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Säumerstrasse 4
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ABSTRACT
The energy-performance optimization of datacenters becomes ever
challenging, due to heterogeneous workloads featuring different
performance constraints. In addition to conventional web service,
MapReduce presents another important workload class, whose per-
formance highly depends on data availability/locality and shows
different degrees of delay sensitivities, such as batch vs. inter-
active MapReduce. However, current energy optimization solu-
tions are mainly designed for a subset of these workloads and their
key features. Here, we present an energy minimization frame-
work, in particular, a concave minimization problem, that specif-
ically considers time variability, data locality, and delay sensitivity
of web, batch-, and interactive-MapReduce. We aim to maximize
the usage of MapReduce servers by using their spare capacity to
run non-MapReduce workloads, while controlling the workload de-
lays through the execution of MapReduce tasks, in particular batch
ones. We develop an optimal algorithm with complexity O(T 2)
in case of perfect workload information, T being the length of the
time horizon in number of control windows, and derive the struc-
ture of optimal policy for the case of uncertain workload informa-
tion. Using extensive simulation results, we show that the proposed
methodology can efficiently minimize the datacenter energy cost
while fulfilling the delay constraints of workloads.

1. INTRODUCTION
Datacenters are standard IT (Information Technology) platforms,

which consume a significant amount of energy to host a wide vari-
ety of conventional and emerging workloads, such as web services
vs. MapReduce, featuring different performance requirements and
workload characteristics. Typically, web services interact with clients,
who require stringent response times and thus real time process-
ing. To guarantee the throughput of large-scale data processing,
MapReduce/Hadoop [1] is a simple yet powerful framework to
process large amounts of data chunks organized in distributed file
systems, e.g., Hadoop Distributed File Systems (HDFS). More-
over, with the recent adoption of MapReduce alongside real time
queries [6,9], MapReduce workloads evolve from traditional through-
put sensitive batch jobs to increasingly delay sensitive interactive
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jobs, such as Sparks [20] on stream processing, Natjam [8] on
batch, and BlinkDB [4] on interactive queries. Energy-aware re-
source allocation for such a diverse set of workloads is thus ever
challenging, and unfortunately existing solutions are often designed
for a subset of these three workload types.

As web and service workloads show strong time-varying behav-
iors, dynamic sizing of the datacenter [13] by controlling the num-
ber of active servers is shown effective to minimize energy. To
better utilize the equipped capacity and benefit from time-varying
power supply, consolidating and delaying the execution of data in-
tensive applications during web workload low load periods can fur-
ther harvest significant cost savings for datacenters [14, 17]. How-
ever, the issues related to data locality of MapReduce workloads
are unfortunately often overlooked or over simplified.

To simultaneously address data availability and energy minimiza-
tion, dedicated MapReduce clusters leverage two types of control
knobs independently, i.e., the fraction of on-times of the entire
cluster and the fraction of on-servers at each time period. On one
hand, clusters delay the execution of batch MapReduce jobs, such
as Google index computation [3] or bank interest calculation, to
process them on the entire cluster [11], depending on the energy
price or other workload demands. As such, the maximum degree
of data locality is guaranteed minimizing execution time and en-
ergy consumption. On the other hand, motivated by the practice
of duplicating data chunks (usually by a factor of three [2]), a few
solutions modify the underlying file system so that a fraction of
servers, e.g., one third of the servers [12], are always available and
contain one copy of all the data chunks. Nonetheless, unavoidable
delay can incur in both solutions and this is not acceptable for inter-
active MapReduce. Beamer [6], specially designed for interactive
MapReduce systems, shows promising energy savings by serving
interactive MapReduce on a subset of servers all the time and batch-
ing MapReduce on the entire cluster once a day. However, it is
not clear how one can dynamically execute(delay) the MapReduce
workloads on allocated servers so to achieve the optimal tradeoff
between data locality and energy efficiency.

In this paper, we address the question how to minimize energy
consumption of executing web applications, batch MapReduce, and
interactive MapReduce, considering their distinct workload charac-
teristics, i.e., time-variability and data locality, and different per-
formance requirements, i.e., throughput vs. delay. The system
of interest is composed of web servers and dedicated MapReduce



servers where a distributed file system is deployed. As our aim is to
design a non-intrusive solution, i.e., not to modify the underlying
file systems, we propose to keep all MapReduce servers on at all
times so that data availability is ensured. In order to minimize the
energy consumption of the entire system, i.e., total number of on
servers, we try to execute all three types of workloads on MapRe-
duce servers only as to size the web cluster as small as possible.
In particular, we consider two control variables over discrete win-
dows: delaying the execution of batch MapReduce and allocating
a fraction of MapReduce servers for batch and interactive work-
loads. We employ dynamic programming to derive the optimal de-
cisions, and simulation to evaluate the proposed solutions under
various workload scenarios.

Formally, we formulate an energy minimization problem over
a discrete horizon, constrained on different degrees of delay in
batch and interactive MapReduce – a concave minimization prob-
lem. The specific control variables are the number of servers for
MapReduce workloads and the amount of batch MapReduce per
control window, which thus specifies the amount of batch jobs to be
delayed. Assuming perfect knowledge on all three types of work-
loads, we develop an algorithm, which can efficiently achieve the
optimal solution with a complexity of O(T 2), where T is the num-
ber of control windows. Finally, we build an event driven simulator
to evaluate the proposed algorithm under different workload sce-
narios, in comparisons with simple algorithms that overlook the
data locality and delay sensitivity of batch and interactive MapRe-
duce.

Our specific contributions can be summarized in the following.
To minimize the energy cost of executing delay and throughput sen-
sitive applications, we consider important tradeoffs among crucial
parameters, i.e., data locality, time-variability, and delay sensitivity,
of web applications, batch MapReduce and interactive MapReduce.
We are able to dynamically and optimally determine the fraction of
batch MapReduce workloads to be delayed by allocation of num-
ber of MapReduce servers, via analytical constructions, as well as,
event driven simulations under various workload scenarios.

The outline of this work is as follows. Section 2 provides an
overview of the system and a formal definition of the problem state-
ment. The algorithm for perfect workload information is detailed
in Section 3. Section 4 presents the experimental set up and simu-
lations results. Section 5 compares related work, followed by sum-
maries and conclusions in Section 6.

2. SYSTEM AND PROBLEM STATEMENT
In this section, we first describe the system and assumptions con-

sidered by this study and formally present the problem statement.

2.1 System
The system hosts three types of workloads: web applications,

batch MapReduce, and interactive MapReduce, characterized by
different degrees of data locality, time variability, and delay sen-
sitivity. In terms of data locality, both types of MapReduce work-
loads require data access to the distributed file system hosted across
the MapReduce servers. Web applications and interactive MapRe-
duce are very sensitive to delay and have priority to be executed
immediately with sufficient server capacity. On the contrary, batch
MapReduce is latency insensitive and its execution can be delayed.
As for time variability, web service workload types are known to
have regular time varying patterns.

In this paper we consider a time slotted system model with each
control window of length τ . The decisions are made at the begin-
ning of each control window. We use λi,t to denote the task arrival
rates of type i ∈ {w,b,c} workloads at time period t, where w,b,c
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Figure 1: System schematic. On the high level, the controller
takes as input the workload characteristics and outputs dy-
namic server allocation decisions for the three types of work-
loads; the scheduler then dispatches tasks according to differ-
ent scheduling policies onto the lower level.

represent web, batch MapReduce, and interactive MapReduce. We
assume task arrival rates of both MapReduce are drawn from geo-
metric distributions. Moreover, we assume the average execution
rate per task is µi, i ∈ {w,b,c}. As for the performance constraints,
web workloads need to satisfy certain response time targets, where
batch and interactive MapReduce tasks just need to be completed
within certain periods of time, such as a day vs. control window.

As web workloads have no dependency on the file system, we as-
sume web workloads can be executed on both web and MapReduce
servers. We further assume that the interferences between CPU-
intensive web applications and IO-intensive HDFS are negligible.
Therefore, the number of active web servers can be dynamically
sized depending on the workload demands. On the contrary, to en-
sure 100% data availability and achieve energy saving, we propose
that all MapReduce servers are kept on and allocated to the three
types of workloads, when deemed appropriate. Moreover, due to
the concern of interferences between web and MapReduce work-
loads [21, 22], we do not co-execute on the same server. Essen-
tially, there are mt and m′t number of servers dedicated for MapRe-
duce and web workloads, respectively. Among mt servers, interac-
tive MapReduce tasks have higher priority over batch MapReduce
tasks. The decisions of mt and m′t are based on the workload de-
mands and performance constraints. Consequently, the total num-
ber of active servers is max{mt +m′t ,M}. One can thus write the
energy cost for the entire cluster for control windows {1 . . . t . . .T}
as T

∑
t=1

K ·max{mt +m′t ,M}, (1)

where M is the total number of servers in MapReduce cluster, T the
time horizon and K the unit energy cost per on/active server. Note
that we assume the energy cost of off/inactive servers to be zero.

Scheduler and Controller. When different tasks arrive at the
system, they are immediately sent to the scheduler, which can em-
ploy different scheduling policies using different queue structures.
Tasks are then scheduled on servers, according to their types. An-
other important system component is the controller, which imple-
ments the server allocation algorithm across the three types of work-
loads in discrete control windows. The high level schematic is sum-
marized in Figure 1.



2.2 Assumption on Data Locality
Data locality defines that a task can find a copy of data on the lo-

cal execution machine instead of getting the data from a remote ma-
chine. Denote the average execution time of a task using local copy
by 1/µ . The execution time of using remote copy is much higher,
here, assumed by a slowdown factor of α , i.e., 1

µ
∗α . Note that we

assume batch and interactive MapReduce tasks have the same av-
erage execution time, i.e., µb = µc = µ , since in MapReduce, large
jobs will be divided into small tasks and each task will deal with a
constant amount of data, e.g., 64 MB by default in Hadoop.

To estimate the throughput of MapReduce, it is very important
to know the probability of tasks being executed with local data,
denoted as Pl .

Following the common practice of data replication in MapRe-
duce clusters, we assume a data chunk to have γ replica, 1≤ γ ≤M.
Given an allocation of m MapReduce servers, the probability of
finding at least one local copy within the m servers can be com-
puted as one minus the probability that no local copy is found, i.e.:

Pl(m) = 1−
(M−γ

m
)(M

m
) = 1−

γ−1

∏
i=0

M−m− i
M− i

.

Pl(m) is always equal to 1 when γ > Mm, because one can find
at least one replica among any m number of servers. As a function
of m, Pl(m) can change in every control window, as the number of
allocated MapReduce servers, mt , changes in time with workload
demands. We further note here that Pl(m) is an upper bound, as-
suming the underlying scheduler is always able to schedule the task
on the server having a local copy.

Assume each control window to have length τ , one can estimate
the MapReduce throughput (in units of tasks per control window)
of a server being

X(m) =
τ

Pl(m)
µ

+
1−Pl(m)

µ/α

. (2)

Note that as Pl(m) is an upper bound, the throughput presented here
is also an optimal case, assuming optimal scheduling.

Putting it all together, the MapReduce optimal throughput of the
entire system is m ·X(m). We provide a numerical example to illus-
trate how MapReduce throughput changes with the number of al-
located MapReduce servers under different replication factors γ in
Figure 2, where the cluster has 1000 nodes. From the figure one can
see that the throughput of one server, i.e., X(m), is increasing in m,
since the data locality improves as m increases. However, the real
throughput is smaller than the optimal case and it depends on the
scheduler. In Section 4, we use simulations to show that the optimal
throughput is achievable. Thus, in analytical models in this paper,
we denote the real throughput of m servers as f (m) = m ·X(m).

2.3 Problem Statement
Our objective is to minimize the energy cost of the entire sys-

tem, which consists of all MapReduce servers and fraction of web
servers, shown in Equation (1). Two variables are mt and m′t , which
need to fulfill MapReduce deadlines and web target response times.
To capture the web target response times, we resort to simple M/M/m′t
queuing model [5], i.e., find a minimum m′t , such that response time
Rw,t under the arrival rate of λw,t and the service rate of µw is below
the target,

Rw,t =
C(m′t ,λw,t/µw)

m′t µw−λw,t
+

1
µw
≤ R∗ , (3)

where C is the Erlang C Formula. Since we can derive the threshold
for m′t from analytical model, here we consider m′t as a function of
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Figure 2: Normalized optimal throughput vs. number of al-
located MapReduce servers: with different replication factors
γ combined with remote slowdown α = 4 and no remote slow-
down α = 1

λw,t .
As for interactive MapReduce, we require that MapReduce servers

allocated in each control window are enough to serve incoming in-
teractive MapReduce workloads, i.e., f (mt) ≥ τ · λc,t . And, for
batch MapReduce tasks, they can be delayed by multiple control
windows. Denote rt as the aggregate residual batch tasks at the
beginning of control window t, we have r1 = 0, and

rt+1 = (rt + τ ·λb,t − ( f (mt)− τ ·λc,t)
+)+, t = 2, . . . ,T , (4)

which means that interactive tasks (τ ·λc,t ) have higher priority to
be served, and batch tasks (rt +τ ·λb,t ) take the remaining capacity
( f (mt)).

In our problem, we consider 30 minutes as one control window
and one day as the horizon of our problem. And we set the end of
the day as the deadlines for all batch MapReduce tasks. The formal
presentation of our problem is:

min
mt

T

∑
t=1

K ·max{M,mt +m′t} ,

s.t. f (mt)≥ τ ·λc,t , ∀t ,
rT+1 = 0 , 0≤ mt ≤M, ∀t ,
constraints (3), (4) ,

(5)

In each control window, the interactive MapReduce workloads
determine the minimum number of mt , while the flexibility of mt
comes from the delayable MapReduce tasks.

3. PERFECT WORKLOAD INFORMATION
We first solve the problem, assuming we have perfect knowledge

of the future, namely, we know all the parameters (λb,t ,λc,t ,λw,t )
at the beginning of time. Since the data locality improves as m
increases, we assume f (m) to be a convex and strictly increasing
function.1 Further, we assume the MapReduce cluster has enough
servers to finish all the batch tasks within one day. Otherwise we
should simply provision more servers to serve the workload, which
is not the main focus of our work.

This optimization problem can be transformed to a concave min-
imization problem [10, 16], which is to minimize a concave objec-
tive function. In concave minimization problems, the local mini-
mum lies on the boundary of the feasible region. Since there can
1Notice that with γ ≥ 3, the optimal throughput function is non-
convex. However, it can still be approximated by a convex func-
tion quite well, since its second order derivative keeps increasing
in most part of the feasible regions when m is not close to M.



exist exponential number of local minima with the increase of the
dimensions, traditional deterministic or randomized non-linear pro-
gramming solvers cannot solve this kind of problems, even if we
just want a sub-optimal numerical solution. Concave minimiza-
tion problems belong to the “hard” global optimization problems.
It has been proved that most concave minimization problems are
NP-hard.

However, our problem has some special structures, such that we
can solve it optimally using a greedy algorithm with complexity
O(T 2).

3.1 Problem Transformation
Since each server in the MapReduce cluster cannot be switched

off at any time, the number of active servers cannot be smaller than
M. Thus, the following lemma holds.

LEMMA 1. In problem (5), if (m∗1, . . . ,m
∗
T ) is an optimal solu-

tion, then solution (max{m∗1,M−m′1}, . . . ,max{m∗T ,M−m′T }) is
feasible, and also optimal. 2

The problem can be transformed to the following problem.

min
mt

T

∑
t=1

K · (mt +m′t) ,

s.t. f (mt)≥ τ ·λc,t , ∀t ,
rT+1 = 0 , (M−m′t)

+ ≤ mt ≤M, ∀t ,
constraints (3), (4) .

(6)

The following lemma follows directly from Lemma 1.

LEMMA 2. Any optimal solution for Problem (6) is also an op-
timal solution for Problem (5).

We define the inverse function of f (m) as g, which is a con-
cave and strictly increasing function. By replacing mt , f (mt), (M−
m′t)

+, M with g(at), at , g(lt), g(A), respectively, we rephrase Prob-
lem (6) as the following concave minimization problem:

min
at

T

∑
t=1

K · (g(at)+m′t) ,

s.t. at ≥ τ ·λc,t , ∀t ,
rT+1 = 0 , lt ≤ at ≤ A, ∀t ,
constraints (3), (4) .

(7)

3.2 Algorithm
We propose Algorithm 1 to solve the optimization problem, which

is a two-stage greedy algorithm.
In the first stage, it greedily allocates the batch workload bu into

some later time t to achieve the throughput lower bound lt . In the
second stage, it goes backwards over time while greedily allocating
the remaining batch workloads. The following theorem shows the
complexity of this algorithm.

THEOREM 3. If the feasible set is non-empty, the algorithm al-
ways finishes in O(T 2) time.

3.3 Optimality of the Algorithm
We denote L (b,c, l,A) as Problem (7) with parameters A, lt ,

λb,t = bt/τ , and λc,t = ct/τ .4

2Details of the proofs can be found in Appendices.
3For argmin/argmax, we always break the tie arbitrarily.
4The m′t terms in the objective function does not affect the optimal
solution.

Algorithm 1 The Optimal Algorithm
1: for t from 1 to T do
2: bt ← τ ·λb,t
3: ct ← τ ·λc,t
4: end for
5: for v from 1 to T do . Stage One
6: if cv < lv then
7: for u from v to 1 do
8: ∆←min{bu, lv− cv}
9: if ∆ > 0 then

10: bu← bu−∆, cv← cv +∆

11: end if
12: end for
13: end if
14: cv← lv
15: end for . End of Stage One
16: for u from T to 1 do . Stage Two
17: while bu > 0 do
18: v← argmaxt{ct | t ≥ u,ct < A} 3

19: ∆←min{bu,A− cv}
20: bu← bu−∆, cv← cv +∆

21: end while
22: end for . End of Stage Two
23: for t from 1 to T do
24: mt ← ct
25: end for

In each step of either stage, the algorithm reduces the current
problem into another problem by decreasing bu and increasing cv.
At the end of stage two, we get a problem such that bt = 0 and
0 ≤ ct ≤ A for each t, whose optimal solution is trivially mt = ct .
By Theorem 3 and Theorem 4, it holds that the algorithm always
returns the optimal solution.

THEOREM 4. For any L (b,c, l,A) with non-empty feasible set,
the algorithm keeps the optimal solution feasible in both stage one
and stage two.

For Theorem 4, it follows directly by Lemma 5, Lemma 6 and
Lemma 7, which show that in Algorithm 1, Line 10, Line 14 and
Line 24 keep the optimal solution feasible, respectively.

LEMMA 5. For any problem L (b,c, l,A), if v = min{t| ct < lt}
and u = max{t| t ≤ v,bt > 0} exist, setting c′ and b′ by c′v = cv +∆

and b′u = bu−∆ for ∆ = min{bu, lv− cv}, while keeping all other
elements in b and c unchanged, it holds that any optimal solution
for L (b′,c′, l,A) is also an optimal solution for L (b,c, l,A).

LEMMA 6. For any problem L (b,c, l,A), if v = min{t| ct < lt}
exists and bt = 0 holds for any t, setting c′ by c′t = lt while keeping
all other elements the same, the feasible sets of L (b,c, l,A) and
L (b,c′, l,A) are equivalent.

LEMMA 7. For any problem L (b,c, l,A) with a non-empty fea-
sible set, if ct ≤ lt holds for any t and u = max{u| bu > 0} and v =
argmaxt{ct | t ≥ u,at <A} exist, setting c′ and b′ by c′v = cv+∆ and
b′u = bu−∆ for ∆ = min{bu,A− cv}, while keeping all other ele-
ments the same, it holds that any optimal solution for L (b′,c′, l,A)
is also an optimal solution for L (b,c, l,A).

Here we present the intuitions behind these lemmas. First, Lemma 5
tells us if at some time interactive MapReduce and web application
workloads are not enough to make use of the whole MapReduce
cluster, we should try to look for the batch tasks arriving no later
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Figure 3: Energy consumption for the MapReduce cluster: (a) geometric arrivals and (b) day-night arrivals.

than that time to fill the residual cluster capacity, since MapRe-
duce servers can not be turned off. Then, Lemma 7 tells us that
for the remaining batch workloads we should greedily assign them
at the control window which has already been assigned the largest
MapReduce throughput, until achieving MapReduce cluster capac-
ity. Since the cost function g is concave in the amount of admit-
ted MapReduce workload at , the more we admit, the more energy-
efficient we are.

4. EVALUATION
In this section, we use simulation to first verify our assump-

tion on data locality. Second we compare our optimal perfect-
knowledge (PK) controller with two dummy allocation schemes re-
ferred to as D1 and D2. In each control period, D1 allocates enough
servers to complete the expected MapReduce workload, while D2
uses a constant allocation based on the average workload over the
whole time horizon.

4.1 Experimental Setup
We consider a system comprising both a MapReduce cluster and

a web farm of size 1000 and 1800, respectively, over a 1-day time
horizon. At the beginning of each 30 minutes, the control window
size τ , the controller decides how many servers mt to allocate to
both the batch and interactive MapReduce jobs, while the remain-
ing MapReduce servers are used as web servers.

The web workload can not be controlled by the system and we
assume to know the required web servers m′t . Both batch and inter-
active MapReduce tasks are handled by a priority scheduler which
dispatches them to the currently available servers. To satisfy the
different delay requirements of batch and interactive MapReduce,
the scheduler gives strict priority to interactive MapReduce.

The task service rate is homogeneous across all servers, but each
server checks if the task being served is local or remote. For the
latter the service rate is decreased by a slowdown factor α = 4.
Moreover, we set the unit energy cost per on/active server K = 250
Watt [18].

We consider two workload scenarios. The first scenario uses ge-
ometrical distributed arrival rates for batch MapReduce λb,t and
interactive MapReduce λc,t . The second scenario uses a day-night
pattern where λb,t , λc,t follow a sinusoidal pattern across the day.
This pattern represents better the workloads monitored in real data-
centers. In all cases inter-arrival rates and task execution times are
exponentially distributed with mean 1

λ
and µ = 10s, respectively.

Each task is randomly assigned to a data chunk which is uniformly
distributed across the MapReduce servers with replication factor
γ = [1,3,5]. Once a task is scheduled we use the probability pl(m)
to decide if it is local or remote such as to achieve the optimal

throughput function f (m).
We repeat each experiment 50 times and present the mean values

over all repetitions. The resulting confidence intervals are quite nar-
row – between +0.25% and -0.25% of the mean values in all cases
except for batch MapReduce response times which have a maxi-
mum confidence interval between +7.8% and -7.8% of the mean.

4.2 Energy saving
The objective of the controller is to minimize the system energy

consumption through the number of allocated MapReduce servers
mt . We present the impact of the allocation decisions taken by each
controller on the energy consumption in Figure 3 (a) and (b). As
baseline we also present the always on energy consumption of the
whole MapReduce cluster. Note that the consumed energy refers
only to the MapReduce cluster since the number of web servers is
not controlled and adds 23.9 MWh to all scenarios. The figures
distinguish between power used for busy servers and power used
for idle servers. Idle servers are possible because during low load
periods the total workload of MapReduce and web does not suffice
to saturate the capacity of the MapReduce cluster. One can observe
that in both scenarios our PK scheduler outperforms the baseline by
up to 59.3% and the dummy controllers by up to 30.7%. Moreover,
one can observe higher energy savings when increasing the repli-
cation factor. A higher replication factor allows to raise the local
probability and the achievable throughput and hence diminishes the
number of servers required to satisfy the same demand.

4.3 Un-/Finished tasks/locality
While energy minimization is the optimization objective, we still

want to satisfy all the requests coming to the system. Considering
again all three controllers and the same scenarios as in our previous
section, we depict in Figure 4 (a) and (b) the amount of finished
tasks over the whole time horizon split per data locality and type
and compare it to the input load. One can observe that the D1
controller is able to almost always complete all the tasks, while PK
and, definitely, D2 lag behind. Here the PK controller suffers from
its open-loop operation which prevents it to react to errors in each
control period and these errors accumulate over time. Even if the
D1 controller succeeds to finish all jobs, D1 lacks the energy saving
possibilities given by the PK controller. Hence, PK achieves the
trade-off between energy and finished jobs. In a practical scenario,
the problem of unfinished tasks can be easily treated as additional
workload in the first control period of the new time horizon.

4.4 Response times
We conclude our evaluation presenting the effect of each control

allocation on the mean response time. These are shown in Figure 5
(a) and (b) split by interactive and batch MapReduce. One can
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Figure 4: Finished tasks over 1-day vs. input load: (a) geometric arrivals and (b) day-night arrivals.
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Figure 5: Response time for (I)nteractive and (B)atch MapReduce (MR) tasks: (a) geometric arrivals and (b) day-night arrivals.

observe how the PK controller delays batch MapReduce by looking
at their significant delay increment over the D1 and D2 cases. More
in general, the best results are obtained by D1 followed by D2.
Overall the energy minimizing allocation of the PK controller pays
the price that, by reducing the number of MapReduce servers, it
increases the MapReduce cluster load which negatively affects the
response times. Even so, PK still manages to keep the interactive
MapReduce delay increase limited.

5. RELATED WORK
There are plethora of studies aiming to improve energy efficiency

for different types of systems, ranging from conventional web ser-
vice systems [7, 13] to modern big data systems [6, 11, 12, 15, 19],
such as MapReduce. To minimize energy consumptions, server re-
sources are dynamically provisioned and workloads are scheduled
correspondingly. Thereby, we summarize the related work in the
area of dynamic sizing with special focus on MapReduce systems.

Dynamic sizing is proven effective for workloads that show strong
time varying patterns, e.g., switching on/off servers for web ser-
vices [7, 13]. Due to the issues of data accessibility of underlying
file systems [2] and performance dependency on data locality [9],
dynamic sizing is applied on in a partial manner. Current work
either control the fraction of time of the entire cluster [11] or the
fraction of servers all the time [12]. On the one hand, to harvest
the maximum data locality, data intensive workloads are batched
and executed together on the MapReduce clusters [6, 11] for cer-
tain duration, often at midnight. On the other hand, another set of
studies [6, 12] leverage the data replication factor (e.g., 3 replicas
per data [3]) and propose the concept of covering set, which keeps
only a fraction of servers on all the time. Certain modifications on
file systems are usually needed.

To address the emerging class of interactive MapReduce work-

loads, BEEMR [6] combines the merits of both types of approaches
by partitioning the MapReduce clusters into two zones, namely
interactive and batch. However, how to optimally (and dynami-
cally) allocate and execute interactive and batch MapReduce is yet
to be discussed. Motivated by the complimentary performance re-
quirements of service and data-intensive workloads, another hosts
of studies [14, 17, 22] try to schedule MapReduce workloads ac-
cording to the dynamics of web workloads, considering only the
batch MapReduce and (often) overlooking the locality issues. All
in all, the related work falls short in addressing how to dynamically
size the server resources for executing web, interactive and batch
MapReduce in an energy optimal fashion.

Overall, it is not clear how to design a scheduler that can consider
multiple types of workloads with different performance and system
requirements, i.e., delay tolerances and data locality, in conjunction
with dynamic sizing.

6. CONCLUSION AND SUMMARY
This study considers both control knobs of dynamic sizing and

scheduling policies simultaneously, for three types of workloads:
web service, batch MapReduce and interactive MapReduce. We are
able to achieve minimum energy consumption by allocating opti-
mal servers across the three types of workloads, factoring their data
locality, delay constraints, and workload uncertainties, while dy-
namically scheduling/delaying batch MapReduce. We developed
an optimal algorithm under perfect knowledge with complexity O(T 2).
By means of extensive simulation, we show energy savings of up to
30% and 59% over dumb and no allocation strategies, respectively,
without affecting interactive MapReduce delay significantly.
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APPENDIX
A. PROOF FOR LEMMA 1

PROOF. Since (m∗1, . . . ,m
∗
T ) is an optimal solution, it meets all

the constraints and achieves the minimal value of the objective
function. Consider the solution (max{m∗1,M−m′1}, . . . ,max{m∗T ,M−
m′T }). At each control window, max{m∗t ,M−m′t}will be no smaller
than m∗t , which means it can also finish all the tasks at the end of the
control horizon. Thus, it is also a feasible solution. Moreover, since
this solution has exactly the same value of the objective function as
the original one, it is also an optimal solution.

B. PROOF FOR THEOREM 3
PROOF. The runtime of stage one is trivially O(T 2). It suffices

to show that stage two finishes in O(T 2) time. Or more precisely,
each time the WHILE loop (Line 17-20) finishes in linear time. In
each iteration of the WHILE loop, we have either ∆ = bu or ∆ =
A− cv. The algorithm either finishes the WHILE loop or removes
cv from the sorted list. Using the trick of sorting the {c1, . . . ,cT }
before stage two, if in stage two the set {ct |t ≥ u,ct < A} is never
empty, then the WHILE loop terminates in linear time.

If at some time during the stage two, the set {ct |t ≥ u,ct < A}
is empty, then the problem with the b,c, l,A values at that time has
empty feasible set. Thus, it suffices to show that if the original
problem has a non-empty feasible set, each step in stage one or
stage two keeps the feasible set non-empty. This holds by Lemma 8,
9 and 6.

LEMMA 8. In Algorithm 1, Line 10 keeps the feasible set of
L (b,c, l,A) non-empty. Namely, if before this operation, L (b,c, l,A)
has a non-empty feasible set, then after this operation its feasible
set is still non-empty.

PROOF. The feasible set of problem L (b,c, l,A) is non-empty
if and only if for any k

ck < A ,
T

∑
t=k

(bt + ct)≤ (T − k+1) ·A . (8)

It suffices to show Line 10 keeps these properties. First, since
Line 10 ensures cv ≤ lv = f (M−m′t)≤ A, the first property cv < A
is kept. Then, we show that Line 10 also keeps the second property.
One can verify that in Line 10, if u < v, then bu+1, . . . ,bv = 0, so
that bt +ct ≤A holds for t ∈ {u+1, . . . ,v}, which shows the second
property is kept; otherwise u = v, then bv + cv is unchanged.

LEMMA 9. In Algorithm 1, Line 20 keeps the feasible set of
L (b,c, l,A) non-empty. Namely, if before this operation, L (b,c, l,A)



has a non-empty feasible set, then after this operation its feasible
set is still non-empty.

PROOF. The proof is similar. It suffices to show Line 20 keeps
(8). Since in Line 20, bu+1, . . . ,bT = 0, it holds that bt +ct = ct ≤A
for t ∈ {u+ 1, . . . ,T}. Thus, if we increase cv for some v > u, (8)
still holds. Otherwise u = v, then bv + cv is unchanged.

C. PROOFS FOR LEMMAS 5, 6 AND 7
Before showing formal proofs, we need the following lemmas.

LEMMA 10. For the function f (x,y) = (x− y)+, for any y and
∆≥ 0, it holds that

x− x′ ≤ ∆ =⇒ f (x,y)− f (x′,y)≤ ∆ .

LEMMA 11. For the function f (x,y) = (x− y)+, for any x and
∆≥ 0, it holds that

y− y′ ≤ ∆ =⇒ f (x,y′)− f (x,y)≤ ∆ .

We omit the proofs for Lemma 10 and 11, since they hold trivially.

LEMMA 12. For any problem L (b,c, l,A), if we set c′ and b′

the same as c and b except that c′v = cv +∆ and b′u = bu−∆, for
some u,v such that u≤ v and some non-negative ∆, and still keeping
c′v ≤ A, b′u ≥ 0, it holds that the feasible region of L (b′,c′, l,A) is
a subset of the feasible region of L (b,c, l,A)

PROOF. Consider an arbitrary feasible solution of L (b′,c′, l,A),
a′ = (a′1, . . . ,a

′
T ). Denote that r1 = 0, rt+1 = (rt + bt + ct − a′t)

+

for problem L (b,c, l,A), and r′1 = 0, r′t+1 = (r′t + b′t + c′t − a′t)
+

for problem L (b′,c′, l,A). If u = v, the lemma holds trivially since
r′t = rt for any t. So now we consider the case that u < v. Notice
that for any t ≤ u, r′t = rt . Since b′u = bu−∆, by Lemma 10, we
have r′u+1 ≥ ru+1−∆. Then by induction we have r′t ≥ rt −∆ for
any t ∈ {u+1, . . . ,v}. Since c′v = cv +∆, we have r′v+1 ≥ rv+1. By
induction we have r′T+1 ≥ rT+1, which means r′T+1 = 0 implies
rT+1 = 0. Thus, if a′ is a feasible solution of L (b′,c′, l,A), then it
is also a feasible solution of L (b,c, l,A).

Now we present the formal proof for Lemma 5, 6 and 7.

C.1 Proof for Lemma 5
Lemma 5 follows directly by the following lemma.

LEMMA 13. For problem L (b,c, l,A), assume there exists cv
which has the smallest index v such that cv < lv, and there exists bu
which has the largest index u such that u ≤ v and bu > 0. Denote
that ∆ = min{bu, lv−cv}. Set c′ and b′ the same as c and b, except
that c′v = cv +∆ and b′u = bu−∆. It holds that any optimal solu-
tion for L (b′,c′, l,A) is also an optimal solution for the original
problem.

PROOF. For notation simplicity, in this proof we use L to de-
note L (b,c, l,A), and use L ′ to denote L (b′,c′, l,A). It follows
by Lemma 12 that the feasible region of L is a subset of the fea-
sible region of L ′. Moreover, these two problems have the same
objective function. Thus, it suffices to show any optimal solution
of L , a∗ = (a∗1, . . . ,a

∗
T ), is also a feasible solution of L ′. We show

this in two cases: u = v and u < v. In the former case, the two prob-
lems are equivalent since cv < c′v ≤ lv and cv + bv = c′v + b′v. For
the latter case that u < v, assume (r1, . . . ,rT+1) and (r′1, . . . ,r

′
T+1)

are values for residual batch tasks corresponding to the solution a∗

in L and L ′, respectively. With the same argument in the proof of
Lemma 12, we get that{

r′t = rt , t ≤ u ,

r′t = (rt −∆)+ , u < t ≤ v .
(9)

Now we show the following claim:

CLAIM 1. If a∗ is an optimal solution for L , it holds that rt ≥∆

for u < t ≤ v.

We argue this by contradiction. Assume the statement does not
hold, then there must exist some k, such that u≤ k < v and rk+1 =
(rk+bk+ck−a∗k)

+ <∆. Without loss of generality, we assume k is
the smallest one of all the possible values and assume rk+1 =∆−δ .
Then, it holds that

1. a∗k ≥ ck +δ ,

2. rv +bv + cv−a∗v ≤−δ .

The first statement holds because rk + bk ≥ ∆ (if k = u, it is also
true because bu ≥ ∆), and (rk+bk+ck−a∗k)

+ = ∆−δ . The second
statement holds because rv ≤ ∆−δ , bv = 0 and a∗v ≥ cv +∆, where
rv ≤ ∆−δ holds because rk+1 ≥ . . .≥ rv, following by the fact that
bk+1 = . . .= bv−1 = 0 and at ≥ ct for any t, and a∗v ≥ cv +∆ holds
because a∗v ≥ lv and ∆ = min{bu, lv − cv}. Then we get a better
solution a∗∗ for L , such that

a∗∗t =

{
a∗t −δ , t = k

a∗t , otherwise
.

This solution still meets all the constraints of L , because 1) a∗k −
δ ≥ ck ≥ lk, and 2) r∗∗v+1 = rv+1, . . . ,r∗∗T = rT , where r∗∗t are residual
batch tasks corresponding to a∗∗. To show the latter statement,
notice that by Lemma 11, a∗∗t = a∗t −δ implies r∗∗k+1 ≤ rk+1+δ ; by
Lemma 10, this further implies r∗∗v ≤ rv +δ . Thus, we have r∗∗v +
bv + cv−a∗∗v ≤ (rv +δ )+bv + cv−a∗v ≤ 0, which implies r∗∗v+1 =
rv+1 = 0. And r∗∗v+2 = rv+2, . . . ,r∗∗T = rT follows since a∗∗t = a∗t
for t = v+ 1, . . . ,T . We have constructed the contradiction. Thus,
Claim 1 holds.

Combining Claim 1 with (9), we get that r′v = rv − ∆, which
implies r′v+1 = rv+1 (recall c′v = cv + ∆). Since from time slot
v+ 1 the two problems L and L ′ are exactly the same, we have
r′T+1 = rT+1 = 0, which means a∗ is also a feasible solution of
L ′.

C.2 Proof for Lemma 6
Lemma 6 follows directly by the following lemma.

LEMMA 14. For problem L (b,c, l,A), if there exists cv, v ∈
{1, . . . ,T}, such that cv < lv, and for any t ≤ v we have bt = 0, then
by setting c′ same as c except that c′v = lv, we get a new problem
L (b,c′, l,A), whose feasible set is equivalent to the feasible set of
L (b,c, l,A).

PROOF. We can clearly see that for any feasible solution a for
L (b,c, l,A), since at ≤max{ct , lt} and bt = 0 for t ∈{1, . . . ,v}, we
have that rv+1 = r′v+1 = 0. By induction, it holds that rt = r′t = 0 for
any t > v. Thus a is also a feasible solution for L (b,c′, l,A).

C.3 Proof for Lemma 7
We need the following “non-slackness” lemma and ”concave

minimum” lemma, which are the two key insights of Lemma 7.

LEMMA 15 (NON-SLACKNESS). For any problem L (b,c, l,A)
such that ct ≥ lt for any t, the optimal solution a∗ = (a∗1, . . . ,a

∗
T )

will make rt +bt + ct −a∗t ≥ 0 for any t.

PROOF. The lemma holds, since otherwise we can decrease a∗t .

LEMMA 16 (CONCAVE-MINIMUM). For a concave function
g(x), given any x1,x2,x3,x4, such that x1 ≤ x3 ≤ x4 and x1 + x4 =
x2 + x3, it holds that g(x1)+g(x3)≤ g(x2)+g(x3).



PROOF. This lemma follows directly by the definition of the
concave function.

Lemma 7 follows directly by the following lemma.

LEMMA 17. For any problem L (b,c, l,A) such that ct ≥ lt for
any t, assume bu is the largest index u such that bu > 0, and v is
the index such that v = argmaxt{ct | t ≥ u,at < A} (break the tie
arbitrarily). Denote that ∆ = min{bu,A− cv}. Set c′ and b′ same
as c and b, except that c′v = cv +∆ and b′u = bu−∆. It holds that
any optimal solution for L (b′,c′, l,A) is also an optimal solution
for L (b,c, l,A).

PROOF. For notation simplicity, we use L to denote L (b,c, l,A),
and use L ′ to denote L (b′,c′, l,A).

First we show that an optimal solution of L exists such that av ≥
cv +∆. Assume we have an optimal solution a∗ for L , such that
a∗v < cv+∆, then there must exist v′ ≥ u (v′ 6= v) such that a∗v′ > cv′ ,
otherwise we cannot finish all batch tasks at the end. We set a∗∗v =
a∗v + δ and a∗∗v′ = a∗v′ − δ , where δ = min{a∗v′ − cv′ ,A− a∗v}, and
keep a∗∗t = a∗t for other t’s. Then, it holds that a∗∗ is also a feasible
solution since it meets the constraints and can also complete all
tasks at the end5.

Observe that δ = a∗v′−cv′ implies cv′ = a∗∗v′ ≤ a∗v ≤ a∗∗v , since by
definition cv′ ≤ cv; while δ = A−a∗v implies a∗∗v′ ≤ a∗v′ ≤ a∗∗v = A.
Either case implies g(a∗∗v′ )+g(a∗∗v )≤ g(a∗v′)+g(a∗v) (see Lemma 16),
which shows a∗∗ is at least as good as a∗. We can do this kind of
adjustment again and again, without decreasing the value of the ob-
jective function, until either av = A (saturated), or at = ct for any
t ∈ {u, . . . ,T}/{v}, which indicates that we can eventually get an
optimal solution such that av ≥ cv +∆.

Then we show that if an solution of L satisfying that av≥ cv+∆,
then it is also a feasible solution of L ′, because 1) the constraints
c′t ≤ at ≤ A still hold (we only need to check the case when t = v);
2) in order to show r′T+1 = 0, we have

r′T+1 =
T

∑
t=u

(r′t +b′t + c′t −at)
+

(a)
= ((r′u +b′u)+

T

∑
t=u

c′t −
T

∑
t=u

at)
+

(b)
= ((ru +bu−∆)+∆+

T

∑
t=u

ct −
T

∑
t=u

at)
+

= rT+1 = 0 ,

where (a) holds since bu+1 = . . . = bT = 0, and (b) holds since
b′u = bu−∆, c′v = cv +∆ and r′u = ru (we can use induction to show
r′t = rt for all t ≤ u).

5Recall that by definition we have bt = 0 for any t ∈ {u+1, . . . ,N−
1}, so as long as the constraints ct ≤ at ≤ A are met and we also
have ru +bu = (au−ct)+ . . .+(aT −cT ), it can finish all the tasks
at the end so it is a feasible solution.


