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Abstract

In this paper, we consider a queue whose service speed changes according to an external
environment that is governed by a Markov process. It is possible that the server changes its
service speed many times while serving a customer. We derivefirst and second moments of the
service time of customers in system using first step analysisto obtain an insight on the service
process. In fact, we obtain an intriguing result in that the moments of service time actually
depend on the arrival process! We also show that the mean service rate is not the reciprocal of
the mean service time.

Further, since it is not possible to obtain a closed form expression for the queue length dis-
tribution, we use matrix geometric methods to compute performance measures such as average
queue length and waiting time. We apply the method of large deviations to obtain tail distrib-
utions of the workload in the queue using the concept of effective bandwidth. We present two
applications in computer systems: 1) Web server with multi-class requests and 2) CPU with
multiple processes. We illustrate the analysis and variousmethods discussed with the help of
numerical examples for the above two applications.

Keywords: Markov modulated processes, first step analysis, matrix geometric method,
large deviations.
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1 Introduction

There are several articles in the literature that talk abouttime-varying arrival rates into queues,
for example, non-homogeneous Poisson processes, Markov modulated Poisson process, Markov-
ian arrival processes, variable rate fluid arrival processes, state-dependent arrival processes, etc.
However, relatively little work has been devoted to time-varying service rates (exceptions include
the state-dependent service rate case and the service rate control case). In fact, most papers and
books that deal with properties such as stability of time-varying systems, mainly derive results for
time-varying arrivals. One of the reasons for this can be attributed to the fact that in most situations
the service speed does not arbitrarily change with time, except say in computer processors, web
servers, etc. where a single processor works on multiple jobs in parallel.

In this paper, we consider a single server queueing system with infinite waiting space where
customers bring a random amount of work. The server processes the work at different speeds which
are piecewise constant over random periods of time. These are typical in computer systems where
processors serve several applications in parallel, of which we are interested in one application’s
performance. The amount of processor speed available for this application depends on the number
and type of other applications running on the processor. In that light we model the processor as a
single server with processing speeds that vary according toa stochastic environment process. For
this single server queueing model with time-varying service rates, our aim is to obtain the following
performance measures: (i) mean and variance of the service time in steady state using first-step
analysis; (ii) average queue length and average waiting time using matrix geometric methods; (iii)
tail distribution of the system workload under steady stateusing large deviations theory.

From a methodological standpoint, all three techniques (first step analysis, matrix geometric
methods as well as large deviations) have been used extensively in the literature to solve problems
in queueing theory. The key contribution of this paper, besides innovatively using the above three
methods, is to open a new avenue of research problems, as the stochastically varying server speed
problem has received very little attention. There are a few articles that are related. The first is
Zhou and Gans [28], where the authors state that time-varying service rate problems have not been
studied in the literature.

The key difference between Zhou and Gans [28] and ours is that, they consider service speeds
that change only when a customer completes service. So, unlike in our paper, the server speed
cannot change during the middle of a service. In addition, the service rates mainly take only
two values in Zhou and Gans [28]. Boxma and Kurkova [5] considers anM/G/1 queue where
the speed of the server alternates between two values with high speed periods having exponential
distribution and low speed periods having a general distribution. Motivated by the transportation
system where if an incident occurs on a road segment all the vehicles on the road have to lower their
speed until that incident is cleared, Baykal-Gursoy and Xiao [3] considers anM/M/∞ queueing
system subject to random interruptions of exponential distributed durations. Another related article
is Núñez-Queija [20] where the author considers a special case of what we consider in this paper,
namely the environment process is a specific birth and death process (i.e. queue length process
of anM/M/c/c queue). For that system the author uses matrix geometric methods to derive the
mean waiting time and mean number in the system. In this paper, we generalize the environment
process to any Markov process, and also obtain other performance metrics such as the service time
moments and tail distribution of the workload in steady state.
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Before describing how this paper is organized, we touch uponsome of the related work. There
are several articles in literature that consider queues with time varying arrival times. There are
many articles (for e.g. Takahashi and Wang [26], Ahn and Jeon[2]) that analyze queues with
Markov modulated arrivals. Some researchers like Adan and Kulkarni [1], and Cidon et al [6], an-
alyze queues that have inter-arrival times and service times dependent on each other. On the whole,
researchers have focussed more on analyzing queues with time varying and Markov modulated ar-
rivals. On the other hand, there have been very few articles on Markov modulated service times
and rates (besides Zhou & Gans [28], Núñez-Queija [20], Boxma & Kurkova [5], and Baykal-
Gursoy & Xiao [3]). However, there are several articles on service rate control where service rate
is time-varying (for example, Sharma [25]). Some papers like Massey [18] talk about queues with
deterministic time varying rates in telecommunication models. Also, Collings and Stoneman [7]
considers aM/M/∞ queue with deterministic time varying arrivals and servicerates. But, the
Markov Modulated service rate problem in which the service rates vary according to an environ-
ment process is still unexplored to the best of our knowledge.

The rest of the paper is organized as follows. In Section 2, the problem under consideration
is described in detail with all the notation (in Table 1). Twoapplications related to the problem
are described in Sections 2.1 and 2.2. In Section 3, we derivethe first and second moments of the
service time of customers in system using first step analysis. Having obtained some idea on the
service process, we look at some performance measures like average waiting time in system and
average queue length using matrix geometric method in Section 4. In Section 5, we apply large
deviation analysis to obtain tail distribution of the workload in system. Finally, in Section 6, we
conclude our paper with ideas on some extensions and future work.

2 Problem Description

The purpose of this paper is to study a queue whose service capacity varies over time. That is,
the speed of the server with which it serves a customer, is determined by an external environment
process. In particular, we assume that the server speed changes according to a Continuous Time
Markov Chain (CTMC) that is independent of the arrival process and service requirements of the
customer. Each customer brings a certain random amount of work, however, the rate at which
this work is completed is time-varying. For example, the server serves at different rates (bytes per
second) over time to serve a request that needs a certain number of bytes of work. Other than that,
the queue is a fairly standard one. We assume that the customers in the queue are served in a First
Come First Served (FCFS) manner. For this model, we obtain first and second moments of the
service times, average steady state number in system, and tail distributions of workload in system.

The system is represented schematically in Figure 1. Customers arrive into the queue according
to a Poisson process with mean rateλ customers per unit time. Each arriving customer brings a
certain amount of work distributed exponentially with mean1/µ. Let X(t) be the number of
customers in queue at timet. Let Z(t) be the state of the environment process which governs
the server speed at timet such that{Z(t), t ≥ 0} is an ergodic CTMC. When the state of the
environment processZ(t) = i, the service speed available isbi. That is, the server can dobi amount
of work per unit time. Letθi be the instantaneous service completion rate when the environment is
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Figure 1: Schematical representation

in statei. Typically, θZ(t) = µbZ(t). The bivariate stochastic process{(Z(t), X(t)), t ≥ 0} is also
a CTMC. However, closed form solution for the steady state probability distribution is difficult.
In steady state, whent → ∞, the processesX(t) → X andZ(t) → Z under certain conditions
of stability discussed in Section 4. We will discuss and use the process{(Z(t), X(t)), t ≥ 0} in
Sections 3 and 4. All the notation described in this section and the rest of the paper is summarized
in Table 1. Before analyzing the system and deriving performance measures, we present two
examples below that motivated this research. These examples will be used throughout the paper
for numerical results.

2.1 Application 1: Web Server with Multiclass Requests

The above scenario can be applied to a web server processing requests of different classes. We
consider multiple classes of requests with varying Qualityof Service (QoS) needs. Specifically,
there are two main request classes, one is astreamingclass that has bandwidth requirements, and
the other is anelasticclass that utilizes the processing capacity not used by the streaming requests.
The motivation for this comes from the fact that most web pages have both streaming as well as
elastic requests that need to be delivered to the users. In the communication networks commu-
nity, researchers have considered both these classes separately for analysis. Research focusing
on streaming traffic can be categorized as ‘loss networks’ (see Ross [24], Roberts [23], Kaufman
[12]) while research that caters to the needs of elastic traffic can be categorized as ‘delay networks’.
Bonald and Proutiere [4] considered a queueing network withvarying flow-rate (elastic traffic as
the primary flow) and studied flow-level dynamics. However, very few articles (such as Quieja
[20]) have considered both traffic simultaneously for analysis.

In this system, there areN types of requests within the streaming class. Typei (for i =
1, 2, ..., N) streaming requests arrive according to a Poisson process with mean arrival rateλi.
The requests (if accepted) are served in parallel as soon as they arrive. Let the server capacity beS
bytes per second. Each typei streaming request consumes a fraction (sayri bytes/sec) of the server
capacity. Each typei streaming request stays for a time exponentially distributed with mean1/µi.
The remaining capacity unused by the streaming requests is offered to elastic requests which arrive
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according to a Poisson process with mean rateλ and request files exponentially distributed with
mean1/µ. The speed at which the server works on the elastic traffic varies over time, depending
on the number and type of streaming requests present.

First, consider a case whereN = 1. Consider a web server with the following “static” ad-
mission control policy. The maximum number of streaming requests allowed simultaneously is
‘n’. That is, an arriving streaming request is rejected if there are ‘n’ ongoing streaming requests
at that time, else the arriving request is admitted and allocated a fixed bandwidth ‘r1’. All arriving
streaming requests are admitted into the system. That is accomplished by choosingc > 0 such
thatS = nr1 + c, whereS is the processing capacity of the web server. The process of serving the
streaming requests does not depend on the elastic requests.Also, if there aren streaming requests
being served upon an arrival of a new streaming request, the new request is blocked. Thus, in this
example, theZ(t) (environment) process is the queue length process of anM/M/n/n queue. This
special case is solved by Núñez-Queija [20] using matrix geometric method. In this paper, we have
a more general case, where the generator matrix,Q is not just that of anM/M/n/n queue.

For our example, we considerN = 2 where there are two bandwidths for the streaming traffic.
This is very common in websites that broadcast sports (for example, World cup soccer and cricket)
over the internet. The users are given an option to select oneof the two bandwidths offered depend-
ing on their connection speed. Let us denote the two bandwidths byr1 = 0.265 (low bandwidth)
andr2 = 0.350 (high bandwidth). Let the processing capacity of the web server beS = 0.650.
The arrival rates of requests for the two bandwidths (low andhigh respectively) are exponentially
distributed with parametersλ1 = 1, λ2 = 2 . The holding times are exponentially distributed with
parametersµ1 = 2, µ2 = 3 for the two bandwidths respectively. The arrival rate and file size of
elastic traffic are exponentially distributed with respective parametersλ = 3 andµ = 8. The possi-
ble states of the environment process (i.e. state of streaming traffic) are(0, 0), (1, 0), (2, 0), (0, 1),
(1, 1), where the first tuple represents the number of ongoing low bandwidth requests, and the sec-
ond one represents the number of ongoing high bandwidth requests. The corresponding available
bandwidths for the elastic traffic areb(0,0) = 0.650, b(1,0) = 0.385, b(2,0) = 0.120, b(0,1) = 0.300,
andb(1,1) = 0.035. So, the infinitesimal generator matrixQ is given by

Q =

















−λ1 − λ2 λ1 0 λ2 0
µ1 −µ1 − λ1 − λ2 λ1 0 λ2

0 2µ1 −2µ1 0 0
µ2 0 0 −µ2 − λ1 λ1

0 µ2 0 µ1 −µ1 − µ2

















=

















−3 1 0 2 0
2 −5 1 0 2
0 4 −4 0 0
3 0 0 −4 1
0 3 0 2 −5

















We will look at this example later again in Sections 3, 4 and 5 to obtain performance measures
for the elastic traffic queue.

2.2 Application 2: CPU with Parallel Processes

Another application where the problem in Section 2 can be immediately applied is a Central
Processor Unit (CPU) of a computer which runs multiple processes in parallel. The process that
is of our interest is a software agent that submits tasks to the CPU continuously throughout the
day. Assume that the software agent submits tasks accordingto a Poisson process and each task
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hasexp(µ) work in it that the CPU has to perform. If the only process running on the CPU is that
of the agent, it receives all the CPU speed. However if there are few other processes running on
the CPU, only a fraction of the CPU speed is available. Hence due to various processes running
at the same time, the processing speed for the agent tasks varies over time. This system can be
modeled as a queue with time varying service rates. The service rates vary according to an exter-
nal environment process, which is due to the other processesthat run on the CPU. Note that it is
not necessary that the CPU is shared equally among all processes. We use a very generic model
for the available processing capacity of the CPU. Let the available capacity vary according to a
CTMC {Z(t), t ≥ 0} with generator matrixQ such that at timet the available processing speed
for the agent tasks isbZ(t). Thus, this can also be modeled as a queueing system described earlier
in Section 2.

Throughout the paper, we will consider the following numerical example for illustration pur-
poses. For numerical examples, we will consider various forms of Q and bZ(t). We present an
example to illustrate how this application boils down to theconsidered problem. There are 5 pos-
sible server speeds, i.e.,Z(t) takes values 1 to 5. They areb1 = 1, b2 = 2, b3 = 3, b4 = 4, and
b5 = 5. The infinitesimal generator matrixQ is a 5×5 matrix given by

Q=

















−6 2 1 2 1
1 −7 3 2 1
3 2 −8 2 1
2 1 1 −5 1
3 4 1 2 −10

















.

The mean arrival rate isλ = 2.5 and the mean task size1/µ = 1.

3 Finding First and Second Moments of Service Time

Let us consider the problem described in Section 2. Since theservice rate keeps changing according
to an external environment, it is not clear how long each request is served. We will hence derive
the first and second moments of service time experienced by anarbitrary customer in steady state.
Finally, we will apply the results developed in Section 3.1 to numerical examples.

3.1 Conditional moments

Consider an arbitrary customer in the queue in steady state.In order to obtain the moments of the
service time experienced by this customer, we need to know the state of the environment process
when the service starts. Hence, we begin by deriving resultsfor the first and second moments of
service time and when the service begins with environment instatei, denoted byE(Ti) andE(T 2

i )
respectively. We now state and prove a theorem to obtain the first and second moments of this
conditional service time,E(Ti) andE(T 2

i ). Let qij be the element of the generator matrixQ of the
environment process that corresponds toith row andjth column and letqi= −qii. Also, letθi be
the rate of completion when there arei requests.
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Table 1: Notation

Variables Explanation

λ Arrival rate of requests
1/µ Average work requested per customer
Z(t) State of the environment process at timet
Z Whent → ∞ Z(t) → Z

X(t) Number of requests in system at timet
X Whent → ∞ X(t) → X
bi Service capacity whenZ(t) = i
θi Rate of completion of requests when there arei requests
Q Infinitisemal generator matrix of the environment process
W Average delay of requests
S(i) State space withi requests
π(i) Steady state probability vector for state spaceS(i)

pi Steady state probability thatZ = i
π̂i Steady state probability that a customer seesZ = iat the beginning of service
Ti Service time of a customer whose service begins withZ = i
S Total processing capacity of the web server
n Maximum no. of streaming requests allowed simultaneously
ri Bandwidth allocated to each streaming request of typei when admitted in example 1
c Minimum bandwidth for elastic requests in example 1
λi Arrival rate of typei of streaming requests in example 1
R Auxilliary matrix used in calculating average delay

A(t) Total amount of traffic generated by a source over time(0, t]
eb(v) Effective bandwidth with parameterv
W (t) Amount of workload at timet

R̄ Diagonal rate matrix
e(M) Largest eigen value of square matrixM
Wi Amount of work brought in byith customer
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Theorem 1 The first and second moments of the service time conditional on the state of the envi-
ronment process being “i” at beginning of service, are obtained by solving the set of equations

fiE(Ti) −
∑

j 6=i

qijE(Tj) = 1, (1)

andE(T 2
i ) is obtained by solving the set of equations

f 2
i E(T 2

i ) − fi

∑

j 6=i

qijE(T 2
j ) = 2(1 +

∑

j 6=i

qijE(Tj)), (2)

wherefi = qi + θi.

Proof.
The proof applies first step analysis (Dorman [9], Kulkarni [15]) based on the Laplace Stieltjes

transform (LST) of the conditional service time. LetTi be the random variable denoting total
service time that begins in statei for an arbitrary customer in steady state. LetVi be the service
time if the CTMC were always in statei. Clearly,Vi is exponentially distributed with parameter
θi. Let fi=

∑

j 6=i qij + θi = qi + θi. Let Rij be the random variable denoting the time between state
change fromi to j. Hence, we have

Ti = min(Vi, Rij(j 6=i)) +

{

0 w.p θi/fi j = i
Tj w.p qij/fi ∀j 6= i.

Taking LSTs on both sides, we get

E(e−sTi) =
fi

s + fi
∗ [

θi

fi
+

∑

j 6=i qijE(e−sTj )

fi
].

Arranging terms, we have

E(e−sTi) =
θi

s + fi
+

∑

j 6=i qijE(e−sTj )

s + fi
. (3)

Taking derivative of Equation (3) with respect tos, and substitutings = 0, we have

fiE(Ti) −
∑

j 6=i

qijE(Tj) = 1. (4)

This is identical to Equation (1). By solving Equation (4), we getE(Ti) ∀ i = 1, 2, ..., n,
wheren is the number of states of the environment process. Taking the second derivative of the
LST in Equation (3) w.r.ts, and substitutings = 0, we get

f 2
i E(T 2

i ) − fi

∑

j 6=i

qijE(T 2
j ) = 2(1 +

∑

j 6=i

qijE(Tj)). (5)
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Solving Equation (5), we getE(T 2
i ) ∀ i = 1, 2, ..., n.

Now, in order to derive the unconditional first and second service time moments,E(T ) and
E(T 2) respectively, we use

E(T ) =
n

∑

i=1

π̂iE(Ti), (6)

E(T 2) =
n

∑

i=1

π̂iE(T 2
i ) (7)

whereπ̂i is the probability that a customer sees the environment process in statei at the beginning
of service.

For Equations 6 and 7 we need to obtain an expression forπ̂i. Our conjecture is that̂πi is
related topi, which is the steady state probability that the environmentis in statei. Thepi’s can
be obtained by solving[pi]Q = 0 and

∑

i pi = 1. We devote the next section to obtainingπ̂i, the
probability that a customer’s service begins when environment process in statei.

3.2 Computing π̂i

Upon running extensive simulations (as shown in Section 3.3.1), we observe that̂πi is not only a
function ofpi but it also depends onλ, the arrival rate. This is indeed an intriguing result, as the
service time is in fact a function of the arrival rate! Regrettably, we find that it is intractable to
obtain a closed-form expressions ofπ̂i (except for some special cases, which we will show next)
in terms ofλ. We now analytically illustrate hoŵπi is different for two special casesλ → 0
andλ → ∞. Later in Section 3.3.1, we suggest that we could use one of the special cases as an
approximation.

3.2.1 Special Case 1: Arrival rate approaching zero

For this special case ofλ → 0, we use the notation̂πi
0 for π̂i, i.e.

π̂i
0 = lim

λ→0
π̂i.

The following theorem derives an expression forπ̂i
0.

Theorem 2 In the asymptotic case of̂πi whenλ → 0, π̂i
0 = pi, wherepi steady state probability

that the environment is in statei.

Proof.
When λ → 0, we can say that each arrival will see the queue empty w.p. 1 asthe inter-

arrival times are very large. Therefore for the customers, service will begin as soon as an arrival
takes place. In addition, due to PASTA, an arriving customerwill see the environment process
{Z(t), t ≥ 0} in statei w.p. pi. Hence, service will begin when environment process is in statei
w.p. pi. Therefore,π̂i

0 = pi.

Remark 1: From Theorem 2, whenλ → 0, E(T ) =
∑n

i=1 piE(Ti).
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3.2.2 Special case 2: Arrival rate approaching infinity

Let us consider another asymptotic case in which the rate of arrivals approaches infinity. Since
λ → ∞, we can also say that the number in queue waiting for service is infinite, orX(t) = ∞.
This means that the server would serve non-stop. For this special case ofλ → ∞, we use the
notationπ̂i

∞ for π̂i, i.e.
π̂i

∞ = lim
λ→∞

π̂i.

We now present a theorem that relatesπ̂i
∞ to pi.

Theorem 3 The relationship between the service start probabilitiesπ̂i
∞ and stationary probabil-

ities pi is given byπ̂i
∞ = piθi/

∑n
j=1 pjθj , whereθi is the rate of service completion when the

environment process is in statei.

Proof.
Let Sm denote the time when themth event occurs where themth event can be either a state

change in the environment process or a service completion. LetYm = Z(Sm+) be the state of the
environment process just after themth event took place. Consider a Markov regenerative sequence
{(Ym, Sm), m ≥ 0} from which we can build a semi Markov process (SMP). Therefore, we have

P{Sn > t|Yn = i} = e−(θi+qi)t,

whereqi =
∑

j 6=i qij = −qii. The kernel of the SMP is

Gij(t) = P{Yn+1 = j, Sn ≤ t|Yn = i} =

{ qij

qi+θi
(1 − e−(qi+θi)t) if j 6= i,

θi

qi+θi
(1 − e−(qi+θi)t) if j = i.

The steady state probability that the SMP defined above is in state i is same as that of the
environment process. Hence we havepi as the probability that the SMP is in statei in steady state.
Let G(∞) = [Gij(∞)]. What is unknown at this time is△i, the probabilities that the SMP is in
statei at the beginning of an epoch. It can be obtained by solving△ = △G(∞) and

∑

△i = 1.
However, what we are interested is in the relation between△i andpi. Using SMP results (see
Kulkarni [15]), we have

pi =
△i/(θi + qi)

∑

j △j/(θj + qj)
.

Notice that a fraction θi

θi+qi
of state changes in the SMP correspond to a service completion.

Since there are infinite customers in the queue, beginning ofservice of a new customer starts im-
mediately after a service completion. So, the fractionθi

θi+qi
of state changes in the SMP correspond

to a new customer beginning service. Therefore, we haveπ̂∞
i = △i(

θi

θi+qi
). Hence,pi =

ˆπ∞

i
/θi

∑

j
ˆπ∞

j
/θj

,

i.e. pi ∝ π̂∞
i /θi or π̂∞

i ∝ piθi. Therefore, by normalizing we have

π̂∞
i = piθi/

n
∑

j=1

pjθj .
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Remark 2: From Theorem 3, whenλ → ∞, E(T ) =
∑n

i=1 piθiE(Ti)/
∑n

j=1 pjθj . Using result
from point processes it is possible to show thatE(T ) will converge to the reciprocal of the time-
average service rate. This will be addressed in Section 4.3 when we discuss time-average service
rate.

Remark 3: Clearly from Remarks 1 and 2,E(T ) depends on the choice ofλ.

3.3 Simulation experiments, approximations and numericalexamples

In Section 3.2, we derived̂πi for special cases of arrival rates (namelyλ → 0 andλ → ∞). We ran
simulation experiments to study the effect of arrival rateλ on the average service time. Further,
we investigate good approximations forπ̂i for any general arrival rate. In Section 3.3.1, we discuss
the simulation results and in Section 3.3.2, we provide somemore interesting numerical results for
the examples given in Sections 2.1 and 2.2.

3.3.1 Simulation results

Simulation runs were conducted to observe the trend of the first and second moments of service
time with respect to variations in the inter-arrival time ofcustomers in to the system. A plot
with interarrival time (in appropriate units of time) on X-axis and average service time on Y-axis
is shown in Figure 2. The observations from the simulation are as follows. For the run when
interarrival time is just more than the average service timeobtained for caseλ → ∞, it was
observed that the queue is stable, and the average service time is approximately the same as that
of λ → ∞. When inter-arrival times are increased, it was observed that the average service time
also increases but not as much as inter-arrival times. When inter-arrival times are very large, the
average service times almost remain unchanged and asymptotically converge to the average service
time obtained for the caseλ → 0 as seen in Figure 2. For Figure 2,E(T ) whenλ → ∞ is 0.307
sec andE(T ) whenλ → 0 is 0.360 sec. For largeλ, theE(T ) corresponding toλ → ∞ would
be a good approximation. We will revisit this again while discussing stability condition in Section
4.3.

3.3.2 Numerical results

Based on the findings in Section 3.3.1, we know that for low inter-arrival times,̂π∞
i can be used

as an approximation for̂πi. So, in this Section, we make use of that approximation to have some
insights on the service process. Using Equations 6 and 7, we obtain first and second moments of
the service time as 0.3069 and 0.3081 respectively for application 1 in Section 2.1 as well as 0.3640
and 0.3298 respectively for application 2 in Section 2.2. Also, the mean and variance of service
time increase with1/µ, the mean amount of work brought in by a customer. However, itis not
clear how the service process is affected by the ratio ofQ versusλ. To address this, we consider
cases when theZ(t) process changes quicker and slower than theX(t) process. This is done when
the magnitude of all the values in matrixQ are increased and reduced respectively. Let us say that
the factor of magnification ofQ matrix bem, i.e. the newQ matrix ismQ. In Table 2, we vary
m from 0.001 to 1000 and illustrate this. Asm → 0 andm → ∞, the second moment stabilizes
to two values. The first moments (mean) of service time for examples in Sections 2.1 and 2.2 are
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Figure 2: Interarrival time vs Average service time

respectively 0.3069 and 0.3640 for all the cases. It is seen that asm increases, the second moment
(and thereby variance) of the service time decreases.

Table 2: Second moment of service time

m 0.001 0.01 0.1 1 10 100 1000
Second moment (Application 1)0.4527 0.4219 0.3081 0.2193 0.1928 0.1888 0.1884
Second moment (Application 2)0.3651 0.3603 0.3298 0.2813 0.2669 0.2652 0.2650

4 Performance Measures: Average Delay and Queue Length

Having derived the moments of service time, we now concentrate on obtaining system performance
measures such as mean delay in this section (average queue length can be easily computed using
Little’s law). For this, we need to analyze the stochastic process{(Z(t), X(t)), t ≥ 0}, a two
dimensional CTMC, which is also a Quasi-birth-death (QBD) process. It is not possible to use
generating function or other such techniques to obtain closed form expression for steady state
probabilities. Additionally, we cannot model theX(t) process as anM/G/1 queue and use the
first and second moments of service time, as the service timesare not iid. Hence we resort to Matrix
Geometric method (MGM), which we will explain in detail. Since QBD has a special structure,
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MGM can be used to obtain the desired performance measure. Tounderstand the QBD process,
we review the concept of birth-death process first and then QBD process (Section 4.1), which will
be useful while applying MGM. The general theory of MGM and how it is applied to our problem
is explained in Section 4.2. Although we understand that MGMis a mature tool, we feel that a
brief explanation would ensure smoother reading.

4.1 Quasi-birth and death process

In order to understand Quasi-birth-death process, we will start with the definition of birth-death
process as per Thorne [27].

Definition: The continuous-time Markov process{Y (t) : t ≥ 0} is a birth-death process if the
only two possible transitions aren → n + 1 with birth ratesq(n, n + 1), n ≥ 0, andn → n − 1
with death ratesq(n, n− 1), n ≥ 1. If S is the state space, the infinitesimal generator matrix for a
birth-death process is as follows:



















−q(0, 1) q(0, 1) 0 0 0 . . .
q(1, 0) −q(1) q(1, 2) 0 0 . . .

0 q(2, 1) −q(2) q(2, 3) 0 . . .
0 0 q(3, 2) −q(3) q(3, 4) . . .
...

...
...

...
...

. . .



















whereq(j) = q(j, j − 1) + q(j, j + 1) ∀j ǫ S and j>0.
The above process cannot skip adjacent states and hence it iscalled “skip free” in the states. Birth-
death process is a special case of more general class called Quasi-birth-death process. As per
Latouche et al [17], the definition for quasi birth-death process is as follows.
Definition: A continuous time Quasi-Birth-Death (QBD) process is a continuous time Markov
process whose infinitesimal generator matrix is of the blockpartitioned form

QQBD =



















B1 A0 0 0 0 . . .
A2 A1 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .



















whereA0, A1, A2 andB1 aren × n matrices.

After partitioning the states into subsets called levels, such that a position within the level is
termed as phase. The process can jump down one level, stay in the same level or jump up one level,
and the rate that these transitions occur are given byA2, A1 andA0 respectively. The process is
said to be skip free between levels.
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4.2 Matrix Geometric Method for QBD Analysis

There exists a matrix geometric relation among the stationary probabilities of the{(Z(t), X(t)), t ≥
0} process. In matrix geometric method, an auxiliary matrix called R is used in the calculation of
stationary probabilities and other measures of interest like waiting time and mean queue length.
The main computational effort is in obtainingR, which is frequently done numerically. For a level
independent infinite level CTMC,R is obtained as follows.

Computation of matrix R: The matrixR has a following quadratic relation (Ramaswami [21],
Riska [22]):

A0 + RA1 + R2A2 = 0. (8)

Equation (8) has to be used recursively to solve forR. There is a lot of research going on to
find R efficiently but we will not go into those details in this paper. Neuts [19] defines infinite-
state Markov chains with a repetitive structure with state space partitioned into the boundary states
S(0) = {s1

0, ....., s
n
0} and a set of statesS(i) = {s1

i , ....., s
n
i } ∀i ≥ 1, that correspond to the repetitive

portion of the chain. Letπ(i) be the steady state probability vector of statesS(i). Then

π(i) = π(1) Ri−1 ∀ i ≥ 1.

SolvingπQQBD = 0 will give bothπ(0) andπ(1). The following set of equations are obtained:

π(0)B0 + π(1)A2 = 0,

π(0)A0 + π(1)(A1 + RA2) = 0,

π(0)e + π(1)(I − R)−1e = 1. (9)

Onceπ(0) andπ(1) are obtained, the expected waiting (including service) time of a job in the system
can be calculated as follows:

W = λ−1(π(1)(I − R)−1e + π(1)R(I − R)−2e) (10)

whereW is the average delay or holding time ande is the column vector of ones. This is how
average delay can be computed.

Now, we resort to our QBD process{(Z(t), X(t)), t ≥ 0}, which indeed is a CTMC. Recall
that the environment process{(Z(t), X(t)), t ≥ 0} is a CTMC withqij, the rate of transitioning
from statei to statej. Also λ is the arrival rate of requests andθi is the rate of completion of
requests when there arei requests. The following theorem derivesA0, A1, A2, B1 matrices for our
QBD process in terms ofλ, θi andqij.

Theorem 4 The structure of the infinitesimal generator for thisQBD problem is shown below:

A0 =



















λ 0 0 . . . 0
0 λ 0 . . . 0
0 0 λ . . . 0
...

...
...

...
...

0 0 . . . 0 λ



















A1 =



















s(1) q12 q13 . . . q1n

q21 s(2) q23 . . . q2n

q31 q32 s(3) q34 . . .
...

...
...

...
...

qn,1 qn,2 . . . qn,n−1 s(n)
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wheres(i) = −
∑

j 6=i qij − λ − θi and

A2 =



















θ1 0 0 . . . 0
0 θ2 0 . . . 0
0 0 θ3 . . . 0
...

...
...

...
...

0 0 . . . 0 θn



















B1 =



















u(1) q12 q13 . . . q1n

q21 u(2) q23 . . . q2n

q31 q32 u(3) q34 . . .
...

...
...

...
...

qn,1 qn,2 . . . qn,n u(n)



















whereu(i) = −
∑

j 6=i qij − λ.

Proof.
Consider the CTMC{(Z(t), X(t)), t ≥ 0}. Rearranging the states of the CTMC suitably, we

can write down its generator matrix in QBD form. From that matrix, we can obtainA0, A1, A2, B1

matrices as given in the theorem.

Note that{(Z(t), X(t)), t ≥ 0} is a level independent infinite-level QBD process. Hence,
substituting the above matricesA0, A1, A2, B1 in the set of Equations (9), we getπ(0) andπ(1).
Then, from Equation (10), we obtain the average delay. The average delay assumes that the QBD
is ergodic. We now state the condition for stability for the{(Z(t), X(t)), t ≥ 0} process with the
understanding that{Z(t), t ≥ 0} is ergodic.

4.3 Stability condition for the system

Note that the average service rate offered by the queue isµE(bZ(t)). The following theorem states
the stability condition.

Theorem 5 The necessary and sufficient condition for the stability of the queue with queue length
process{X(t), t ≥ 0} is

λ

µE[bZ(t)]
< 1,

whereE[bZ(t)] is the average service speed of the server.

Proof.
The proof follows from Núñez-Queija [20], where{Z(t), t ≥ 0} is a birth and death process.

To extend the analysis in Núñez-Queija [20] to the general case of{Z(t), t ≥ 0} is straightforward.

Remark 4: Numerical investigations reveal that the MGM stability condition given in [22] is
same as given in the above theorem. The MGM stability condition can only be checked numeri-
cally. This provides a closed form expression that can be used for the analysis of stability.

Recall thatE(T ) is the average service time and it is a function ofλ. One of the curious
questions that comes to mind is the relationship betweenE(T ) andµE(bZ(t)).

As discussed in Remark 2, asλ → ∞

E(T ) →
1

µE(bZ(t))
.
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Therefore, we have,
1

µE(bZ(t))
=

n
∑

i=1

piθiE(Ti)/
n

∑

j=1

pjθj .

Remark 5: However, based on simulations,

E(T ) <
1

µE(bZ(t))
.

So, if λ < µE(bZ(t)) (i.e. stability condition), then automaticallyλ < 1
E(T )

. Therefore stability
condition is indeed accurate. The reason the mean service rate is not reciprocal of the mean ser-
vice time is because the former is averaged over time (and includes server idle periods when the
environment process is not stochastically identical to when the service is busy) whereas the mean
service time is averaged over customers, i.e. when the server is busy.

4.4 Numerical Examples

We consider the numerical examples described in Section 2.1and 2.2. Some of the obvious results
we obtain are: the average waiting time increases withλ, decreases withµ and decreases with
E[bZ(t)]. However, it is not clear how the waiting times are affected based on the relative frequency
of change in theX(t) andZ(t) processes. Similar to Section 3.3, we multiplyQ by a factorm
and changem to reflect the relative frequency of change inX(t) andZ(t). If the matrix is scaled
up i.e. largem, it means that theZ(t) process changes states faster and ifQ is scaled down,Z(t)
process changes occasionally both in comparison toX(t). In table 3, we varym from 0.001 to
1000 for both the examples. It can be seen that asm decreases the waiting increases drastically.
Higherm implies higher rate of change inZ(t) process. However, asm → ∞, the average waiting
time seems to converge to the M/M/1 waiting time (with average service time1/µE[bZ(t)]).

Table 3: Average waiting time

m 0.001 0.01 0.1 1 10 100 1000
Average waiting time (e.g. 1) 342.50 42.03 11.72 4.82 3.96 3.88 3.87
Average waiting time (e.g. 2) 76.99 22.51 6.90 4.35 4.07 4.05 4.04

5 Large Deviations Analysis for Tail Distributions

In the previous section, we used MGM method to obtain the meandelayW and thereby mean
number in the system (via Little’s law,λW ). The next question is whether it would be possible to
obtain the distribution of any of the performance measures.As it turns out, in the 1990’s several
researchers (Elwalid and Mitra [10], Kelly [13], Kesidis etal [14], Courcoubetis and Weber [8])
used the method of large deviations to obtain tail distributions of the system workload. In that spirit,
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A (t)

W (t)

Figure 3: Single Buffer Model

we will take advantage of the theory of large deviations, specifically using effective bandwidth of
the traffic, for our analysis to obtain the tail distributionof the workload in the queue under steady
state. One of the advantages of this methodology is that it can be easily extended to the non-
exponential case, which we will explain later. We first statesome preliminary results that would
be useful for the reader in terms of the large-deviations principle.

5.1 Preliminaries

Consider a queueing system where a stream of customers arrive into a queue according to some
random process and each customer brings some random amount of work. Let A(t) be the total
amount of work that arrives into the queue over time(0, t]. Note thatA(t) is a random variable. In
fact, the arrivals need not be discrete, but also fluids so that A(t) is the amount of fluid that arrives
in time (0, t]. The server works at a constant speedc, so that whenever there is work queued up,
it exits at ratec. The single buffer fluid model is shown in figure 3. Care must betaken in fluid
arrivals, work load does not jump whenever an arrival occurs, but increases steadily. This is not an
issue for discrete arrivals. This fact is shown in figure 4. Let W (t) be the amount of workload in
the system at timet. The system is stable (i.e.W (t) → W (∞) ast → ∞) if

lim
t→∞

A(t)

t
< c.

The theory of large deviations can be used to obtain the tail distribution of the random variable
W (∞). This requires the use of the effective bandwidth concept. The effective bandwidth of the
input stream of traffic is defined in terms ofA(t) as

eb(v) = lim
t→0

1

vt
log E[evA(t)].

According to the theory of large deviations, for large values ofu,

P{W (∞) > u} ≈ e−ηu, (11)

whereη is the unique solution (if the system is stable) to

eb(η) = c. (12)

Note that in order to use the above result, the server speedc must be a constant at all times.
However, in our problem the server speed changes. We will seein the next section how to use a
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Figure 4: Workload Sample path for discrete queues
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W (t)

A1(t)
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Figure 5: Single buffer with two sources

compensating source so that we create an equivalent system where the server speed can be kept a
constant. To use the large deviations result for this systemwe need another result. Consider two
independent streams of traffic that enter a queue with serverspeedc. Let A1(t) andA2(t) be the
total amount of work that arrives into the queue over time(0, t] from the two streams as shown in
figure 5. Fori = 1, 2, let the effective bandwidth of traffic streami be

ebi(v) = lim
t→0

1

vt
log E[evAi(t)].

Then, according to the theory of large deviations, for largevalues ofu,

P{W (∞) > u} ≈ e−ηu, (13)

whereη is the unique solution (if the system is stable) to

eb1(η) + eb2(η) = c. (14)

In the next subsection we will use all the results here for ourproblem defined in Section 2.

5.2 Tail Distributions Using a Compensating Source

We now use the large deviation results based on effective bandwidths from the previous subsection.
First consider the queueing system in Section 2. Customers arrive according to a Poisson process
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(with mean rateλ). We first consider the general case where each customer brings a random
amount of work, independent and identically distributed asother customers such that the CDF of
the amount of work isG(·). Subsequently we will consider the case on Section 2, namelyeach
customer bringingexp(µ) work with them. LetWi be the amount of work brought by theith

customer,G(u) = P{Wi ≤ u} with LST G̃(s) = E[e−sWi]. Let N(t) be the number of arrivals in
time(0, t]. In addition,A(t) = W1+W2+...+WN(t). In order to compute the effective bandwidth,
we first deriveE[evA(t)]. We have,

E[evA(t)] =
∞
∑

i=0

E[evA(t)|N(t) = i]P (N(t) = i)

= e−λt +
∞
∑

i=1

[G̃(−v)]ie−λt (λt)i

i!

= e−λt + [eλtG̃(−v) − 1]e−λt

= eλt(G̃(−v)−1).

The first equation above is by conditioning on the number of arrivals in time(0, t] and the second
equation is due to the definition of LST. Therefore, the effective bandwidth of this stream of traffic
is eb(v) = λ

v
[G̃(−v) − 1].

Now, for the special case when the amount of work is exponentially distributed with mean1/µ,
we haveG(u) = 1 − e−µu andG̃(−v) = µ

µ−v
. So,eb(v)=λ

v
[ µ
µ−v

− 1] = λ
µ−v

. If the server speed is
a constant speed, in particular for the standardM/M/1 queue,c = 1. Thuseb(η) = c = 1 results
in η = µ − λ. Hence for largeu, P{W (∞) > u} = e−(µ−λ)u, which in fact, is true for allu from
standardM/M/1 results.

In our system considered in Section 2, the server speedc changes with time. However in order
to use the large deviations results we needc to be a constant. A technique that can be used when
the service speed is not constant is to have a compensating stream of traffic such that theW (t)
process is unchanged andc is a constant. Using that, we can state the following theorem.

Theorem 6 The tail distribution (for largeu) for the amount of work in the queue in Section 2 is:

P{W (∞) > u} = e−ηu.

whereη is obtained by solving

e(R̄ + Q/η) +
λ

µ − η
= max

i
bi,

wheree(A) is the largest eigen value of matrixA andR̄ is diag(c − bi).

Proof.
Consider the following two systems (the first is what we described in Section 2 and the second

is a fictitious one):
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• System 1: A single stream of traffic where customers arrive according to a Poisson process
with mean rateλ and each customer brings anexp(µ) amount of work. The server serves
at different rates according to an environment process{Z(t), t ≥ 0} which is a CTMC with
generator matrixQ. At time t the service speedc is bZ(t).

• System 2: A fictitious queueing system where there are two input streams and a server with
a constant speedc = maxi bi. The first input stream is one where fluid enters the queue
at ratec − bZ(t) at timet. The second input stream is the usual one where customers arrive
according to a Poisson process with mean rateλ and each customer brings anexp(µ) amount
of work.

The amount of work remaining at timet in both systems are identical for allt. This is because
at timet when the server speed isbZ(t) in System 1, in System 2 the server speed is constant atc
and an additionalc − bZ(t) work flows into the system nullifying the extrac − bZ(t) capacity that
is available. In order to do this we requirec = maxi bi so thatc − bZ(t) ≥ 0 for all t. Since
both System 1 and System 2 have the same workload at all times,we study System 2 using large
deviations with the understanding that the tail distributions of the work load would be identical to
that of System 1.

In order to use the large deviations result for System 2, we need effective bandwidths of both
streams. For the first stream, letR̄ be a diagonal rate matrix such that,R̄i = diag(c − bi). Note
that the rows of theR matrix need to correspond to the rows of theQ matrix. Lete(M) denote
the largest real-eigen value of a square matrixM . Then the effective bandwidth of the first stream
is eb(v)=e(R̄ + Q/v) (due to a result in Elwalid and Mitra [10]). From the previoussubsection,
the effective bandwidth of the second stream isλ/(µ − v). Using Equation (14), we obtainη by
solving

e(R̄ + Q/η) +
λ

µ − η
= max

i
bi. (15)

Therefore the tail distribution (for largeu) for the amount of work in the queue of System 1 is:

P{W (∞) > u} = e−ηu. (16)

Recall that we had earlier mentioned that the amount of work acustomer brings need not be
exponential, we can still obtain the effective bandwidth. In fact the{Z(t), t ≥ 0} process need
not even be a CTMC. If the input process is a semi-Markov process (See Gautam et al [11]) or
a Markov regenerative process (See Kulkarni [16]), computing effective bandwidth is possible.
Therefore these tail probabilities can be applied to a much more general setting than what is con-
sidered here. One of the main applications of tail distributions is to obtain overflow probabilities
in buffers. These are illustrated in the following subsection.
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Figure 6: Representation of systems 1 and 2

5.3 Numerical Example

Consider the example in Section 2.1 where mean arrival rate is λ = 3 and work to be done is
exponentially distributed with parameterµ = 8. The total bandwidthS = 0.650. The two available
bandwidths arer1 = 0.265 andr2 = 0.350. We show the steps involved only for the one in Section
2.1 for illustration purposes (as a very similar process is to be followed for the example in Section
2.2).

Using theb values in Section 2.1,c = max(b(0,0), b(1,0), b(2,0), b(0,1), b(1,1)) = 0.650 and

R̄ =

















0 0 0 0 0
0 0.265 0 0 0
0 0 0.530 0 0
0 0 0 0.350 0
0 0 0 0 0.615

















Using Q matrix in Section 2.1 and̄R, solving for η in Equation (15), we getη = 6.3081.
For largeu, we use Equation 16 to obtainP (W (∞) > u) = e−6.3081u. Thus, we can find tail
distribution of workload in system in steady state. For example, the probability that the work load
exceeds 2 (i.e.u = 2), is approximately3.32 × 10−6.

6 Concluding Remarks

6.1 Conclusions and Extensions

We consider a queue where the service rate changes over time according to a changing environ-
ment process that is governed by a Markov process. To get a grasp on the service process, we
derive equations to find the first and second moment of the service time using Laplace-Stieltjes
transforms. We obtain a curious result in that the mean service time is not equal to the reciprocal
of the mean service rate. In fact, the mean and variance of service time depend on the arrival rate.
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The performance measures, mean waiting time and average queue length, are calculated using ma-
trix geometric method. In the analysis, we use a combinationof fluid traffic as well as a discrete
traffic to obtain work load distribution, thereby overflow probabilities. The analysis is illustrated
using numerical examples wherever appropriate. We used simulations to cross check our analytical
results everywhere. It was observed that the second moment of service time is higher and in turn,
the average waiting time is higher if the environment process varies slowly with respect to queue
length keeping the mean service time constant.

In this paper, we have assumed FCFS service discipline throughout. This can be extended to
other service disciplines like processor sharing directly. The transition diagram of the bivariate
stochastic process remains the same and so most of the analysis is still valid for other service dis-
ciplines. The performance measures like average queue length and average time in system (delay)
obtained from matrix geometric method will be exactly the same. Even if the elastic requests are
served in parallel, the infinitesimal generator matrixQ is identical to the one if the elastic requests
are served in FCFS fashion. That is, the transition diagram of the FCFS is exactly the same for
both cases. Likewise, the large deviations results would beunaffected as the results only calculate
the total workload. All work-conserving schemes would yield identical results.

6.2 Future Work

In section 4.2, we compute average waiting time of the customers in system. In section 3, we
derive equations to obtain first and second moments of service time of the customers. Obtaining
the distribution or at least second moment (thereby variance) of the waiting time in system, in
addition to average waiting time, would be much more helpfulin understanding the system. Thus,
one of the future tasks would be to compute the second moment of the waiting time. The eventual
goal is to obtain the distribution of waiting time.

In future, we will consider extending the results in this paper to the case of non-exponential
systems. In particular, the arrival process would be renewal, work brought by each arrival is from
a general distribution, and/or the environment process{Z(t), t ≥ 0} is a more general process
such as a Markov regenerative process. Although we indicated in Section 6.1 that these extensions
are straight forward for large deviations case, the MGM analysis can be done only under special
circumstances such as Phase type distributions.

Other applications in the future include solving design andcontrol problems. For example,
consider the application in Section 2.1. For the web server,it is important to design the number of
each type of streaming request to admit (i.e.n1, n2, ...). To solve such a problem, a mathematical
optimization model can be formulated such that by solving it, we can design a web server system.
In addition, we can study adaptive control systems in CPU application in Section 2.2. In particular,
the agent can decide (based on CPU load) when to accept tasks and when to send tasks to the CPU.
The authors are in the process of investigating some of the above aspects.

Acknowledgements

The research is partially supported by NSF Grants ANI-0219747 and ACI-0325056. The authors
thank the editor and anonymous reviewers for their commentsand suggestions that led to con-

22



siderable improvements in the content and presentation of this paper. The authors are grateful to
Prof. George Kesidis, Prof. Raj Acharya, Prof. Anand Sivasubramaniam, Dr. Donna Ghosh, Prof.
Venkatesh Sarangan for initial discussions that led to the formulation of this research. The authors
deeply indebted to Prof. Takis Konstantopoulos and Prof. Karl Sigman for their valuable input in
the analysis of the paper.

References

[1] Adan,I. J. B. F., Kulkarni, V. G., 2003, “Single server queue with Markov dependent inter-
arrival and service Times”, Queueing Systems, 45(2), pp. 113-134.

[2] Ahn, S., and Jeon, J., 2000, “Large deviation results forqueues with Continuous time Markov
modulated Arrivals”, Engineering Simulation, vol. 18, no.1, pp 67-74.

[3] Baykal-Gursoy, M., and Xiao, W., 2004, “Stochastic decomposition inM/M/∞ queues with
Markov modulated service rates”, Queueing Systems, 48, pp.75-88.

[4] Bonald, T., and Proutiere, A., 2003, “Insensitive bandwidth sharing in data networks”,
Queueing Systems, vol. 44, pp. 69-100.

[5] Boxma, O. J., and Kurkova, I. A., 2001, “TheM/G/1 queue with two service speeds”, Adv.
Applied Probability, 33, pp. 520-540.

[6] Cidon, I., Gu’erin, R., Khamisy, A., and Sidi, M., 1991, “On Queues with inter-arrival times
proportional to service times”, Technion, EE PUB, (811).

[7] Collings, T., and Stoneman, C., 1976,“TheM/M/∞ queue with varying arrival and service
rates”, Operations Research 24, 760-773.

[8] Courcoubetis, C., and Weber, R., 1995, “Effective bandwidths for stationary sources”, Prob.
Eng. Inf. Sci., vol. 9, pp. 285-296.

[9] Dorman, K., karindorman.stat.iastate.edu/stat432/2003-09-12.pdf.

[10] Elwalid, A. I., and Mitra, D., 1993, “Effective bandwidth of general Markovian traffic sources
and admission control of high speed networks”, IEEE/ACM Transactions on Networking, vol.
1, no. 3, pp. 329-343.

[11] Gautam, N., Kulkarni, V. G., Rolski, T., and Palmowski,Z., 1999, “Bounds for fluid models
driven by semi-Markov inputs”, Probability in Engineeringand Informational Sciences, Vol.
13, No. 4, pp. 429-475.

[12] Kaufman, J. S., 1981, “Blocking in shared resource environment”, IEEE Transactions on
Communications, vol. 29, no. 10, pp. 1494-1481.

[13] Kelly, F. P., 1996, Notes on Effective bandwidth, Stochastic Networks: Theory and Applica-
tions, Oxford University Press.

23



[14] Kesidis, G., Walrand, J., and Chang, C-S., 1993, “Effective bandwidths for multiclass Markov
fluids and other ATM sources”, IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp.
424-428.

[15] Kulkarni, V. G., 1995, Modeling and analysis of stochastic systems. Chapman and Hall texts
in Statistical series, CRC press.

[16] Kulkarni, V. G., 1997, “Effective bandwidths for Markov regenerative sources”, Queueing
Systems, vol. 24, pp. 137-153.

[17] Latouche, G., Pierce, C., and Taylor, P., 1997, “Invariant measures for quasi-birth and death
processes”, Stochastic Models.

[18] Massey, W., 2002, “The analysis of queues with time-varying rates for telecommunication
models”, Telecommunication Systems, vol. 21:2-4, pp. 173-204.

[19] Neuts, M. F., 1981, Matrix geometric Solutions in Stochastic models: An algorithmic Ap-
proach. John Hopkins University, University Press.

[20] Núñez-Queija, R., 1997, “Steady state analysis of a queue with varying service rate”, Tech-
nical Report PNA-R9712, CWI.

[21] Ramaswami, V., 2000, Algorithmic analysis of stochastic models: The changing face of
mathematics, Ramanujam Endowment Lecture at Anna University, Chennai, India.

[22] Riska, A., and Smirni, E., 2002, “Mamsolver: A matix analytical method tool”, in the Pro-
ceedings of the 12-th International Conference on ModelingTechniques and Tools for Com-
puter and Communication Systems Performance Evaluation, vol. LNCS 2324, pp.205-211.

[23] Roberts, J. W., 1981, “A Service system with heterogeneous user requirements”, Performance
of Data Communication Systems and their Applications, pp. 423-431.

[24] Ross, K. W., 1995, Multiservice loss models for broadband telecommunication networks.
New York: Springer-Verlag.

[25] Sharma, V., 2001, “Queues with service rate controlledby a delayed feedback”, Queueing
Systems, vol 39, No. 4, pp. 303-315.

[26] Takahashi, H., and Wang, L., 1990, “Approximate analysis of a queueing system with Markov
modulated arrivals”, Electronics and Communications in Japan, Part 1, vol. 73, no. 11, pp 12-
21.

[27] Thorne, J. R., Modeling Complex Queuing Situations with Markov Processes,URL: charyb-
dis.mit.csu.edu.au/mantolov/CD/ICITA2002/ papers/077-1.pdf.

[28] Yong-Pin Zhou and Noah Gans, 1999 “A single-server queue with Markov modulated service
times”, October 1999, URL: http://fic.wharton.upenn.edu/fic/papers/99/9940.pdf.

24


