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ABSTRACT 
Scalability issues for routing in mobile ad hoc networks 
(MANETs) have been typically addressed using hybrid routing 
schemes operating in a hierarchical network architecture. Several 
clustering schemes have been proposed to dynamically identify 
and maintain hierarchy in MANETs. To achieve significant 
performance gains, it is important that the underlying clustering 
scheme is able to identify stable clusters such that the cost 
associated with maintaining the clustered architecture is 
minimized. In this paper, we study the impact of mobility 
prediction schemes on the temporal stability of the clusters 
obtained using a mobility-aware clustering framework. We 
investigate the performance of the prediction schemes with 
respect to Gauss-Markov, Random Waypoint, and Reference 
Point Group mobility models under varying network and mobility 
conditions.  Our results indicate that while mobility prediction 
significantly improves temporal stability of the clusters, an 
accurate mobility tracking algorithm need not always lead to an 
accurate mobility prediction scheme.   

Categories and Subject Descriptors 
C.2.1 [Computer Communication Networks]: Network 
Architecture and Design – wireless communication; I.6.m 
[Simulation and Modeling]: Miscellaneous. 

General Terms 
Algorithms, Performance. 

Keywords 
Ad hoc networks, clustering, mobility prediction. 

1. INTRODUCTION 
Advances in wireless communication and the widespread use of 
mobile and handheld devices has resulted in an increasing 
popularity of mobile ad hoc networks (MANETs) – networks that 

consist of a collection of geographically  distributed nodes that 
communicate with each other over a wireless medium. MANETs 
do not have a fixed infrastructure in place and communication 
takes place through wireless links among mobile hosts. Moreover, 
limited transmission range of nodes often results in a multi-hop 
communication scenario, where several hosts may need to relay a 
packet before it reaches its final destination [1].  

The mobility of nodes coupled with the transient nature of 
wireless media often results in a highly dynamic network 
topology. This makes the task of routing in an ad hoc network 
more difficult when compared to a wired network. Routing 
protocols in ad hoc networks can be broadly classified into two 
types: reactive and proactive. However, a flat structure 
exclusively based on proactive or reactive routing does not 
perform well in large dynamic MANETs [2]. Consequently, a 
hierarchical architecture is essential for enhancing the routing 
performance in large-scale MANETs [6]. Unlike wired networks, 
it is essential to have a dynamic scheme to identify and maintain a 
hierarchy in an ad hoc network. A clustering scheme in MANET 
organizes the mobile nodes in the network into virtual groups 
known as clusters, based on certain criteria. A cluster typically 
consists of a cluster head and its member nodes. A clustered 
architecture provides an effective means for topology 
management, since topology changes local to a cluster need not 
be propagated across the whole network. Also, typically only the 
cluster heads are involved in route discovery which significantly 
reduces the control overhead associated with the routing process. 
There are many papers in the literature which focus on presenting 
an effective and efficient clustering scheme for MANETs. A 
survey of such clustering schemes is presented in [6].  

An important argument against introducing a hierarchy in an ad 
hoc network is that, the overhead associated with maintaining the 
hierarchy may outweigh its potential benefits. For instance, the 
membership of a cluster can frequently change as the nodes move 
in and out of the range of the cluster heads. Hence, the clustering 
process may have to be run frequently creating additional 
computational overhead. Thus, it is important for a clustering 
scheme to identify stable clusters by minimizing the frequency of 
membership changes. Since it is not possible to partition the 
network into clusters which do not change at all, we need to 

                                                                 
*This work is supported in part by the NSF ITR grant 0219747. 
1This research was performed when the author was at Pennsylvania State 
University. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
PE-WASUN'05, October 10–13, 2005, Montreal, Quebec, Canada. 
Copyright 2005 ACM 1-59593-182-1/05/0010...$5.00. 

144



design clustering schemes that exhibit temporal stability (i.e., 
identify clusters with a long life-time) in order to effectively 
apply hierarchical routing techniques. One way to achieve this is 
to use mobility prediction to identify clusters consisting of nodes 
that show some temporal similarity in their mobility patterns. 
Such an approach can also help in introducing a notion of quasi-
stability in an otherwise unstable network topology. Several 
schemes that utilize mobility prediction for clustering in 
MANETs have been proposed [10], [13]. However, to the best of 
our knowledge, there is no work in the literature that analyzes the 
impact of different mobility prediction schemes on the stability of 
the clusters under varying network and mobility conditions. Such 
a study can provide an impartial view on the efficacy of mobility 
prediction schemes and help researchers in making an informed 
selection of prediction models appropriate to their network 
environment.  

In this paper, we compare the performance of two generic 
mobility prediction algorithms: (1) Mobility Prediction using the 
Link Expiration Time [7] and (2) Mobility Prediction using 
Linear Autoregressive Models [8]. We restrict our analysis to 
these two prediction schemes as, unlike other schemes in the 
literature, only these two schemes are independent of the 
underlying model that defines the node mobility. Further, these 
two schemes do not require the network to have any well-known 
virtual cluster centers [10] or waypoints [12] and hence are 
independent of the network architecture as well. In order to 
analyze the performance of these prediction schemes, we propose 
a simple framework for a mobility prediction-based clustering 
scheme that aims to provide temporal guarantees on link 
availability between nodes. Simulations are performed to evaluate 
the temporal stability of the clusters defined in terms of the 
metrics – Cluster Survival Time, Cluster Residence Time and 
Number of Reaffiliations. We compare the results with a 
clustering framework that is mobility sensitive, but does not 
utilize mobility prediction such as WCA (Weighted Clustering 
Algorithm [5]), in order to better understand the efficacy of 
mobility prediction. 

The rest of the paper is organized as follows. In section 2, we 
present a summary of significant contributions in the areas of 
clustering and mobility prediction algorithms for MANETs. The 
proposed prediction based clustering framework is described in 
section 3. In section 4, we present a detailed experimental 
analysis on the performance of the two prediction algorithms. Our 
conclusions are presented in section 5. 

2. RELATED WORK 
Several existing approaches utilize mobility prediction schemes to 
design efficient routing protocols for MANETs. In [7], William et 
al. compute the Link Expiration Time (LET) to predict the 
duration of a wireless link between two nodes in the network. 
Their approach assumes that the direction and speed of motion of 
the mobile nodes does not change during the prediction interval. 
This simple mechanism is then applied to enhance the reliability 
of existing unicast and multicast ad hoc routing protocols. In [12], 
an offline algorithm is proposed to predict link durations in the 
worst-case scenario for an urban MANET. The predicted link 
durations are then utilized to design a routing algorithm which 
finds minimum cost paths with required duration guarantees.  

Dynamic clustering in ad hoc networks has also been extensively 
studied in the literature. Several distributed clustering algorithms 
for MANETs have been proposed. While some schemes try to 
balance the energy consumption for mobile nodes, others aim to 
minimize the clustering-related maintenance costs. Combined 
metrics based clustering schemes take a number of metrics into 
account for cluster configuration. The Weighted Clustering 
Algorithm (WCA) [7], is one such scheme, where four parameters 
are considered in the clusterhead election procedure which are 
representative of the degree, transmission power, mobility, and 
battery power of the mobile nodes. Such a scheme can flexibly 
tune the parameters to suit to different scenarios. Reference [6] 
presents a comprehensive survey of various MANET clustering 
schemes that exist in the literature.  

In this paper, we consider a clustering framework that utilizes 
mobility prediction for identifying temporally stable clusters. One 
of the earliest approaches to utilize mobility prediction in 
clustering was the Distributed Dynamic Clustering Algorithm 
proposed by McDonald et al. in [13]. DDCA employs the (α, t)-
clustering scheme, wherein generated clusters have the property 
that the path between any two nodes in the cluster will be 
available for time t seconds with a probability of at least α. 
Though this prediction scheme gives such a strong 
characterization, it is applicable only for those scenarios where 
the nodes follow a random walk mobility model. A (p,t,d)-
clustering model is proposed in [10] which is based on mobility 
prediction derived from data compression techniques. The 
clustering is achieved by dividing the network into circular 
regions referred to as virtual clusters. A virtual cluster becomes an 
actual cluster whenever mobile nodes exist in it. 

In [9], Zaidi et al. propose a two tier composite model of node 
mobility that captures the group behavior in a mobile ad hoc 
network. They use a first order autoregressive (AR-1) mobility 
model, originally proposed in [8] to track the mobility state 
evolution of an individual node. Their results indicate that with 
appropriate model parameters, AR-1 model is capable of 
representing a wide range of mobility patterns. A dynamic 
scheme to automatically recognize group mobility behavior in 
MANETs is also proposed in [9]. Though this could be 
considered as a clustering scheme, there is no explicit mobility 
prediction involved in the approach. Group mobility is identified 
by means of a correlation index test between the estimated 
mobility states of the individual nodes.  

In this paper, we build a framework for a mobility-prediction 
based clustering algorithm to analyze the performance of two 
generic mobility prediction schemes: (1) Mobility Prediction 
using Link Expiration Time and (2) Mobility Prediction using 
Autoregressive Models. These mobility prediction schemes are 
evaluated through the clustering framework under three different 
mobility models: (1) Gauss-Markov mobility model, (2) Random 
Waypoint mobility model and (3) Reference Point Group 
Mobility (RPGM) model. We also compare the results against the 
WCA which is a mobility-aware clustering framework that does 
not utilize mobility prediction. 

3. A PREDICTIVE CLUSTERING 
FRAMEWORK 
In this section, we describe a simple mobility prediction-based 
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clustering scheme that aims to provide temporal guarantees on the 
availability of links between mobile nodes. We assume that every 
node in the network has a unique id, which could be the node’s IP 
address or a combination of one or more ids. Every node is also 
aware of its geographical location and mobility information either 
via GPS or using mechanisms such as [15] that use signal strength 
measurements. 

3.1 Terminologies 
We model a mobile ad hoc network as an undirected graph G = 
(V, E), where V is the set of all mobile nodes, and E is the set of 
the undirected links between them. A link (u, v) is said to exist 
between nodes u and v, if and only if both are in the transmission 
ranges of each other. Let jN  denote the set of all nodes in the 

one hop neighborhood of node j. Cluster jC  is a set of nodes 

such that jC = }|{ jNuu ∈  for some Vj ∈ . In addition, 

the members in the set jC  satisfy certain constraints, which will 

be discussed later on. Node j is called as the seed or the 
clusterhead of the cluster jC . Other nodes in the cluster are 

referred to as the member nodes. We define the residence 

time, k
jτ  of node k, as the amount of time k spends being a part of 

cluster j, before getting affiliated to another cluster. A node can 
get affiliated to another cluster if it moves outside the range of a 
clusterhead. 

3.2 Algorithm Specification 
The proposed clustering framework aims to partition the network 
into clusters consisting of nodes that exhibit temporal similarity in 
their mobility pattern. The design of this framework is motivated 
by the (α,t)-clustering scheme originally proposed in [13]. 
Specifically, in order to join a cluster jC , a node i must satisfy 

the following conditions: 

1.  jNi ∈  

2. j
k
j T≥τ , where jT  is the admission criteria associated with 

the cluster jC . 

A clusterhead uses the mobility prediction scheme to check if a 
given node can satisfy the admission criteria, before admitting the 
node in its cluster. The algorithm is designed to run continuously 
and asynchronously on each active node in the network, avoiding 
the need for a centralized control or periodic reclustering.  
Every cluster head periodically broadcasts HELLO messages to 
the nodes in its neighborhood. The HELLO message contains the 
clusterhead’s admission criteria, location, and mobility profile. 
Upon activation, a node rapidly seeks to join a feasible cluster 
based on the advertisements from the neighboring clusterheads. If 
there are multiple feasible clusters, the node joins the cluster with 
maximum number of member nodes. If no clusters are detected, 
the node itself becomes a clusterhead and starts broadcasting 
periodic HELLO messages. Adjacent un-clustered nodes are 

prevented from each forming a new cluster by forcing nodes with 
higher identifiers to back off and try again as described in [13]. 
Cluster maintenance is performed based on a soft-state approach. 
Each member node maintains timers that are reset on receiving 
the periodic HELLO messages from their cluster heads. If a 
member node does not receive the HELLO message from its 
clusterhead within a stipulated time, the associated timer goes off 
to indicate one of two possibilities: (1) the member node has 
moved out of the clusterhead’s transmission range, or (2) the 
clusterhead has died. In both these cases, the member node tries to 
find out if there are any other feasible clusters in its neighborhood 
that it can join. If none is available, it becomes a clusterhead on 
its own and starts broadcasting periodic HELLO messages. 
Similar to the HELLO message, the member nodes in a cluster 
send periodic MEMBER_UPDATE messages to the clusterhead. 
Every clusterhead proactively maintains the location and mobility 
information of all the nodes in its cluster. If a 
MEMBER_UPDATE message is not received within the 
stipulated time, it is assumed that the node has moved out of the 
transmission range of the clusterhead and is no longer considered 
a part of the cluster. 

3.3 Mobility Prediction Schemes 
In this section, we present an overview of the two mobility 
prediction schemes considered in this paper. The choice of these 
prediction schemes is due to the fact that unlike other schemes in 
the literature, both these schemes are independent of the 
underlying model that defines the node mobility and of the 
network architecture.  

Link Expiration Time: The Link Expiration Time (LET) is a 
simple prediction scheme that determines the duration of a 
wireless link between two mobile nodes by assuming that their 
speed and direction of movement remains constant. Let the 
location of node i and node j at time t be given by ),( ii yx  

and ),( jj yx . Also, let ivr  and jvr  be the speeds, and iθ  and 

jθ  be the directions of the nodes i and j respectively. If the 

transmission range of the nodes is r, then the Link Expiration 
Time, Dt, of the link between the two nodes, as defined in [7], is 
given by 

)1(
)()()(

22

2222

K
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The LET gives an upper bound on the estimate of the residence 
time of a node in a cluster. In the proposed clustering framework, 
when LET-based prediction is used, a node is allowed to join a 
cluster only if the predicted LET of the link between the node and 
the clusterhead is greater than the cluster’s admission criteria.  
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Linear First Order Autoregressive Model: The linear first order 
autoregressive (AR-1) model, as defined in [8], has been shown to 
effectively track the movement of a mobile node irrespective of 
the underlying mobility model. In an AR-1 model, the mobility 
state of a node at time n is defined by the column vector 

[ ]nnnnnnn yxyyxxs &&&&&& ,,,,,=  

where nx  and ny  specify the position, nx& and ny& specify the 

velocity, and nx&& and ny&& specify the acceleration of the mobile 
node in the x and y directions in a two-dimensional grid. The AR-
1 model for the mobility state sn of a node is given by: 

nnn wAss +=+1        … (2) 

where A is a 6 x 6 transformation matrix, the vector wn is a 6 x 1 
discrete-time zero mean white Gaussian process, with a 
covariance matrix Q. The matrices A and Q are called the 
parameters of the model and are estimated based on a training 
data which allows the model to accurately characterize a wide 
class of mobility patterns. The parameters of the AR-1 model are 
updated periodically using the actual observed values. If the state 
information sn at any time n is available, it is possible to predict 
the mobility state sn+m at any time n+m in the future using the 
following equation 

n
m

mn sAs =+         … (3) 

In our experimental analysis, we use the AR-1 model to track the 
node movement and to predict the residence time of a node in a 
cluster. A node i is allowed to join a cluster Cj only if the 
estimated residence time is at least Tj (the admission criteria of 
the cluster). 

4. Experimentation Results 
In this section, we present the results from detailed simulation 
experiments carried out using the OPNET simulation software 
[16]. Before we discuss the results, we first describe the mobility 
models and the performance metrics used to evaluate the 
prediction schemes. 

4.1 Mobility Models 
We model the movement of nodes in the network using three 
mobility models: (1) Gauss-Markov, (2) Random Waypoint and 
(3) RPGM mobility models. Although random node mobility has 
been widely used, there are a number of applications of ad hoc 
networks in tactical communications such as emergency response 
teams, battlefields, etc., where nodes do not exhibit complete 
random motion. Therefore, in order to effectively study the 
performance of any clustering algorithm for an ad hoc network, 
we need to have mobility models that simulate realistic movement 
of mobile nodes. Hence, we selected the Gauss-Markov mobility 
model which allows us to control the randomness in the 
movement pattern.  
We consider the random waypoint mobility model as a worst case 
scenario for any mobility prediction scheme. While good mobility 
prediction schemes should be successful in identifying explicit 
group mobility in the network, accurate mobility prediction in the 
presence of absolute random mobility is tough, if not impossible. 
The RPGM model introduces explicit group mobility in the 

network. An effective mobility prediction scheme should be able 
to identify the groups accurately. Therefore, in order to evaluate 
the strengths of the prediction schemes, we also conduct 
simulations consisting of groups of nodes, each moving 
independent of each other in an overlapping fashion. Reference 
[3] presents a comprehensive description of the above mentioned 
mobility models. 

4.2 Performance Metrics 
The primary goal of using a mobility prediction scheme is to 
enable the underlying clustering framework to provide temporal 
guarantees on the availability of routes to all the nodes within a 
cluster. In order to analyze the performance of the prediction 
schemes, we consider the following factors: 

(1) The clusters identified through mobility prediction should 
exhibit temporal stability, i.e., there should be minimal 
changes in the membership of a cluster over a specified 
duration of time.  

(2) The overhead associated with cluster maintenance should 
be minimized. 

(3) The number of clusters in the network should be 
minimized to achieve scalability. 

Metric for temporal stability: One way to evaluate cluster 
stability would be to observe the duration of time for which the 
membership a cluster remains unchanged. However, in the 
absence of explicit group mobility, it is very unlikely that nodes 
will remain with the same cluster for a long duration of time. 
Nevertheless, the stability of both inter- and intra-cluster routes 
critically depends on the frequency of the nodes leaving a cluster. 
Hence, we define the cluster survival time as the amount of time 
between two consecutive events of nodes leaving the cluster. We 
also record the cluster residence time which is the average amount 
of time spent by a node in a cluster. The cluster residence time is 
also a good measure of the stability of a cluster [13]. It is similar 
to cell residence time in cellular systems, which is a determinant 
of the distribution and rate of handoffs.  

Metric for maintenance overhead: The maintenance overhead 
of the clustering algorithm can be evaluated using the reaffiliation 
count which represents the number of times mobile nodes change 
their cluster affiliations. A higher reaffiliation count means higher 
control traffic overhead since all active routes to the node need to 
be updated.  

Metric for scalability: Finally, it is important to minimize the 
number of clusters in the network in order to improve scalability. 
Nevertheless, a clustering algorithm need not result in an minimal 
number of clusters, as long as the resulting clusters are relatively 
stable.  

Measure for prediction accuracy: The performance of the 
clustering scheme is heavily dependent on the accuracy of the 
prediction algorithm. The decision to allow nodes to join a cluster 
is based on the future position of the nodes in the network, as 
estimated by the mobility prediction algorithm. We define the 
prediction error as the fraction of times a prediction turns out to 
be incorrect, i.e., the fraction of times a node leaves a cluster 
without satisfying its admission criteria. 
It is important to note that the above mentioned metrics are not 
independent of each other. However, they all indicate the 
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performance of the prediction scheme from different aspects. 
Clearly, there is a tradeoff between the size of the clusters and the 
stability of the clusters. A small cluster implies higher cluster 
survival times since membership changes will be less frequent. 
However, it is desirable to have clusters with multitude of nodes 
to localize the effects of topological changes. An optimal 
clustering scheme would be one which maximizes the stability of 
the clusters while still resulting in highly populated clusters. 

4.3 Experimental Setup 
We simulate an ad hoc network consisting of 70 mobile nodes on 
a 1000m x 1000m grid. We used the OPNET simulator and each 
of the simulation runs were carried out for a 5 hour time period. 
We compared three clustering schemes, namely, LET-based 
predictive scheme, AR-1 model-based predictive scheme and 
WCA.  For each of the simulation runs, the AR-1 model was 
initially trained on a data set consisting of 600 data points. During 
the course of the simulation period, the parameters of the model 
were updated with the observed values at intervals of 30 seconds. 

4.4 Results with Gauss-Markov mobility 
model 
Gauss-Markov mobility model gives us the ability to control the 
randomness in the movement patterns of the mobile nodes 
through a tuning parameter α [3]. If α=1, the movement of the 
nodes is completely linear whereas a value of α = 0, results in 
random node movements. For our simulations, α was set at 0.8. 

Sensitivity to prediction interval: In our clustering framework, a 
node is allowed to join an existing cluster in the network only if it 
satisfies the admission criteria associated with the cluster. A 
clusterhead uses the mobility prediction scheme to check if a node 
satisfies the admission criteria. A stricter admission criterion 
would require the mobility prediction scheme to predict the 
movement of the nodes over a larger interval of time. If the 
predictions were to be accurate, as the admission criteria is 
increased, the resulting cluster will exhibit greater temporal 
stability with high cluster survival and residence times.  
The graphs in Figure 1(a) indicate that both the schemes have a 
high prediction error over intervals greater than 2 minutes. We 
also observe that while the first order linear autoregressive model 
accurately tracks node mobility, it has significantly higher 
prediction error, making it unsuitable for multi-step predictions 
(predictions over large intervals). In our simulations, we used the 
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prediction scheme referred to as the plug-in predictor which is 
obtained by repeatedly using the fitted model with unknown 
future values replaced by their own forecasts. This often results in 
high prediction errors over large intervals especially if the model 
order has not been fitted well [14]. Erroneous predictions often 
lead to the inclusion of some nodes in a cluster that in reality, do 
not satisfy the admission criteria. As a result, high prediction 
errors in the AR-1 based scheme severely degrade its performance 
as indicated by cluster survival and residence times in figure 1(b) 
and 1(c). 
The LET-based scheme, on the other hand, does result in clusters 
with increasing survival times as the admission criteria of the 
clusters is increased. This is due to the fact that, in the absence of 
total random movement, a linear approximation of the movement 
of the nodes over a short interval of time holds good. 
Nevertheless, both the mobility prediction-based schemes result in 
better temporal stability when compared to WCA which is 
insensitive to the admission criteria. A prediction-based scheme 
also significantly increases the cluster residence time and hence 
the stability of routes in the network. Stable and long-lived 
clusters also result in significantly less maintenance overhead 
which can be verified in Figure 1(e).  

Sensitivity to node speed: In the next set of experiments, we 
vary the average speed of the mobile nodes from 1 m/s to 10 m/s. 
The admission criteria of the clusters is fixed at 2 minutes with a 
uniform transmission range of 250 meters for all nodes. As the 
average speed of the mobile node increases, they tend to move in 
and out of the clusters more frequently resulting in a highly 
dynamic network topology. Consequently, maintaining the 

temporal stability of the clusters becomes increasingly difficult. 
Nevertheless, a good mobility prediction scheme should be able 
to accurately identify nodes that meet the admission criteria of the 
clusters even at higher speeds. As a result, a clustering scheme 
that uses mobility prediction should adapt the cluster size to node 
mobility while maintaining the temporal stability of the clusters. 
Specifically, at low speeds, it results in less number of clusters 
with larger cluster size, while the average number of clusters in 
the network gradually increase in response to higher speeds. 
From our results, we observe that both the prediction schemes 
exhibit this trend as can be seen in figure 2. For typical walking 
speeds (less than 2 m/s), the AR-1 model-based scheme results in 
highly stable clusters in comparison to the LET-based scheme as 
seen in figures 2(b) and 2(c). However, the LET-based scheme 
adapts well to increasing node speeds making it more suitable at 
higher speeds. While the performance degradation of the AR-1 
model-based scheme could be offset partially by updating the 
model parameters more frequently, it will significantly increase 
the computational overhead. Nevertheless, we observe that both 
the prediction schemes do result in clusters with better temporal 
stability when compared to WCA which also has significantly 
high number of reaffiliations as shown in figure 2(d). 

4.5 Results with Random Waypoint mobility 
model 
The accuracy of a mobility prediction algorithm is directly related 
to the movement patterns of the nodes in the network. In the 
presence of total random movement patterns, it is almost 
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impossible for any prediction algorithm to perform well. We 
consider this case as a worst case scenario for clustering schemes 
that rely on mobility prediction. In figure 4(a), we observe that 
the both the prediction schemes result in an almost un-clustered 
network for high cluster admission criterion. This is so because, 
every node forms its own cluster since the prediction scheme is 
unable to identify any feasible cluster. WCA always yields a well-
clustered architecture since it does not try to meet any admission 
constraint. Though the AR-1 model has been shown to be 
successful in accurately tracking random node movement[9], 
multi-step prediction is worse than LET since it tries to model the 
mobility of the nodes using a linear model. Clearly, in the 
presence of random node mobility, it is advisable to use an 
algorithm that does not rely on mobility prediction.  

4.6 Results with RPGM model 
The Reference Point Group Mobility (RPGM) model represents 
the random motion of a group of nodes as well as the individual 
nodes with the group. Each group in the network is represented by 
its logical center. Individual mobile nodes randomly move about 
their own pre-defined reference points, whose movements depend 
on the group movement. Therefore, an accurate clustering scheme 
should be able to identify such explicit group mobility in the 
network. However, in order to evaluate the strengths of the 
prediction schemes, we conducted simulations consisting of 10 
groups of 7 nodes each moving independent of each other in an 
overlapping fashion in 2000m x 2000m grid. The reference point 

separation is increased across subsequent runs of the simulation to 
simulate groups which are loosely coupled. The transmission 
range of the nodes is fixed at 250 meters and the admission 
criterion for the prediction schemes is set at 3 minutes. In figure 
5(a), we plot the number of clusters identified by the clustering 
schemes with respect to increasing reference point separation. We 
observe that when the nodes within a cluster are tightly coupled 
together, all the three schemes are able to accurately identify the 
groups in the network. But as the separation between the 
reference points is increased, even the nodes within a group are 
far apart from each other making it impossible to identify the 
groups using a single hop clustering scheme. As a result, the 
number of clusters in the network increases steadily. However, 
both the prediction schemes have similar performance in terms of 
all the performance metrics. For node separations less than 150 
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meters, there is no change in the clustered topology once the 
actual groups are identified. Thus, the cluster residence times and 
the cluster survival times equal the duration of the simulation. The 
performance of WCA rapidly degrades in comparison to the 
predictive schemes as illustrated in figures 5(b) and 5(c). 
However, as the reference point separation is increased, 
individual node mobility (which is similar to random waypoint 
mobility model) starts to significantly influence the results. 

5. CONCLUSIONS 
In this paper, we studied the effect of mobility prediction on the 
temporal stability of clusters in MANETs. We used a simple 
mobility-aware clustering framework to compare the performance 
of two generic mobility prediction algorithms: (1) Mobility 
Prediction using the Link Expiration Time and (2) Mobility 
Prediction using Linear Autoregressive Models. Based on our 
simulation results, we make the following conclusions: 

1. When the nodes do not exhibit total random motion, a 
predictive clustering scheme significantly improves the 
temporal stability of the clusters when compared to a 
mobility-aware non-predictive scheme. However, there is a 
tradeoff between the stability and the size of the clusters.  

2. In the presence of total random node mobility, it is 
advisable to use an algorithm that does not rely on mobility 
prediction. 

3. In the presence of explicit group mobility, both predictive 
and non-predictive clustering schemes are successful in 
accurately identifying the groups. However, when the 
separation with the nodes in a group increases, mobility 
prediction helps in improving the temporal stability of the 
identified clusters. However, the performance gains are 
restricted due the one-hop clustering scheme used. 

4. A predictive clustering scheme is able to adapt to varying 
network conditions by dynamically adjusting the cluster 
size in order to guarantee temporal stability. 

5. While the AR-1 model has been shown to accurately track 
node mobility [8], it does not always result in accurate 
mobility predictions.  

We make the following conclusions about the comparative study 
of the two prediction schemes. 

1. The AR-1 model with the recursive plug-in predictor results 
in higher multi-step prediction errors in comparison to the 
LET-based scheme. However, for predictions over a small 
interval of time, the AR-1 based scheme results in an 
optimal number of clusters with comparable survival times.  

2. The AR-1 model-based scheme performs well under low 
mobility whereas the LET-based scheme is a more suitable 
choice at higher speeds since the performance of the AR-1 
model degrades faster than the LET-based scheme with 
increasing node speeds. 

3. In the presence of explicit group mobility, both the 
prediction schemes perform equally well. 

In our simulations, all the clusters in the network have a fixed 
admission criterion. We are currently investigating various 
approaches to arrive at better values for the admission criteria of 
individual clusters based on parameters such as node velocity and 
transmission range.  
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