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Abstract—We consider wireless networks in which multiple
paths are available between each source and destination. We
allow each source to split traffic among all of its available paths,
and ask the question: how do we attain the lowest possible
number of transmissions per unit time to support a given traffic
matrix? Traffic bound in opposite directions over two wireless
hops can utilize the “reverse carpooling” advantage of network
coding in order to decrease the number of transmissions used.
We call such coded hops as “hyper-links”. With the reverse
carpooling technique longer paths might be cheaper than shorter
ones. However, there is a peculiar situation among sources – the
network coding advantage is realized only if there is traffic in
both directions of a shared path. We consider the problem of
routing with network coding by selfish agents (the sources) as a
potential game, and develop a method of state-space augmentation
in which additional agents (the hyper-links) decouple sources’
choices from each other by declaring a hyper-link capacity,
allowing sources to split their traffic selfishly in a distributed
fashion, and then changing the hyper-link capacity based on user
actions. Furthermore, each hyper-link has a scheduling constraint
in terms of the maximum number of transmissions allowed per
unit time. We show that our two-level control scheme is stable,
and verify our analytical insights by simulation.

I. INTRODUCTION

There has recently been significant interest in multihop
wireless networks, both as a means for basic Internet access,
as well as for building specialized sensor networks. How-
ever, limited wireless spectrum together with interference and
fading pose significant challenges for network designers. The
technique of network coding has the potential to improve the
throughput and reliability of multihop wireless networks by
taking advantage of the broadcast nature of wireless medium.

For example, consider a wireless network coding scheme
depicted in Figure 1(a). In this example, two wireless nodes
need to exchange packets x1 and x2 through a relay node. A
simple store-and-forward approach needs four transmissions.
However, the network coding approach uses a store-code-and-
forward technique in which the two packets from the clients
are combined by means of an XOR operation at the relay and
broadcast to both clients simultaneously. The clients can then
decode this coded packet (using information stored at clients)
to obtain the packets they need.

Katti et al. [1] presented a practical network coding archi-
tecture, referred to as COPE, that implements the above idea
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Fig. 1. (a) Wireless Network Coding (b) Reverse carpooling.

while also making use of overheard packets to aid in decoding.
Experimental results shown in [1] indicate that the network
coding technique may result in a significant improvement in
the network throughput.

Effros et al. [2] introduced the strategy of reverse carpool-
ing that allows two information flows traveling in opposite
directions to share a path. Figure 1(b) shows an example
of two connections, from n1 to n4 and from n4 to n1 that
share a common path (n1, n2, n3, n4). The wireless network
coding approach results in a significant (up to 50%) reduction
in the number of transmissions for two connections that use
reverse carpooling. In particular, once the first connection is
established, the second connection (of the same rate) can be
established in the opposite direction with little additional cost.

The key challenge in the design of network coding schemes
is to maximize the number of coding opportunities, where a
coding opportunity refers to an event in which at least one
transmission can be saved by transmitting a combination of
the packets. Insufficient number of coding opportunities may
affect the performance of a network coding scheme and is
one of the major barriers in realizing the coding advantage.
Accordingly, the goal of this paper is to design, analyze,
and validate network mechanisms and protocols that improve
the performance of the network coding schemes through
increasing the number of coding opportunities.

Consider the scenario depicted in Figure 2. We have two
sources with equal traffic, each of which is aware of two
paths leading to its destination. Each has one path that costs 6
units, while the other path costs 7 units. If both flows use their
individually cheaper paths, the total cost is 12 units. However,
if both use the more expensive path, since network coding
is possible at the node n2, the total cost is reduced to 11
units. Thus, we see that there is a dilemma here—savings can
only be obtained if there is sufficient bi-directional traffic on
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Fig. 2. Each flow has two routes available, one of which permits network
coding. The challenge is to ensure that both sources are able to discover the
low cost solution.

(n1, n2, n3).
A commonly used framework in the study of routing

problems is that of potential games. Here, there exits a so-
called potential function—a scalar value that can be thought
of as representing the global utility or cost of the system. The
potential function is such that the marginal difference in the
payoff received by an agent following from a unilateral change
in action is equal to the marginal change in the potential
function. Intuitively, it seems that the coupling between an
individual agent’s payoff and that of the whole system ought
to ensure that the system state should converge under myopic
learning dynamics. Indeed Sandholm et al. present results
under which potential games converge to the optimal solution
when it is unique [3], or when the number of players is
sufficiently large and a probabilistic approach can be taken
[4]. Extensions in the context of systems with inertia [5], as
well as finding near-potential games with boundable error [6]
have been studied more recently.

However, the problem that we consider presents the issue
of a game with a finite number of players that has multiple
equilibria, some which have lower cost than others. We can
think of the system in Figure 2 as a potential game, with
the potential function being the total cost given the traffic
splits. However, if each source attempts to learn its optimal
traffic split based on the marginal cost that it observes, it could
easily choose the inefficient solution. The first mover here is
clearly at a disadvantage as it essentially creates the route
that the other can piggyback upon (in a reverse direction).
Our challenge in this paper is to extend the potential game
framework to eliminate the first-mover disadvantage. As we
will discuss in Section I-B, a main contribution of this paper
is the development of the idea of state space augmentation in
potential games as a way of promoting optimal coordination
in such situations.

A. Related Work

Network coding was initiated by a seminal paper by
Ahlswede et al. [7] and since then has attracted a significant
interest from the research community. The network coding
technique was utilized in a wireless system developed by
Katabi et al. [1]. The proposed architecture, referred to as
COPE, contains a special network coding layer between the
IP and MAC layers. Sagduyu and Ephremides [8] focused on
the applications of network coding in simple path topologies

(referred to in [8] as tandem networks) and formulated sev-
eral related cross-layer optimization problems. Similarly, [9]
considered the problem of utility maximization when network
coding is possible. However, their focus is on opportunistic
coding as opposed to creating coding opportunities that we
focus on. The practicality of utilizing network coding over
multiple paths for low latency applications was demonstrated
by Feng et al. [10].

Sengupta et al. [11] consider a very similar problem to
ours, and present a general linear programming formulation
to solve it. However, their objective was to find a centralized
solution, as opposed to the distributed learning dynamics that
we seek. Das et al. [12] proposed a new framework called
“context based routing” in multihop wireless networks that
enables sources to choose routes that increase coding opportu-
nities. They proposed a heuristic algorithm that measures the
imbalance between flows in opposite directions, and if this
imbalance is greater than 25%, provides a discount of 25%
to the smaller flow. This has the effect of incentivizing equal
bidirectional flows, resulting in multiple coding opportunities.
Our objective is similar, but we develop iterated distributed
decision making methods that trade off a potential increase in
cost of longer paths, with the potential cost reduction due to
enhanced coding opportunities.

Marden et al. [13] considered a similar problem to ours, but
unlike our focus on how to align user incentives, their attention
was largely on the efficiency loss of the Nash equilibrium
attained. Thus, they considered the system as a potential game,
and considered the worst case and best case equilibria that
the system might converge to. They showed that under the
potential game framework, the best case Nash equilibrium can
be optimal, while the cost of the worst case Nash equilibrium
can be unboundedly large. To the best of our knowledge, the
initial version of our work that was presented at a conference
[14] was the first to propose a distributed algorithm that
attains the optimal solution. The underlying idea of state-
space augmentation was presented in that work. In parallel
with our work, Marden et al. [15] described a “state-based
game,” which also augments the potential game framework
with additional state, and later used the framework in the
context of consensus formation in networks [16]. Also in
parallel work, ParandehGheibi et al. [17] presented an optimal
solution specific to the network coding problem using classical
Lagrange multiplier ideas. In contrast to their work, we present
a new technique whereby we modify the potential function
seen by players in order to ensure that they take system-
wide optimal decisions. From a methodological standpoint, we
believe that our approach can find application in equilibrium
selection in a wide range of coordination problems (eg. in
understanding how altruistic behavior can alter the set of
achievable equilibria).

B. Main Results

The key contribution of this research is a distributed two-
level control scheme that would iteratively lead the sources to
discover the appropriate splits for their traffic among multiple



paths. In a traditional potential game approach, the matrix of
traffic splits of the different flows would be the state of the
system. In our work, we introduce the idea of augmenting the
state space with additional variables that are controlled sepa-
rately by augmented agents. Unlike Lagrange multipliers, the
additional state variables need not correspond to a constraint
set. Instead, these augmented variables are used to modify the
potential function seen by the original agents in such a way
that they are directed towards the optimal equilibrium. In this
sense, the idea can be thought of as a generalized Lagrange
multiplier. We also illustrate that our approach can coexist with
the usual Lagrange multiplier approach to handle constraints.

We explore the idea of state space augmentation using
the network coding problem. Here, at one timescale we
have sources that selfishly choose to split their traffic across
available multiple paths using marginal costs on each path
to direct their actions. The learning dynamics that they use
are consistent with a potential game approach. However, the
costs that they see are set by augmented agents as well as
Lagrange multipliers, both of which operate at a different
timescale from the source dynamics. The augmented agents
in our problem are so-called hyper-links that consist of a node
and two links over which the node can broadcast using network
coding, as exemplified by the node n2 in Figure 2. These
hyperlinks provide a rebate for usage of the coded path in
order to incentivize flows to explore their usage. The rebate
takes the form of a hyper-link capacity, which simply means
that the the hyper-link does not charge the flows for usage up
to its chosen capacity. Besides the need to encourage flows
to explore codable paths, we also impose a constraint that
each link has a maximum rate that it can support due to
scheduling or spectrum limitations. This constraint is realized
via a Lagrange multiplier approach.

Hence, our approach consists of two control loops, with
the inner employing well-studied learning algorithms such as
BNN dynamics [18] assuming a fixed rebate by hyperlinks, as
well as a price that corresponds to the Lagrange multiplier. The
outer loop consists of gradient-type controllers that modify the
rebate and price, respectively. All controllers only use local
information for their decisions. The process of iteration contin-
ues until the entire network has reached local minimum which,
since our formulation is convex, is also the socially optimal
solution. We prove that this process is globally asymptotically
stable. Note, however, that our optimality result involves two
nested asymptotic results, so we cannot implement the idea
directly. In practice, we have can only run each loop for a
finite number of steps before switching to the other.

We illustrate this approach using numerical experiments.
For comparison, we numerically solve the problem as a linear
program to find the optimal solution. The experiments indicate
that: the convergence of the augmented potential game is fast;
the costs are reduced significantly upon using network coding;
more expensive paths before network coding became cheaper
and shortest paths were not necessarily optimal. Thus, the
iterative algorithm that we develop performs well in practice.

This paper is organized as follows: Section-II develops a

system model and problem formulation assuming no schedul-
ing constraints on the maximum number of transmissions
at each node. In Section-III, we introduce the concept of
hyper-links. In Section-IV we reformulate the problem with
constraints on peak transmissions from each node and present
a bi-level distributed controller - a combination of rate con-
troller and hyper-link controller- to solve the problem. The rate
controller is presented Section-V and the hyper-link controller
is presented in Section-VI. Section-VII contains simulation
results and Section-VIII concludes the paper.

II. SYSTEM OVERVIEW

Our objective is to design a distributed multi-path network
coding system for multiple unicast flows traversing a shared
wireless network. We model the communication network as
a graph G(N , E), where N is a set of network nodes and
E is a set of wireless links. For each link (ni, nj) ∈ E,
where ni and nj are any two nodes, there exists a wireless
channel that allows the node ni to transmit information to the
node nj . Each link (ni, nj) is associated with a cost αij . The
value of αij captures the cost (in expected number of required
transmissions) of sending a packet successfully from ni to nj .
Due to the broadcast nature of the wireless channels, the node
ni can transmit to two neighbors nj and nk simultaneously at
a cost max{αij , αik}.

In wireless networks, even though broadcasting enables
simultaneous transmission to neighboring nodes, it also acts
as interference at those nodes which are listening to some
node other than the broadcasting node. This type of inter-
ference in wireless networks, called Co-Channel Interference,
is handled by upper MAC protocols (for example CSMA)
which schedules transmission periods of links in the network
such that interference is minimized. We assume that a perfect
schedule of wireless links is given to us and, therefore, there
is no interference at the receivers. However, this imposes
a constraint on the maximum number of transmissions per
unit time on the nodes. In this section, we develop a basic
framework, while ignoring these scheduling constraints. We
will include these constraints in Section IV.

We assume that the network supports flows {1, 2, . . . , },
where each flow is associated with a source and destina-
tion node. Each flow i is also associated with several paths
{P 1

i , P
2
i , . . . } that connect its source and destination nodes.

Our goal is to build a distributed traffic management scheme
in which the source node of each flow i can split its traffic,
xi (packets per unit time), among multiple different paths, so
as to reduce the total number of transmissions per unit time
required to support given traffic demands. Note that on some
of these paths there might be a possibility of network coding.

We will first examine a simple network with coding oppor-
tunities and derive system cost associated with the network, in
terms of the total number of transmissions required. Then we
will study how the coding helps in reducing the system cost.

Example 1: Consider the network depicted on Figure 2. The
network supports three flows: (i) flow 1 from n1 to n4, (ii) flow
2 from n4 to n6, and (iii) flow 3 from n5 to n1. We denote by



xi the traffic associated with flow i, 1 ≤ i ≤ 3. Suppose that
the packets that belong to flow 1 can be sent over two paths
(n1, n2, n3, n4) and (n1, n2, n5, n4). We denote these paths
by P 1

1 and P 2
1 . The traffic split on paths P 1

1 and P 2
1 is given

by x1
1 and x2

1, respectively, such that x1
1+x2

1 = x1. Similarly,
flow 2 can be sent over two paths P 1

2 = (n4, n3, n2, n6) and
P 2
2 = (n4, n8, n6) at rates x1

2 and x2
2, such that x1

2+x2
2 = x2.

Finally, flow 3 can be sent over two paths P 1
3 = (n5, n7, n1)

and P 2
3 = (n5, n2, n1), at rates x1

3 and x2
3, with sum x3.

Note that path P 2
1 = (n1, n2, n5, n4) of flow 1 and path

P 2
3 = (n5, n2, n1) of flow 3 share two links (n1, n2) and

(n2, n5) in the opposite directions. Thus, the packets sent
along these two paths can benefit from reverse carpooling.
Specifically, the node n2 can combine packets of flow 1
received from the node n1 and packets of flow 3 received
from the node n5. Similarly, the node n3 can combine packets
of flow 1 received from the node n2 and packets of flow 2
received from the node n4. Note that the cost saving at the
node n2 is proportional to min{x2

1, x
2
3}, while the saving at

the node n3 is proportional to min{x1
1, x

1
2}. Recall that we

are ignoring scheduling constraints in this section.
The cost (transmissions per unit time) at the node n2 when

coding is enabled is

Cn2(x
2
1, x

2
3) = max{α21, α25}min{x2

1, x
2
3} (1)

+α25(x
2
1 −min{x2

1, x
2
3})

+α21(x
2
3 −min{x2

1, x
2
3}).

Here, the first term on the right is the cost incurred due to
coding at the node n2. This is because a coded packet from
n2 is broadcast to both destination nodes, n1 and n5, and so the
cost per packet is max{α21, α25}. The second and third term
are “overflow” terms. Since it is possible that x2

1 ̸= x2
3, the

remaining flow of the larger (that cannot be encoded because
of the lack of flow in the opposite direction) is sent without
coding at the regular link cost.

The cost at the node n2, given by (1), can be re-written as
shown below:

Cn2(x
2
1, x

2
3) = α25x

2
1 +α21x

2
3 +

{
max{α21, α25}

−(α21 + α25)
}
min{x2

1, x
2
3}.

Using the fact that max{x1, x2} + min{x1, x2} = x1 + x2,
we obtain

Cn2(x
2
1, x

2
3) = α25x

2
1 + α21x

2
3 (2)

− min{α21, α25}min{x2
1, x

2
3}.

The above equation can be interpreted as the cost at the node
n2 without coding minus the savings obtained when coding
is used. Thus, the cost saved at the node n2 due to network
coding is min{α21, α25}min{x2

1, x
2
3} . Similarly, for the node

n3 the cost saved is min{α32, α34}min{x1
1, x

1
2}.

The total system cost can be expressed as:

C(X) =

3∑
i=1

2∑
j=1

βj
i x

j
i − min{α21, α25}min{x2

1, x
2
3} (3)

− min{α32, α34}min{x1
1, x

1
2},

where X = {x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3} is the state of the system

and βj
i is the uncoded path cost (equal to the sum of the

link costs on the path) j used by flow i. For example, β1
1 =

α12 + α23 + α34, for path P 1
1 = (n1, n2, n3, n4). Thus, the

first term on the right in (3) is the total cost of the system
without any coding, while the second and third terms are the
savings obtained by coding at nodes n2 and n3.

In the next subsection, we present a system model and
derive a general expression for system cost. Then we formulate
an optimization problem which minimizes system cost by
finding an optimal traffic split of each flow, over the multiple
paths available to them.

A. System Model

Our system model consists of a set of nodes N =
{n1, . . . , nN} and a set of flows F = {1, . . . , F}. Each flow,
f ∈ F is defined as a tuple (ns

f , n
d
f , xf ), where ns

f ∈ N
is the source node, nd

f ∈ N is the destination node, and xf

packets/sec is its traffic demand. A flow may be associated
with multiple paths connecting its source and destination
nodes. Let Pf be the number of such paths available to flow
f and xs

f be the traffic sent by the flow over path s associated
with it. Then,

∑Pf

s=1 x
s
f = xf . Let xf = {x1

f , · · · , x
Tf

f }
represent a traffic split of flow f . Then, the state of the system
X is defined as a set of traffic splits of all flows in the system.
i.e X = {x1, · · · ,xF }.

A node participating in more than one path may have the
opportunity to combine traffic and save on transmission if
the paths traverse the node in reverse directions. Suppose
paths q and r, associated with flow i and j respectively,
traverse the node nk in reverse directions. Assume the node
nk receives packets belonging to flow i which are sent over
path q and transmits those packets to the node ni. Similarly,
it collects packets belonging to flow j traversing over path r
and forwards them to the node nj . Thus, the packets sent
along these paths can benefit from reverse carpooling and
there exists a coding opportunity for flows i and j at the
node nk. We represent this coding opportunity at the node
nk, which is associated with two neighboring nodes and two
flows, as h = nk[(i, q, ni), (j, r, nj)]

1. For example, consider
the network shown on Figure 2. In this network, the coding
opportunity available at the node n2 can be represented as
n2[(1, P

2
1 , n3), (2, P

1
2 , n1)]. Finally, we assume that H such

coding opportunities are present in the system.

1In all the futute references of h, we may assume that it is associated with
nk(h)[(i(h), q(h), ni(h)), (j(h), r(h), nj(h))]. For notational convenience,
we may drop the reference to h in the previous representation and simply use
nk[(i, q, ni), (j, r, nj)]



From (2), the cost (transmissions per unit time) at the node
nk after coding enabled is given by

Cnk
(xq

i , x
r
j) = αkix

q
i + αkjx

r
j (4)

− min{αki, αkj}min{xq
i , x

r
j}.

The total system cost can be expressed as:

C(X) =
F∑

f=1

Pf∑
p=1

βp
fx

p
f − (5)

H∑
h=1

min{αki, αkj}min{xq
i , x

r
j}

where X is the state of the system and βp
f is the uncoded path

cost (equal to the sum of the link costs on the path) p used
by flow f .

Our goal is to build a distributed traffic management scheme
in which the source node of each flow f can split its traffic, xi

(packets per unit time), among multiple different paths, so as
to reduce the system cost (5), total number of transmissions
per unit time required to support a given traffic demands.
We formulate the objective of minimizing cost, subject to the
traffic requirements of each flow, as an optimization problem
given below:

min
X≥0

C(X), (6)

subject to
Pf∑
p=1

xp
f = xf f = 1, . . . , F.

The problem poses major challenges due to the need to
achieve a certain degree of coordination among the flows. For
example, for the network depicted in Figure 2, increasing of
the value of x2

3 (the decision made by the node n5) will result
in a system-wide cost reduction only if it is accompanied by
the increase in the value of x2

1. In the next section, we develop
a distributed traffic management scheme, that does not require
any coordination among flows on deciding their traffic splits.

III. AUGMENTED STATE SPACE AND HYPER-LINKS

The optimization problem in (6) can be solved efficiently
in a centralized manner. But centralized implementations are
not practical in large and complex systems. In this section,
we propose a simple way of decomposing it into subproblems
that can be solved in a decentralized fashion. We do this by
means of adding extra state variables to the system, which we
refer to as state-space augmentation.

It can be observed from (5) that decisions of flows i and
j are coupled through the term min(xq

i , x
r
j). In general, for

any given xq
i and xr

j , this term can be expressed as an optimal
value of the following optimization problem,

min{xq
i , x

r
j} = maxy>0

(
y − λ1(y −min{y, xq

i })

−λ2(y −min{y, xr
j})
)
, (7)

where λ1, λ2 ≥ 1 are any arbitrary constants. Note that the
right hand side of the above equality does not have any

coupling term, due to the presence of the augmented variable
y. Therefore, we can convert the coupled problem (6) into a de-
coupled one by replacing each ‘coupled’ term (min{xq

i , x
r
j})

with an equivalent ‘de-coupled’ expression from (7). Since
each coupling term is associated with a coding opportunity h,
the augmented variable yh is introduced in association with
each coding opportunity. Let Y = {y1, y2, · · · , yH}. Now,
define C(X,Y ) as

C(X,Y ) =
∑F

f=1

∑Pf

p=1 β
s
fx

s
f −

∑H
h=1(min{αki, αkj})yh

+
∑H

h=1

(
ω1h(yh −min{yh, xq

i }) + ω2h(yh −min{yh, xr
j})
)
,

where ω1h, ω2h ≥ min{αki, αkj} are any arbitrary constants.
It can be seen that the cost function (5) can be re-written as

C(X) = min
Y≥0

C(X,Y ). (8)

Choosing ω1h = αki and ω2h = αkj , we get

C(X,Y ) =
F∑

f=1

Pf∑
p=1

βs
fx

s
f −

H∑
h=1

(min{αki, αkj})yh

+
H∑

h=1

(αki(yh −min{yh, xq
i })

+αkj(yh −min{yh, xr
j})
)
. (9)

The cost function has thus been augmented using the variables
yh. For any fixed value of Y, the cost function only depends
on X, and the sources can attempt to modify X find their
individually lowest cost solution. The augmented variables Y
can then be modified to change the cost function. In Sec-
tions V–VI we will formally show how this is accomplished.
We now show that our choices for ω’s lead to an appealing
interpretation for the function C(X,Y ).

Consider coding opportunity h = nk[(i, q, ni), (j, r, nj)],
where the node nk encodes packets coming from ith and jth

flows, and then broadcast them to nodes ni and nj respectively.
Grouping the terms associated with coding opportunity h in
(9), we get

C(h) = αkix
q
i + αkjx

r
j −min{αki, αkj}yh +

αki(yh −min{yh, xq
i }) + αkj(yh −min{yh, xr

j}),
= max{αki, αkj}yh + αki(x

q
i −min{xq

i , yh})
+αkj(x

r
j −min{xr

j , yh}). (10)

In the above expression, C(h), the first term corresponds to the
cost of broadcasting coded traffic, if we restrict the total coded
(broadcast) traffic between the two flows at the node nk to be
less or equal to yh, and the last two terms are the transmission
costs associated with the remaining uncoded traffic. This leads
to the concept of hyper-link, which can be thought of as a
broadcast link with capacity yh. It is composed of physical
links (nk, ni) and (nk, nj) and carries only encoded traffic
from flows i and j. And the remaining uncoded traffic is
sent through uni-cast links (nk, ni) and (nk, nj) respectively.
Formally, a hyper-link and a hyper-path are defined as follows:



Definition 1: A hyper-link is a broadcast-link
composed of three nodes and two flows. A hyper-link
h = nk[(i, q, ni), (j, r, nj)] at the node nk can encode packets
belonging to flow i (sending packets on path q) with flow j
(sending packets on path r). Here, the nodes ni and nj are
the next-hop neighbors of nk; for flow i along path q and for
flow j along path r, respectively. Also, yh denotes capacity
of the hyper-link (in packets per unit time).

A hyper-path p ∈ Si between source ns
i and destination nd

i

is a virtual path over a physical path between ns
i and nd

i . A
hyper-path contains zero or more hyper-links on it and at each
node on the underlying physical path there can be atmost one
hyper-link. It follows that the set of all paths are a subset of
the hyper-paths.

The cost at hyper-link h, given by (10), can be re-written
as:

C(h) = αkix
q
i + αkjx

r
j − T (h), where (11)

T (h) = αki min{xq
i , yh}+ αkj min{xr

j , yh}
− max{αki, αkj}yh. (12)

Recall that the first two cost terms are the total cost at the node
nk when coding is disabled. The remaining cost, T (h) can be
thought of as the rebate obtained by using hyper-link h =
nk[(i, q, ni), (j, r, nj)]. Note that the rebate could be negative
(hence adding to the total cost), which might happen when
one of the flow rate is 0 and the other flow rate is less than
the hyper-link capacity.

Now the function C(X,Y ) in (9) can be written as follows:

C(X,Y ) =

F∑
f=1

Pf∑
p=1

βs
fx

s
f −

H∑
h=1

T (h), (13)

which represents the total system cost without coding minus
the total rebate of all the hyper-links. Here, C(X,Y ) - total
number of transmissions per unit time required to support a
given traffic load- is the system cost given the system state
(X,Y ), where X is the set of traffic vectors of all flows in
the system and Y is set of hyper-link capacities. Our objective
is to minimize the cost function which can be formally stated
as

min
X,Y≥0

C(X,Y )

subject to
Pf∑
p=1

xp
f = xf ∀f = 1, · · · , F . (14)

In the next section, we will also account for the fact that the
transmission rate of each node is limited due to scheduling
constraints.

IV. PEAK TRANSMISSION CONSTRAINTS

In a practical scenario, the maximum number of trans-
missions per unit time from a wireless node is limited by
scheduling. In this section, we assume that the schedule has
been predetermined, and imposes a constraint on the maximum

amount of traffic that can be accommodated on any particular
link. In doing so, we will illustrate the fact that the state
space augmentation can be used in conjunction with Lagrange
multiplier that enforces a constraint. reformulate problem (14)
taking into account the transmission constraints at each node.

Let Rfp
ki be a routing variable. It takes a value equal to 1 if

any path p associated with flow f passes through link (nk, ni)
and otherwise 0. Similarly, define Zh

k which takes 1 if hyper-
link h is associated with the node nk and otherwise 0. Let
Tk be the maximum number of allowable transmissions per
unit time at the node nk. Then, at each node nk, the total
number of uncoded transmissions minus the saved number of
transmissions (using hyper-links) should be less than or equal
to Tk. Therefore,

N∑
i=1

F∑
f=1

Pf∑
p=1

Rfp
ki αkix

p
f −

H∑
h=1

Zh
kT (h) ≤ Tk. ∀nk ∈ N .

Now, incorporating these constraints on transmission rate, the
problem (14) can be re-written as

min
X≥0,Y≥0

C(X,Y ) =
F∑

f=1

Pf∑
p=1

βp
fx

p
f −

H∑
h=1

T (h),

subject to
Pf∑
p=1

xp
f = xf , ∀f = 1, · · · , F, (15)

N∑
i=1

F∑
f=1

Pf∑
p=1

Rfp
ki αkix

p
f −

H∑
h=1

Zh
kT (h) ≤ Tk,

∀k = 1, · · · , N, (16)

where X is the set of traffic vectors of all flows in the system
and Y is set of hyper-link capacities. Note that the augmented
cost C(X,Y ) is jointly convex in X and Y . The constraint sets
are also convex. Therefore, the above problem is convex. We
assume that the feasible sets of the above problem -set of traffic
vectors X and set of hyper-link capacities Y which satisfy
both traffic demands (15) and peak transmission constraints
(16)- is nonempty. We can use dual decomposition techniques
to construct a distributed algorithm to solve this problem. The
Lagrangian function is

C(X,Y,Σ) =

F∑
f=1

Pf∑
p=1

βp
fx

p
f −

H∑
h=1

T (h) +

N∑
k=1

σkVk

where Vk =

 F∑
f=1

Pf∑
p=1

Rfp
ki αkix

s
f −

H∑
h=1

Zh
kT (h)− Tk

 . (17)

Note that σk is a non-negative Lagrange multiplier associated
with the transmission constraint of the node nk. We can
interpret σk as the ‘price’ charged by the node nk for each
transmission. Let Σ = [σ1, · · · , σN ] be a set of node-prices.

We define C(X,Y,Σ) as our new system function given the
system state (X,Y,Σ), where X is the set of traffic vectors of
all flows in the system, Y is the set of hyper-link capacities



and Σ is the set of node-prices. Our objective is find an optimal
state of the problem given below.

max
Σ≥0

min
X,Y≥0

C(X,Y,Σ),

F∑
f=1

xp
f = xf , ∀f = 1, · · · , F.

We propose a bi-level distributed iterative algorithm to find
an optimal state for the above problem.

1) Traffic Splitting: In this phase, each source node finds
the optimum traffic assignment given the hyper-link
capacities and node-prices. For any given (Y,Σ),

TS: min
X≥0

C(X,Y,Σ),

F∑
f=1

xp
f = xf f = 1, · · · , F.

We model this part as a traditional potential game. The
reason for our choice is that there exist several simple,
well-studied controllers for routing in potential games.
Thus, for any fixed value of the augmented variables and
Lagrange multipliers, we can use any of these controllers
to obtain convergence. Details of our game model and
the payoffs used are discussed in Section V. Note that
signalling is required to ensure feedback of node-prices
and hyper-link rebates to the source nodes, but this
overhead is small.

2) Node Control: In this phase, we adjust the augmented
variables (hyper-link capacities) and Lagrange multipli-
ers (node-prices) assuming that potential game of the
sources has attained equilibrium.

NC: max
Σ≥0

min
Y≥0

C(X∗, Y,Σ),

where X∗ is the assignment matrix at equilibrium. We
use gradient decent controllers to modify the optimal
hyper-link state and node-price. Details are discussed in
Section VI.

We call our controller as Decoupled Dynamics. The two
phases operate at different time scales. Traffic splitting is done
at every small time scale and the node-control is done at every
large time scale. Thus, sources attain equilibrium for given
hyper-link capacities and prices, then the hyper-link capacities
and prices are adjusted, and this in turn forces the sources to
change their splits. This process continues until the source
splits, hyper-link capacities and prices converge.

V. TRAFFIC SPLITTING:
MULTI-PATH NETWORK CODING (MPNC) GAME

We model the traffic-splitting process of decoupled dynam-
ics as a potential game with continuous action space, which
we refer to as the Multi-Path Network Coding Game (MPNC
Game). A potential game with continuous action space is
defined by,

1) a set of players, F ,
2) an action space, X = {Xi, ∀i ∈ F|Xi ⊂ RM ,M ∈ N},

where Xi is an action set of player i,

3) a set of continuously differentiable payoff functions of
players, C = {Ci : X → R,∀i ∈ F},

4) a continuously differentiable potential function, Φ : X →
R, such that

∇aiΦ(ai, a−i) = ∇aiCi(ai, a−i), (18)

where ai ∈ Xi, a−i ∈ X\Xi.

Now, having defined the components of a potential game,
we identify the corresponding entities in the case of MPNC
game.

First of all, the flows are the players in the MPNC game.
Then, the set of players is given by F = {1, 2, · · · , F}. The
action set of player i (flow i) is defined as

Xi = {x⃗i = (x1
i , x

2
i , · · · , x

Pi
i )|

∑
j

xj
i = xi},

where xi is the traffic demand of flow i and Pi is the
number of hyper paths available to it. Note that each action x⃗i

corresponds to, an instance of distribution of traffic demand
seen by flow i, over the set of available hyperpaths. Then, the
action space, X, is given by X = {X1, · · · , XF }.

Finally, the payoff function of a player i is defined as

Ci(x⃗i, x⃗−i) = C((x⃗i, x⃗−i), Y,Σ)− C((⃗0, x⃗−i), Y,Σ) (19)

where C is the system cost function given by (17). In the above
definition, x⃗i is the action of player i, x⃗−i is a set of actions
of other players and 0⃗ is a null vector. Also Y is the set of
hyper link capacities and Σ is the set of node prices which
remain invariant during each realization of MPNC game. The
utility defined above is sometimes referred to as the Wonderful
life utility (WLU) [19]. It is well known that payoff as in (19)
results in a potential game with potential function Φ = C [19].

In the context of MPNC game, it is clear that the payoff
function, given by (19), is equal to the total transmission cost
incurred by player i, while sending its own traffic over the set
of available hyperpaths. Hence, in this game, the objective of
each player is to minimize its own payoff.

But there is a caveat in using the system cost function C as
the potential function and Ci’s as the payoff functions. Recall
from the conditions (3) and (4) of the definition of potential
game that, the potential function and the utility functions
must be differentiable. But, from (17) and (12) note that, the
system cost function contains “min” terms over the hyper-link
capacity and the flow rates, which makes the function non-
differentiable. In order to have a continuously differentiable
cost function we approximate these “min” terms using a
generalized mean-valued function.

Let a = {a1, . . . , an} be the set of positive real numbers
and let t be some non-zero real number. Then the generalized
t-mean of a is given by:

Mt(a) =

(
1

n

n∑
i=1

ati

) 1
t

(20)



The “min” function over the set a is approximated using
Mt(a) as:

min{a1, . . . , an} = lim
t→−∞

Mt(a) (21)

Substituting for Mt (20), instead of the “min” function in (17)
we get the approximated total system function as:

C̃(X,Y,Σ) =
F∑

f=1

Sf∑
s=1

βs
fx

s
f −

H∑
h=1

T̃ (h) +
N∑

k=1

σkṼk, (22)

where for a hyper-link h = nk[(i, q, ni), (j, r, nj)] ∈ H:

T̃ (h) = αki

(
(xq

i )
t+(yh)

t

2

) 1
t

+ αkj

(
(xr

i )
t+(yh)

t

2

) 1
t

−max{αki, αkj}yh (23)

and

Ṽk =

F∑
f=1

Sf∑
s=1

N∑
m=1

Rfp
kmαkix

s
f −

H∑
h=1

Zh
k T̃ (h)− Tk. (24)

The system function C̃(X,Y,Σ) is continuous and differen-
tiable. So, we use the approximated function as our potential
function. Similarly, the payoff of player i, given by (19), is
approximated as follows:

C̃i(x⃗i, x⃗−i) = C̃((x⃗i, x⃗−i), Y,Σ)− C̃((⃗0, x⃗−i), Y,Σ). (25)

The marginal payoff obtained by flow i ∈ F , given his
action, x⃗i, and the set of actions of other players, x⃗−i, is

Fi(X,Y,Σ) = ∇x⃗i
C̃i(X,Y,Σ) = ∇x⃗i

C̃(X,Y,Σ), (26)

where X = (x⃗i, x⃗−i). The above result follows from definition
of potential function and (18). Note that Fi is a vector and let
its pth component be F p

i . Then,

F p
i (X,Y,Σ) =

∂C̃(X,Y,Σ)

∂xp
i

, ∀i ∈ F , p ∈ Pi (27)

= βp
i −

∑
h∈Hp

i

∂T̃ (h)

∂xp
i

+

N∑
k=1

N∑
m=1

Rip
kmσkαkm

−
∑
h∈Hp

i

N∑
k=1

Zh
kσk

∂T̃ (h)

∂xp
i

. (28)

where, Hp
i the set of all hyper-links associated with flow fp

i .
From (23)

∂T̃ (h)

∂xp
i

=
1

2
αki

(
xp
i

Mt(x
p
i , yh)

)t−1

, (29)

and we have the min-approximation

Mt(x
p
i , yh) =

(
(xp

i )
t + (yh)

t

2

)
. (30)

As we will show below, our algorithm will converge to the
optimal state for any given value of t < 0. Thus, we can attain
a solution that is arbitrarily close to the original problem by
choosing |t| as large as desired. Also note that the payoff is the
marginal cost incurred in using an option, so the players try

to minimize their cost. The source node of each flow, i ∈ F
observes the marginal cost, F p

i , obtained in using a particular
option (particular hyperpath), p ∈ Pi, and changes the mass
on that particular option, xp

i , so as to attain equilibrium.
Next, we define the concept of equilibrium in potential

games. A commonly used concept in non-cooperative games,
is the Nash equilibrium. The game is said to be at Nash
equilibium, if flows do not have any incentive to unilaterally
deviate from their current action states. An action profile,
X̂ = (⃗̂xi, ⃗̂x−i) ∈ X, results in a Nash equilibrium of MNPC
game if

Ci(⃗̂xi, ⃗̂x−i) ≤ Ci(x⃗i, ⃗̂x−i), ∀x⃗i ∈ Xi, ∀i ∈ F .

The above NE condition also implies that

F p
i (X̂) ≤ F p′

i (X̂) ∀p, p′ ∈ Pi, ∀i ∈ F ,

where F p
i is the marginal payoff given by (27). The above

result can be interpreted as follows: At NE, for any player i ∈
F , all the options (hyper paths) being used by that player, yield
the same marginal payoff. Also, the marginal payoff that would
have been obtained is higher for all those unused options.

The above concept refers to an equilibrium condition; the
question arises as to how the system actually arrives at such
a state. A commonly used kind of population dynamics is
Brown-von Neumann-Nash (BNN) Dynamics [18]. The source
nodes use BNN dynamics to control the mass on each option.
But since each source tries to minimize its payoff, we use a
modified version of BNN dynamics:

ẋp
i =

xiγ
p
i − xi

f

Pi∑
j=1

γj
i

 , (31)

where, γp
i = max

 1

xi

Pi∑
j=1

F j
i x

j
f − F p

i , 0


where F p

i is the marginal payoff of player i given by (27). In
the next subsection, we prove the stability of our inner loop
contorol.

A. Convergence of MPNC Game

We show in this susection that the multi-path network
coding game converges to a stationary point when each source
uses BNN dynamics. We will use the theory of Lyapunov
functions [20] to show that our population game G, is stable
for a given hyper-link state Y̆ and node-price state Σ̆. We
use the approximated system function (22) as our candidate
Lyapunov function.

Theorem 1: The system of flows F that use BNN dynamics
with payoffs given by (27) is globally asymptotically stable for
a given hyper-link state Y̆ and node-price state Σ̆.

Proof: We use the approximated system function
C̃(X,Y,Σ) (22) as our Lyapunov function. It is simple to
verify that the cost function C̃(X, Y̆ , Σ̆), is non-negative and
convex, and hence is a valid candidate. For a given hyper-link



state, Y̆ , and node-price state, Σ̆, we define our Lyapunov
function as:

LY̆ Σ̆(X) = C̃(X, Y̆ , Σ̆).

From (27)

∂LY̆ Σ̆(X)

∂xp
f

=
∂C̃(X, Y̆ , Σ̆)

∂xp
f

= F p
f (X, Y̆ , Σ̆).

Hence,

L̇Y̆ Σ̆(X) =
∑F

f=1

∑Sf

p=1
∂LY̆ Σ̆(X)

∂xp
f

ẋp
f ,

=
∑F

f=1

∑Sf

p=1 F
p
f (X, Y̆ , Σ̆)ẋp

f .

From (31) we can substitute the value for ẋp
f and we have

L̇Y̆ Σ̆(X) =
F∑

f=1

Sf∑
p=1

F p
f (xfγ

p
f − xp

f

Sf∑
j=1

γj
f ),

=

F∑
f=1

xf

 Sf∑
p=1

FP
f γp

f −

 1

xf

Sf∑
p=1

F p
f x

p
f

 Sf∑
j=1

γj
f

 .

We define

F̄f , 1

xf

Sf∑
p=1

F p
f x

p
f ,

=⇒
F∑

f=1

xf

 Sf∑
p=1

FP
f γp

f −
Sf∑
j=1

F̄fγ
j
f

 ,

=
F∑

f=1

xf

 Sf∑
p=1

γp
f (F

P
f − F̄f )

 ,

≤ −
F∑

f=1

xf

 Sf∑
p=1

(γp
f )

2

 ≤ 0.

Thus,

L̇Y̆ Σ̆(X) ≤ 0, ∀ X ∈ X .

where equality exists when the state X corresponds to the
stationary point of BNN dynamics. Hence, the system is
globally asymptotically stable.

B. Efficiency

The objective of our system is to minimize the system func-
tion for a given load vector x⃗ = [x1, . . . , xQ] and given hyper-
link state Y̆ and node-price state Σ̆. Here the system function
C̃(X, Y̆ , Σ̆) and is defined in (22). This can be represented as
the following constrained minimization problem:

min
X

C̃(X, Y̆ , Σ̆) (32)

subject to:
Si∑
p=1

xp
i = xi ∀ i ∈ F (33)

xp
i ≥ 0.

The Lagrange dual associated with the above minimization
problem, for a given Y̆ and Σ̆ is

LY̆ Σ̆(λ, h,X) = max
λ,h

min
X

(
C̃(X, Y̆ , Σ̆) − (34)

F∑
i=1

λi

( Si∑
p=1

xp
i − xi

)
−

F∑
i=1

Si∑
p=1

hp
i x

p
i

)
where λi and hi

p ≥ 0 , ∀ i ∈ F and p ∈ Si, are the dual
variables. Now the above dual problem gives the following
Karush-Kuhn-Tucker first order conditions:

∂LY̆ Σ̆

∂xp
i

(λ, h,X⋆) = 0 ∀ i ∈ F and p ∈ Si (35)

and
hp
i x

⋆p
i = 0 ∀ i ∈ F and p ∈ Si (36)

where X⋆ is the global minimum for the primal problem (32).
Hence from (35) we have, ∀ i ∈ F and ∀ p ∈ Si,

∂C̃
∂xp

i

(X⋆, Y̆ , Σ̆)− λi

∂(
∑Si

p=1 x
⋆p
i − x⋆i)

∂xp
i

+ hp
i = 0

⇒ ∂C̃
∂xp

i

(X⋆, Y̆ , Σ̆) = λi + hp
i (37)

⇒ F p
i (X

⋆, Y̆ , Σ̆) = λi + hp
i (38)

where the last equation follows from (26).
From (36), it follows that

F p
i (X

⋆, Y̆ , Σ̆) = λi when x⋆p
i > 0 (39)

and
F p
i (X

⋆, Y̆ , Σ̆) = λi + hp
i when x⋆p

i = 0 (40)

∀ i ∈ F and ∀ p ∈ Si. The above condition (39, 40), implies
that the payoff on all the options used is identical and for
options not in use the payoff is more, which is equivalent
to the NE condition given by (31). Notice that we use a
modified definition of Nash equilibrium, since each source
tries to minimize it’s cost (or payoff). The following theorem
proves the efficiency of our system.

Theorem 2: The solution of the minimization problem in
(32) is identical to the Nash equilibrium of MPNC game.

Proof: Consider the BNN dynamics (31), at stationary
point, X̃ , we have ẋp

i = 0, which implies that either,

F̂i = F p
i (X̃, Y̆ , Σ̆) (41)

or x̂p
i = 0,

where, F̂i , 1
x̂i

∑Q
r=1 x̂

r
iF

r
i (X̃, Y̆ , Σ̆) ∀ i ∈ F , (42)

The above expressions imply that all hyper-paths used by a
particular flow i ∈ F yield same payoff, F̂i, while hyper-paths
not used (xp

i = 0) yield a payoff higher than F̂i.
We observe that the conditions required for Nash equilib-

rium are identical to the KKT first order conditions (39)-(40)
of the minimization problem (32) when

F̂i = λi ∀ i ∈ F



It follows from the convexity of the total system cost that, there
is no duality-gap between the primal (32) and the dual (34)
problems. Thus, the optimal primal solution is equal to optimal
dual solutions, which is identical to the Nash equilibrium.

VI. NODE CONTROL

Thus far we have designed a distributed scheme that would
result in minimum cost for a given hyper-link state or ca-
pacities Y , node-price state Σ and for a given load vector
x⃗ = {x1, . . . , xf}. In this phase of Decoupled Dynamics, the
hyper-link capacities and node-prices are adjusted based on the
current value of system function. This phase runs at a larger
time-scale as compared to the traffic splitting phase described
in Section V. It is assumed that during this phase all the
flows instantly reach equilibrium, i.e., changing the hyper-link
capacities and node-prices would force all the source nodes to
attain Wardrop equilibrium instantaneously.

The node control can be formulated as a convex optimiza-
tion problem as follows:

max
Σ

min
Y

Q(Y,Σ), (43)

subject to, yh, σk ≥ 0, ∀yh ∈ Y and ∀σk ∈ Σ.

where, Q(Y,Σ) is the minimum value of the system function
for a given hyper-link state Y and node-price state Σ, i.e.,
Q(Y,Σ) = C̃(X⋆, Y,Σ), where, for a given Y and Σ, X⋆ is
an optimal state of the flows that results in minimum cost.2

We use simple gradient descent:

ẏh = −κ
∂Q(Y,Σ)

∂yh
∀yh ∈ Y, (44)

σ̇k = ρ
∂Q(Y,Σ)

∂σk
∀σk ∈ Σ. (45)

The partial derivative, ∂Q
∂yh

, is over the variables yh ∈ Y .
Keeping Σ fixed and changing the hyper-link capacity yh, of
some hyper-link h ∈ H, would result in a different state of the
flows, X⋆

h and hence a different minimum cost, C̃(X⋆
h, Yh,Σ),

where Yh corresponds to the changed hyper-link capacity of
yh while other capacities are fixed, as compared to Y . Thus
for a hyper-link, h = nk[(i, q, ni), (j, t, nj)] with capacity yh,

∂Q(Y,Σ)

∂yh
= ∂C̃

∂yh
(X⋆, Y,Σ)

+
∑F

i=1

∑Pi

p=1
∂C̃
∂xp

i
(X⋆, Y,Σ)

∂x∗p
i

∂yh
(46)

= ∂C̃
∂yh

(X⋆, Y,Σ) +
∑F

i=1 Fi

∑Si

p=1
∂x∗p

i

∂yh
,

where the last expression follows from the definition of F p
i

(Definition 27) and the fact that for changes in the hyper-link
state, the sources attain Wardrop equilibrium instantaneously.
In other words, before and after a small change in yh the
system is in Wardrop equilibrium. Hence, F p

i = Fi ∀i ∈ F and

2Notice, there could be many different states, X⋆, which result in a
minimum cost but the minimum value, C̃(X⋆, Y,Σ), is unique.

∀p ∈ Si. Finally,
∑Si

p=1
∂x∗p

i

∂yh
= 0, since the total load x∗

i =∑Si

p=1 x
∗p
i is fixed. For hyper-link h = nk[(i, q, ni), (j, t, nj)],

∂Q(Y,Σ)

∂yh
= ∂C̃

∂yh
(X⋆, Y,Σ) = −(1 + σk)

∂T̃
∂yh

(h), (47)

where from (23),

∂T̃

∂yh
(h) = αki

4

(
yh

Mt(x
q
i ,yh)

)t−1

+
αkj

4

(
yh

Mt(xr
j ,yh)

)t−1

−max{αki, αkj},

and Mt(x
q
i , yh) =

(
(xq

i )
t+(yh)

t

2

) 1
t

.

Similarly, we can show that

∂Q(Y,Σ)

∂σk
= ∂C̃

∂σk
(X⋆, Y,Σ) = ∂Ṽk

∂σk
, (48)

where, from (24)

∂Ṽk

∂σk
=

 N∑
m=1

F∑
f=1

Sf∑
p=1

Rfp
kmαkix̂

s
f −

H∑
h=1

Zh
k T̃ (h)− Tk

 .

Theorem 3: At the large time-scale, the hyper-link capacity
control with dynamics (44) and node price control with
dynamics (45) is globally asymptotically stable.

Proof: We use the following Lyapunov function

G(Y,Σ) =
1

2κ

H∑
h=1

(yh − ŷh)
2 +

1

2ρ

N∑
k=1

(σk − σ̂k)
2(49)

where ŷh ∈ Ŷ and σ̂k ∈ Σ̂ are optimizers of (43). We will
use LaSalle’s invariance principle [20] to show stability.

Differentiating G we obtain

Ġ =
1

κ

H∑
h=1

(yh − ŷh)ẏh +
1

ρ

N∑
k=1

(σk − σ̂k)σ̇k.

Now from (44) and (45),

Ġ = −
H∑

h=1

(yh − ŷh)
∂Q

∂yh
+

N∑
k=1

(σk − σ̂k)
∂Q

∂σk
. (50)

We will show that Ġ ≤ 0, ∀Y, ∀Σ.
Note that Q(Y,Σ) = C̃(X∗, Y,Σ), where X∗ is a minimizer

of approximated cost function defined in (22) for fixed Y and
Σ. Also, for any fixed node-price state Σ, the approximated
cost function is jointly convex in X and Y . Therefore, min-
imizing it over a convex set of X yields a convex function.
In essence, Q(Y,Σ) is convex in Y for any fixed Σ. It can
be observed that for any fixed hyper-link state Y and rate
vector X , the approximated cost function defined in (22) is
a linear function of Σ. Then the minimization of C̃(X,Y,Σ)
over X can be thought of as a point-wise minimization of
infinite number of linear functions of Σ which results in a
concave function of Σ. Therefore, Q(Y,Σ) is concave in Σ
for any fixed Y . Therefore, from the convex-concave nature
of Q(Y,Σ) we can show that

Q(Ŷ ,Σ) ≤ Q(Ŷ , Σ̂) ≤ Q(Y, Σ̂), ∀Y, ∀Σ. (51)



where Ŷ and Σ̂ are optimizers of the problem (43). Now, using
the first order properties of convex and concave functions,

Q(Ŷ ,Σ) ≥ Q(Y,Σ) +
H∑

h=1

(ŷh − yh)
∂Q

∂yh
, (52)

Q(Y, Σ̂) ≤ Q(Y,Σ) +
N∑

k=1

(σ̂k − σk)
∂Q

∂σk
. (53)

From equations (50-53), we can write

Ġ = −
H∑

h=1

(yh − ŷh)
∂Q

∂yh
+

N∑
k=1

(σk − σ̂k)
∂Q

∂σk
≤ 0

In order to apply La Salle’s invariance priniciple, let us
consider a set of points E for which the condition Ġ = 0
is satisfied. The largest invariant set M is a subset of points
such that ∂Q

∂yh
= 0, ∀yh ∈ Y and ∂Q

∂σk
= 0,∀σk ∈ Σ. Pick

any point (Ỹ , Σ̃) ∈ M. We can show from the properties
convex-concave nature of function Q(Y,Σ) that Q(Ỹ , Σ̃) ≤
Q(Y, Σ̃), ∀Y and Q(Ỹ , Σ̃) ≥ Q(Ỹ ,Σ), ∀Σ. Therefore, the
pair (Ỹ , Σ̃) satisfies the condition (51) and it is an optimizer
of (43). From La Salle’s principle, the dynamics converge
to the largest invariant set M and therefore the convergent
point is an optimal state of (43). Hence the system is globally
asymptotically stable [20].

VII. SIMULATIONS

We simulated our system in Matlab to show system con-
vergence. We first performed our simulations for our simple
network shown in Figure 3(a). The load at the source nodes
1, 2 and 3 is given as 4.73, 2.69 and 3.56 respectively, which
are randomly generated values. We use the following costs on
the individual links (αij): α12 = 2.8, α23 = 1.6, α34 = 1.8,
α25 = 1.3, α54 = 2.1, α26 = 1.7, α48 = 2.9, α86 = 2.2,
α57 = 1.9, α71 = 2.6; we assume the costs on the links are
symmetric. We use the approximated cost function (22), with
a value of t = −30 for the approximation parameter (21) for
our simulations. We have assumed that the maximum number
of transmissions (per unit time) from each node is limited to
15. The simulation is run for 50 large time units, and in each
large time scale we have 20 small time units.

We compare the total cost of the system for the following:
1) Decoupled Dynamics (DD): This is the algorithm that

we developed under the augmented potential game
framework; we use our hyper-links to decouple the flows
that participate in coding.

2) Coupled Dynamics (no hyper-link) (CD): Here, there is
coupling between individual flows and coding happens
at the minimum rate of the constituent flows. In other
words, this is the original potential game without aug-
mentation. We use similar game dynamics as that was
used in DD. The total cost is specified in Equation (5).

3) No Coding: In this system no network coding is used.
This gives an baseline with respect to which the gains
attained by coding can be quantified.
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Fig. 3. Performance evaluation of simple network topology

TABLE I
COMPARISON OF STATE VARIABLES FOR LP, DD AND CD

Variable x1
1 x2

1 x1
2 x2

2 x1
3 x2

3 y2 y3
LP 1.52 3.2 1.52 1.16 0.00 3.56 3.20 1.52
DD 1.6 3.12 1.71 0.97 0.09 3.46 3.29 1.58
CD 4.70 0.00 0.01 2.68 0.62 2.93 N/A N/A

4) LP Optimal (LP): This is a centralized solution. We
formulated our system as a Linear Program (LP) of
minimizing cost (17) over X and Y for a given load
vector that we obtain using an LP-solver.

As seen in the Figure 3(b), the total cost of the system
(number of transmissions per unit time) for our model (decou-
pled using hyper-link) is close to the optimal solution obtained
by solving it in a centralized fashion. We compared the final
system state of DD and CD with that of the solution obtained
using LP. We observe from Table I that the values for the split
(X) and the hyper-link capacities (Y ) generated by DD are
near-optimal (LP results), but CD is very different. We have
plotted time evolution of traffic splits of flow 3, over options
1 and 2, in the Figure 3(c), which shows that they converge
to the optimal values obtained by LP solver. In Figure 3(d),
we have shown that the number of transmissions from all the
nodes is less than or equal to the maximum threshold.

Next, we perform our simulations on a bigger topology
shown in Figure 4. This network consists of 30 nodes shared
by 6 flows. Flows 1, 2, 3 and 6 have two hyper-paths each and
flows 4 and 5 have three hyper-paths each. There are 6 hyper-
links in the system. Table II describes the source, destination
nodes and the hyper-paths for each flows. Notice, options 2
and 3 of flow 4 have the same physical path but different
hyper-links, y1 and y2 at node n7. This is because the sub-
flow of x4 traversing the physical path (16, 15, 11, 6, 7, 8) can
be encoded with two different flows, x2

1 and x2
2 traversing in

the reverse direction at node 7.



Fig. 4. Complex network

TABLE II
SOURCE, DESTINATION NODES AND HYPER-PATHS CORRESPONDING TO

EACH FLOW.

Id Src Node Dest. Node Hyper-Paths
1 8 1 (8,3,2,1) & (8,7,6,1)
2 8 6 (8,3,2,1,6) & (8,7,6)
3 5 26 (5,4,9,13,12,17,16,21,26) &

(5,10,14,19,24,29,28,27,26))
4 16 8 (16,17,12,8), (16,15,11,6,7,8) &

(16,15,11,6,7,8)
5 23 14 (23,22,17,12,13,14), (23,18,13,14) &

(23,24,19,14)
6 29 20 (29,24,19,20) & (29,30,25,20)

We ran our algorithms on this network with random link
costs for four example cases. We first present detailed results
for one of the example cases. The simulation is run for 150
large time units, and in each large time scale we have 50
small time units. As seen in Figure 5, the total system cost for
decoupled dynamics converges to the optimal solution which
is obtained by solving the problem in a centralized fashion.
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Fig. 5. Comparison of total system cost (per unit rate), for different systems:
DD and non-coded against LP.

VIII. CONCLUSION

We considered a wireless network with given costs on arcs,
traffic matrix and multiple paths. The objective was to find the
splits of traffic for each source across its multiple paths in a

TABLE III
COMPARISON OF STATE VARIABLES FOR NO CODING, LP, DD AND CD.

No Coding LP DD CD
x1
1 19.10 19.10 19.09 19.09

x2
1 0 0 0.01 0.01

x1
2 0 0 0.01 0.04

x2
2 21.08 21.07 21.07 21.07

x1
3 15.32 12.42 12.99 15.32

x2
3 0 2.90 2.33 0

x1
4 14.97 15.10 15.02 15.08

x2
4 0.06 0 0.0087 0.0087

x3
4 0 0 0 0

x1
5 0 8.69 8.8 0.05

x2
5 0 0 0.05 9.19

x3
5 11.6 2.90 2.79 11.54

x1
6 18.43 18.43 18.43 18.43

x2
6 0 0 0 0

y1 N/A 0 0 N/A
y2 N/A 0.17 0.63 N/A
y3 N/A 12.47 13.87 N/A
y4 N/A 8.69 9.15 N/A
y5 N/A 2.9 2.68 N/A
y6 N/A 2.9 3.98 N/A

distributed manner leveraging the reverse carpooling technique
where the peak transmissions (per unit time) at each node is
limited. For this we split the problem into two sub-problems,
and propose a two-level distributed control scheme set up
as a game between the sources and the hyperlink nodes.
On one level, given a set of hyperlink capacities and node-
prices, the sources selfishly choose their splits and attain a
Nash equilibrium. On the other level, given the traffic splits,
the hyperlinks and nodes may slightly increase or decrease
their capacities and prices using a steepest descent algorithm.
We constructed a Lyapunov function argument to show that
this process asymptotically converges to the minimum cost
solution, although performed in a distributed fashion.

In designing the two level controller, we came up with an
interesting formulation that we believe might be useful in other
coordination games. The idea is to augment the state space
of the system using additional variables that are controlled
by unselfish agents. Although these agents only have local
information at their disposal, they are able to modify the
potential function of the system as a whole, and hence change
the actions taken by the selfish routing agents. Essentially,
these agents take on some of the system cost on themselves
in order to redistribute the overall costs. The system wide cost
is minimized as a result. We also showed that the idea can
be coupled with a Lagrange multiplier approach to enforce
constraints as well.

We performed several numerical studies and found that our
two-level controller converges fast to the optimal solutions.
Some of the bi-products of our experiments were that: more
expensive paths before network coding became cheaper and
shortest paths were not necessarily optimal. In conclusion,
from a methodological standpoint we have a distributed con-
troller that achieves a near-optimal solution when the individ-
uals are self-interested.
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