzm)

whereE[bz )| is the average service speed of the server.

Proof.

The proof follows from Nufiez-Queija [20], whefeZ(¢), ¢ > 0} is a birth and death process.
To extend the analysis in Nufiez-Queija [20] to the geners# c&{ 7 (¢), t > 0} is straightforward.

|

Remark 4: Numerical investigations reveal that the MGM stability ddion given in [22] is
same as given in the above theorem. The MGM stability camditan only be checked numeri-
cally. This provides a closed form expression that can bd fahe analysis of stability.

Recall thatE(T) is the average service time and it is a functionof One of the curious
questions that comes to mind is the relationship betwe@h) anduE (b ).

As discussed in Remark 2, as— oo

1

E(T) — 7,UE(Z)Z(¢)).
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Therefore, we have,

=1

pib; E(T; p;0;.
/,LE b t Z )/; J7I
Remark 5: However, based on simulations,

1

E(T) < 7ME<bZ(t)> )

So, if A < uE(bz()) (i.e. stability condition), then automatically< ( E Therefore stability
condition is indeed accurate. The reason the mean senteésraot reciprocal of the mean ser-
vice time is because the former is averaged over time (arlddas server idle periods when the
environment process is not stochastically identical towthe service is busy) whereas the mean
service time is averaged over customers, i.e. when therssriiasy.

4.4 Numerical Examples

We consider the numerical examples described in Sectioarl 2.2. Some of the obvious results
we obtain are: the average waiting time increases wjtlecreases witl and decreases with
Elbz4]. However, itis not clear how the waiting times are affectaddal on the relative frequency
of change in theX (¢) and Z(t) processes. Similar to Section 3.3, we multighby a factorm
and changen to reflect the relative frequency of changeXrit) andZ(¢). If the matrix is scaled
up i.e. largem, it means that theZ(¢) process changes states faster ard i§ scaled downZ (t)
process changes occasionally both in comparisal 9. In table 3, we varyn from 0.001 to
1000 for both the examples. It can be seen thatatecreases the waiting increases drastically.
Higherm implies higher rate of change #i(¢) process. However, as — oo, the average waiting
time seems to converge to the M/M/1 waiting time (with averagrvice time /1 E[by ).

Table 3: Average waiting time

m 0.001| 0.01| 0.1 1 10 | 100 | 1000
Average waiting time (e.g. 1) 342.50| 42.03| 11.72| 4.82| 3.96| 3.88| 3.87
Average waiting time (e.g. 2) 76.99 | 22.51| 6.90 | 4.35| 4.07| 4.05| 4.04

5 Large Deviations Analysis for Tail Distributions

In the previous section, we used MGM method to obtain the nueday 117 and thereby mean
number in the system (via Little’s law}1). The next question is whether it would be possible to
obtain the distribution of any of the performance measufesit turns out, in the 1990’s several
researchers (Elwalid and Mitra [10], Kelly [13], Kesidisadt[14], Courcoubetis and Weber [8])
used the method of large deviations to obtain tail distrdng of the system workload. In that spirit,
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Figure 3: Single Buffer Model

we will take advantage of the theory of large deviationscgmally using effective bandwidth of
the traffic, for our analysis to obtain the tail distributiohthe workload in the queue under steady
state. One of the advantages of this methodology is thatitbeaeasily extended to the non-
exponential case, which we will explain later. We first stdene preliminary results that would
be useful for the reader in terms of the large-deviationsqgpie.

5.1 Preliminaries

Consider a queueing system where a stream of customers artiva queue according to some
random process and each customer brings some random anfouotko Let A(t) be the total
amount of work that arrives into the queue over tifdgt|. Note thatA(t) is a random variable. In
fact, the arrivals need not be discrete, but also fluids so4kg is the amount of fluid that arrives
in time (0, t]. The server works at a constant speedo that whenever there is work queued up,
it exits at ratec. The single buffer fluid model is shown in figure 3. Care mustaken in fluid
arrivals, work load does not jump whenever an arrival ogdursincreases steadily. This is not an
issue for discrete arrivals. This fact is shown in figure 4t &) be the amount of workload in
the system at time The system is stable (i.&V/(t) — W (oco) ast — o0) if

lim @ <c.

t—oo

The theory of large deviations can be used to obtain thei&tilution of the random variable

W (o0). This requires the use of the effective bandwidth concepe &ffective bandwidth of the
input stream of traffic is defined in terms dft) as

eb(v) = lim % log E[eA)].
According to the theory of large deviations, for large valoéu,
P{W(c0) > u} ~ e ™, (11)
wheren is the unique solution (if the system is stable) to
eb(n) = c. (12)
Note that in order to use the above result, the server speaasst be a constant at all times.

However, in our problem the server speed changes. We wilinrsthee next section how to use a
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Figure 4. Workload Sample path for discrete queues
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Figure 5: Single buffer with two sources

compensating source so that we create an equivalent sydtene wthe server speed can be kept a
constant. To use the large deviations result for this systemeed another result. Consider two
independent streams of traffic that enter a queue with sepasdc. Let A;(¢) and A,(t) be the
total amount of work that arrives into the queue over tiiti¢] from the two streams as shown in
figure 5. Fori = 1, 2, let the effective bandwidth of traffic streainbe

ebi(v) = lim % log E[ev™].
Then, according to the theory of large deviations, for largleies ofu,
P{W () > u} =~ e ™, (13)
wheren is the unique solution (if the system is stable) to

ebi(n) + eba(n) = c. (14)

In the next subsection we will use all the results here forpablem defined in Section 2.

5.2 Tail Distributions Using a Compensating Source

We now use the large deviation results based on effectivévaidiths from the previous subsection.
First consider the queueing system in Section 2. Customeve according to a Poisson process

18



(with mean rate\). We first consider the general case where each customegsbaimrandom
amount of work, independent and identically distribute@t®r customers such that the CDF of
the amount of work is7(-). Subsequently we will consider the case on Section 2, nassai
customer bringing:xp(x) work with them. LetlV; be the amount of work brought by thé
customer((u) = P{W; < u} with LST G(s) = E[e—*"i]. Let N(t) be the number of arrivals in
time (0, ¢]. In addition,A(t) = Wi+ Ws+...+ Wy, In order to compute the effective bandwidth,
we first deriveE[e*4(")]. We have,

E[e" W |N(t) =i P(N(t) = i)

o

Il
=)

E[evA(t)] _

7

_ 6—At+i[é(_v)]ie—)\t ()‘t)l

1!

— M4 [eAt(?(—v) . 1]€—>\t

MG (=0)-1)

The first equation above is by conditioning on the number w¥als in time (0, t] and the second
equation is due to the definition of LST. Therefore, the dffedandwidth of this stream of traffic
iseb(v) = 2[G(—v) — 1].

Now, for the special case when the amount of work is expoakytistributed with mean /1.,
we haveG(u) = 1 — e " andG(—v) = et SO,eb(v)=%[ﬁ — 1] = .25 If the server speed is
a constant speed, in particular for the standaird\//1 queues = 1. Thuseb(n) = ¢ = 1 results
inn = p — A. Hence for larges, P{W(c0) > u} = e~»=M* which in fact, is true for al from

standardV//M /1 results.

In our system considered in Section 2, the server spebdnges with time. However in order
to use the large deviations results we need be a constant. A technique that can be used when
the service speed is not constant is to have a compensate@agrsbf traffic such that th&/(¢)
process is unchanged ant a constant. Using that, we can state the following theorem

Theorem 6 The tail distribution (for largeu) for the amount of work in the queue in Section 2 is:
P{W(c0) > u} =e ™.
wheren is obtained by solving
_ A
e(R+Q/n) + —— = maxb;,
p—n

wheree(A) is the largest eigen value of matrikand R is diag(c — b;).
Proof.

Consider the following two systems (the first is what we diésct in Section 2 and the second
is a fictitious one):

19



e System 1. A single stream of traffic where customers arriee@ling to a Poisson process
with mean rate\ and each customer brings axp(;:) amount of work. The server serves
at different rates according to an environment prodess), ¢ > 0} which is a CTMC with
generator matrix). Attimet the service speedis b ).

e System 2: A fictitious queueing system where there are twatisjpeams and a server with
a constant speed = max; b;. The first input stream is one where fluid enters the queue
at ratec — by, at timet. The second input stream is the usual one where customers arr
according to a Poisson process with mean kaad each customer brings ep (1) amount
of work.

The amount of work remaining at timein both systems are identical for &ll This is because
at timet when the server speedlg, in System 1, in System 2 the server speed is constant at
and an additionat — b, work flows into the system nullifying the extra— bz, capacity that

is available. In order to do this we require= max; b; so thatc — bz, > 0 for all ¢. Since
both System 1 and System 2 have the same workload at all timeestudy System 2 using large
deviations with the understanding that the tail distribns of the work load would be identical to
that of System 1.

In order to use the large deviations result for System 2, veel rdfective bandwidths of both
streams. For the first stream, [Btbe a diagonal rate matrix such tha&t, = diag(c — b;). Note
that the rows of the? matrix need to correspond to the rows of tQematrix. Lete(M) denote
the largest real-eigen value of a square mattfixThen the effective bandwidth of the first stream
is eb(v)=e(R + @Q/v) (due to a result in Elwalid and Mitra [10]). From the previgigsection,
the effective bandwidth of the second stream i§;. — v). Using Equation (14), we obtainby
solving

e(R+Q/n) + M—iﬁ = maxb;. (15)

Therefore the tail distribution (for large for the amount of work in the queue of System 1 is:
P{W () > u} =e ™. (16)

|

Recall that we had earlier mentioned that the amount of wartkstiomer brings need not be
exponential, we can still obtain the effective bandwidth.fdct the{Z(¢),t > 0} process need
not even be a CTMC. If the input process is a semi-Markov me¢8ee Gautam et al [11]) or
a Markov regenerative process (See Kulkarni [16]), conmgugffective bandwidth is possible.
Therefore these tail probabilities can be applied to a muckergeneral setting than what is con-
sidered here. One of the main applications of tail distidng is to obtain overflow probabilities
in buffers. These are illustrated in the following subsmtti
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Exp(u) work
System 1 System 2

Figure 6: Representation of systems 1 and 2

5.3 Numerical Example

Consider the example in Section 2.1 where mean arrival sate= 3 and work to be done is
exponentially distributed with parameter= 8. The total bandwidtly’ = 0.650. The two available
bandwidths are; = 0.265 andr, = 0.350. We show the steps involved only for the one in Section
2.1 for illustration purposes (as a very similar process isd followed for the example in Section
2.2).

USing theb values in Section 2.k, = max(b(op), b(LO), 6(270), b(071), b(171)) = 0.650 and

0 0 0 0 0

0 0265 O 0 0
R={0 0 0530 0 0

0 O 0 0350 0

0 0 0 0 0.615

Using Q matrix in Section 2.1 and?, solving forn in Equation (15), we get = 6.3081.
For largeu, we use Equation 16 to obtaii(1W (co) > u) = e 3% Thus, we can find tail
distribution of workload in system in steady state. For egkanthe probability that the work load
exceeds 2 (i.eu = 2), is approximately3.32 x 107°.

6 Concluding Remarks

6.1 Conclusions and Extensions

We consider a queue where the service rate changes overttoalang to a changing environ-
ment process that is governed by a Markov process. To getsp grathe service process, we
derive equations to find the first and second moment of thecgetime using Laplace-Stieltjes
transforms. We obtain a curious result in that the mean @ettime is not equal to the reciprocal
of the mean service rate. In fact, the mean and variance wtsdime depend on the arrival rate.
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The performance measures, mean waiting time and average tpregth, are calculated using ma-
trix geometric method. In the analysis, we use a combinaifdtuid traffic as well as a discrete

traffic to obtain work load distribution, thereby overflowopabilities. The analysis is illustrated
using numerical examples wherever appropriate. We usadatiions to cross check our analytical
results everywhere. It was observed that the second morfeatwce time is higher and in turn,

the average waiting time is higher if the environment precesies slowly with respect to queue
length keeping the mean service time constant.

In this paper, we have assumed FCFS service disciplineghmu. This can be extended to
other service disciplines like processor sharing direcllite transition diagram of the bivariate
stochastic process remains the same and so most of theianalysll valid for other service dis-
ciplines. The performance measures like average queuthland average time in system (delay)
obtained from matrix geometric method will be exactly thenea Even if the elastic requests are
served in parallel, the infinitesimal generator maixs identical to the one if the elastic requests
are served in FCFS fashion. That is, the transition diagratheFCFS is exactly the same for
both cases. Likewise, the large deviations results wouldnadfected as the results only calculate
the total workload. All work-conserving schemes would giglentical results.

6.2 Future Work

In section 4.2, we compute average waiting time of the custerm system. In section 3, we
derive equations to obtain first and second moments of setiie of the customers. Obtaining
the distribution or at least second moment (thereby vaelpot the waiting time in system, in
addition to average waiting time, would be much more helpfuinderstanding the system. Thus,
one of the future tasks would be to compute the second mon#éme evaiting time. The eventual
goal is to obtain the distribution of waiting time.

In future, we will consider extending the results in this @atp the case of non-exponential
systems. In particular, the arrival process would be rehem@k brought by each arrival is from
a general distribution, and/or the environment prodgs&), ¢ > 0} is a more general process
such as a Markov regenerative process. Although we indidat8ection 6.1 that these extensions
are straight forward for large deviations case, the MGM ysialcan be done only under special
circumstances such as Phase type distributions.

Other applications in the future include solving design andtrol problems. For example,
consider the application in Section 2.1. For the web seitvisrimportant to design the number of
each type of streaming request to admit (ke. n5, ...). To solve such a problem, a mathematical
optimization model can be formulated such that by solvingé can design a web server system.
In addition, we can study adaptive control systems in CPUieggon in Section 2.2. In particular,
the agent can decide (based on CPU load) when to accept tasksen to send tasks to the CPU.
The authors are in the process of investigating some of theeadispects.
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