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ABSTRACT 
Survivability of multi-agent systems is a critical problem. Real-life systems are 
constantly subject to environmental stresses. These include scalability, 
robustness and security stresses. It is important that a multi-agent system adapts 
itself to varying stresses and still operates within acceptable performance 
regions. Such an adaptivity comprises of identifying the state of the agents, 
relating them to stress situations, and then invoking control rules (policies). In 
this paper, we study a supply chain planning implemented in COUGAAR 
(Cognitive Agent Architecture) developed by DARPA (Defense Advanced 
Research Project Agency), and develop a methodology to identify behavior 
parameters, and relate those parameters to stress situations. Experimentally we 
verify the proposed method. 

 
1. INTRODUCTION 

Survivability of multi-agent systems is a critical problem. Real-life systems are 
inherently distributed and are constantly subject to environmental and internal stresses. 
These include scalability, robustness and security stresses. It is important that a multi-
agent system adapts itself to varying stresses and still operates within an acceptable 
performance region. Such an adaptivity comprises of identifying the state of the agents, 
relating them to stress situation, and then invoking control rules (policies). One of the 
fundamental problems is agent state (behavior) identification. 

In this paper, we study a supply chain planning society called Small Supply Chain 
(SSC) implemented in COUGAAR (Cognitive Agent Architecture) developed by 
DARPA (Defense Advanced Research Project Agency), and develop a methodology for 
behavior parameter identification, and relating it to stress situations. The two important 
steps in our methodology are: 1. Identify the most discriminable behavior parameter set 
for situation identification, 2. Apply it to situation identification. To identify the most 
discriminable behavior parameter set we collect the time series data from one of the 
agents in SSC (TAO) and compute 38 statistical and deterministic parameters to represent 
the collected time series. In essence, these 38 parameters are the features of agent state. In 
our earlier work (Ranjan et al., 2002) we prove that SSC shows chaotic behavior from an 
inventory fluctuation point of view and computed chaos indicators (which we call as 
deterministic parameters without loss of generality). Though we compute 38 different 
parameters, next question we address is whether all these are really useful and necessary 
for identifying several stress situations. So, we develop a discriminability index and 
identify the most discriminable behavior parameter set based on this index as a 
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representative parameter set for identifying several stress situations. Using those 
parameters we develop a nearest neighbor classification based method to identify stress 
situations. 

 
 
2.   SSC (SMALL SUPPLY CHAIN) SOCIETY 

SSC is a COUGAAR society for supply chain planning composed of 26 agents. 
Each agent generates logistics plan depending on its relative position in the supply chain. 
TAO is an important agent of the SSC and we have selected it to test our schema. Figure 
1 shows the detailed view. In TAO GenerateProjection Tasks are expanded to Supply 
Tasks, which are for internal consumption. Each Supply Task is expanded to Withdrawal 
Task, which is allocated to inventory asset. Supply Tasks are also transferred from other 
agents. They are expanded to Withdrawal Tasks, which are allocated to inventory asset. 
MaintainInventory Tasks, which are for the maintenance of inventory assets in TAO, are 
expanded to Supply Tasks. Each Supply Task is allocated to other agents. 
 
 
 
 
 
 

 
 
 

Figure 1. TAO in SSC 
 
 
3. STRESSES AND BEHAVIOR 

For the sake of analysis we have parameterized the stress situations and system 
behavior. 
 
3.1 Stress 

Stress refers to survivability stress and includes scalability, security, and robustness 
stresses. Scalability is defined as the ability of a solution to a problem to work when the 
size of the problem increases. And, survivability (regarding security and robustness) is 
defined as as the capability of a system to fulfill its mission, in a timely manner, in the 
presence of attacks, failures, or accidents (Ellison et al., 1997). There can be diverse 
stress situations, but in this paper we consider stress situations formed by two scalability 
stress types given below: 

• Problem Complexity: Problem complexity is determined by the complexity of 
the planning task. This includes many aspects and we have chosen one of the stress types, 
called OpTempo of each agent. OpTempo defines operation tempo. 

• Query Frequency: Each agent provides query service for its planning 
information to human operators. We have chosen query frequency (# of query request per 
second) to each agent as one of stress types. 

Although SSC society is composed of 26 agents there are only 8 agents that are 
directly affected by OpTempo. We define stress levels: Low/Medium/High. So, the size 
of our stress situation space becomes 334. 
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3.2 Behavior 
In SSC society an agent’s behavior can be described by its Task groups’ behaviors. 

Behaviors can be represented by time series. We define four different time series (Task 
arrival, Time to solution sorted by generation sequence, Time to solution sorted by 
completion sequence, and Queue length). A time series may be characterized using 
deterministic and statistical parameters as shown in Table 1.  

Deterministic characterization makes it possible to handle non-stationary, non-
periodic, irregular time series, including chaotic deterministic time series. In this study 
we use five different deterministic behavior parameters. In a deterministic dynamical 
system since the dynamics of a system are unknown, we cannot reconstruct the original 
attractor that gave rise to the observed time series. Instead, we seek the embedding space 
where we can reconstruct an attractor from the scalar data that preserves the invariant 
characteristics of the original unknown attractor using delay coordinates proposed by 
Packard et al. (1980) and justified by Taken (1981). Average mutual information has 
been suggested to choose time delay coordinates by Fraser and Swinney (1986). And, 
Schuster (1989) proposed nearest neighbor algorithm to base the choice of the embedding 
dimension. Local dimension has been used to define the number of dynamical variables 
that are active in the embedding dimension (1998). The most popular measure of an 
attractor’s dimension is the correlation dimension, first defined by Grassberger and 
Procaccia (1983). And, a method to measure the largest Lyapunov exponent, sensitivity 
to initial condition as a measure of chaotic dynamics, is proposed by Wolf et al. (1985). 
We have systematically studied the use of the methods from the literature and computed 
38 different behavioral parameters to characterize the four time series we have 
considered. These 38 parameters are shown in Table 1. 
 

Table 1. Behavioral parameters 
Time Series 

 
Task Arrival Time to Solution

(Generation) 
Time to Solution

(Completion) Queue Length 

Statistical 
Parameters 

# of events 
Average 

Minimum 
Maximum 

Radius 
Variance 

# of events 
Average 

Minimum 
Maximum 

Radius 
Variance 

# of events 
Average 

Minimum 
Maximum 

Radius 
Variance 

Deterministic 
Parameters 

ami 
e_dim 
l_dim 
c_dim 
l_exp 

ami 
e_dim 
l_dim 
c_dim 
l_exp 

ami 
e_dim 
l_dim 
c_dim 
l_exp 

ami 
e_dim 
l_dim 
c_dim 
l_exp 

ami: average mutual information, e_dim: embedding dimension, l_dim: local dimension,  
c_dim: correlation dimension, l_exp: lyapunov exponent 
 
 
4. EXPERIMENTATION AND RESULTS 

We ran several simulations of SSC to identify the most discriminable behavior 
parameter set. 
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4.1 Experimental configuration 
 
 
 
 
 
 
 
 

 
Figure 2. Experimental configuration 

In this experimentation we store event data from TAO and the parameters of stress 
situation from stressor into an online database, and then from the database we construct 
the parameter table with stress parameters and behavior parameters as in the Fig. 2. The 
experimental matrix is shown in Table 2. 

 
Table 2. Experimental matrix 

TestID OpTempo Query Repetition 
PRE001 Low to all agents Low to all agents 10 
PRE002 High to all agents Low to all agents 10 
PRE003 Medium to all agents Low to all agents 10 
PRE004 Medium to all agents High to all agents 10 

 
4.2 Results 

Reduction of stress space 
Figure 3. shows an example of ‘# of events’ parameter in each experiment repeated 

10 times in four different stress conditions. We identified the stresses that have no 
significant effects on the society’s behavior by comparing the behavior parameters under 
different conditions. The result shows: 

• No significant difference between Low and Medium of OpTempo stress 
• No significant effect of query frequency stress 
 
 
 
 

 
 
 

 
 

 
 
 

Figure 3. Comparison of a behavior parameter in different stress conditions 

This leads to the reduction in the stress space to 28 (OpTempo Low/High for 8 
agents) from 334. 
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All the behavior parameters may not be equally good in helping the classification of 
stress situations. Therefore, there is a need for a measure of discriminating power of each 
of the behavior parameters. We call this as discriminability index (DI). DI can be 
represented as the ratio between sensitivity to the stress situations and random variation 
defined as: 

Discriminability Index (DI) = [∑(µ-µi)2/n] / [∑(si2)/n] = ∑ (µ-µi)2 / ∑ (si2)          (1) 
µ : Average of parameter values 
µi  : Average of parameter values from ith condition 
si : Standard deviation of parameter values from ith condition 
n : Number of conditions  
 

We ranked those 38 behavior parameters using the DI. Top 5 are as shown in Table 
3. As shown in the table ‘# of events’ from task arrival time series was the most 
discriminable behavior parameter. Because this parameter is sensitive to the different 
stress situations and has small variation in the same stress situations the DI is relatively 
larger than those of other parameters. 

 
Table 3. Discriminability index (DI) of behavior parameters 

Rank DI Time Series Behavior Parameter 
1 2477 Task arrival # of events 
2 6 Time to solution Variance 
3 5 Time to solution Radius 
4 4 Time to solution Average 
5 4 Time to solution Maximum 

 
 
5. SITUATION IDENTIFICATION 

Results from preliminary experimentation showed that ‘# of events’ from task 
arrival time series (# of tasks) is the most discriminable behavior parameter in our stress 
space. So, assuming that the input to an agent affects the output depending on that agent’s 
stress situation we can identify OpTempo of an agent by using four features of ‘# of 
tasks’ as shown in Fig. 4. 

 
 
 
 
 
 
 

Figure 4. Features for situation identification 
 
We performed an initial design of experiments and constructed a database of the 

behavior parameters from 100 experiments. Each agent’s OpTempo is randomly chosen 
and the parameters are computed and stored in the database. Given a new experimental 
data we select the nearest neighbor from the base database by using the Euclidean 
distance between feature vectors. The stress level of the nearest neighbor is used for 
stress estimation. We estimated the stress level for 100 new experimental data using this 
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approach. The results of estimation are shown in Table 4. Half of agents identified the 
stress successfully although the other half didn’t. 

 
Table 4. Stress estimation result 

Stress Correct estimation Stress Correct estimation 
OpTempo of agent 1 54% OpTempo of agent 5 100% 
OpTempo of agent 2 100% OpTempo of agent 6 94% 
OpTempo of agent 3 56% OpTempo of agent 7 53% 
OpTempo of agent 4 100% OpTempo of agent 8 46% 

 
 
6. CONCLUSIONS  

In this paper, we developed a methodology for extracting features from time series’ 
of an agent-based supply chain planning society (behavior parameters) and relating it to 
stress situations. We identified ‘# of tasks’ as the most discriminable behavior parameter 
of our 38 statistical and deterministic parameters in our stress space. Using this parameter 
we validated the method’s ability to identify stress situation using nearest neighbor 
classification. Although our analysis showed deterministic parameters don’t have the 
ability to identify stress situations in our stress space it is possible that they can be good 
indicators under other stress space such as security and robustness stresses.  
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