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Abstract. Traffic shaping and smoothing using buffers or leaky buckets does not necessarily improve
Quality of Service (QoS). In fact there is a trade-off between controlling user traffic and guaranteeing QoS to
the users. We consider the first two stages (source node and border node before entering a network cloud) of
an end-to-end QoS problem and assume that the QoS requirements across each of the two stages are given.
We formulate and solve a mathematical programming problem to select optimal leaky bucket parameters
that would enable high-speed telecommunication network providers to optimize traffic policing subject to
guaranteeing a negotiated Quality of Service requirement across the first stage namely the source end. We
address both the buffered and unbuffered leaky bucket cases where using fluid models we characterize the
output process from the leaky buckets for general traffic sources. Using the optimal leaky bucket parameters
and output characteristics (effective bandwidths in particular), we solve design and connection admission
control problems given QoS requirements at the second stage, namely the border node.
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1. Introduction

The proliferation of the Internet and its excessive congestion has led researchers work-
ing on emerging high-speed telecommunication networks to develop tools to police and
control the traffic at the user or source end. These policing mechanisms need to not only
ensure that the telecommunication network traffic generated by the sources are kept
below a negotiated threshold but also ensure that the users receive a reasonable perfor-
mance called Quality of Service (QoS) that they have been promised. QoS is typically
in terms of packet loss rate, delay, delay–jitter and bandwidth, and must be guaranteed
end-to-end (i.e. source to destination).

One policing mechanism is the leaky bucket (see [Cidon and Gopal, 12; Gu et al.,
22; Gün et al., 23; Vamvakos and Anantharam, 34; Butto et al., 4; Callegati et al., 5;
Holtsinger and Perros, 25; Sohraby and Sidi, 33; Wu and Mark, 35; Yin and Hluckyj,
36]). A leaky bucket is essentially a credit management mechanism that controls the
traffic entering the network. A single or a series of leaky buckets can be used to op-
timally regulate the source traffic in communication networks (see [Anantharam and
Konstantopoulos, 2]).

∗ This work was partially supported by NSF Grant No. NCR-9406823, and by the Center for Advanced
Computing and Communication at Duke University.
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There is a wide variety of network traffic, for example, data, audio, video, etc.
These different types of traffic have varying QoS requirements that the network provider
must guarantee. For example real-time traffic can tolerate some loss but not much delay
and non-real-time traffic can tolerate some delay but not much loss. In this paper we
study the QoS in terms of the loss and delay that the user traffic faces upon introducing a
leaky bucket at the source of traffic. We consider the scenario (shown in figure 1) where
sources policed by leaky buckets generate traffic which is aggregated and multiplexed at
a border node before entering a network cloud. The network cloud is usually adminis-
tered, owned and controlled by different organizations as compared to the source node
and the border node. Therefore a meaningful way to provide end-to-end QoS is to bud-
get it over the individual stages of the network. We assume in this paper that the QoS
budget across the first two stages (namely, the source nodes and the border node) for the
different traffic streams are specified.

Consider figure 2 where various system inputs, outputs and requirements are il-
lustrated. At the first stage (associated with the source nodes), we formulate and solve
a nonlinear programming problem to choose optimal leaky bucket parameters, given
the source characteristics and the QoS requirements. At the second stage, where there

Figure 1. The problem setting.

Figure 2. Two-stage system: inputs, outputs and requirements.
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is a single buffer on the border node, given the QoS requirements, we solve opti-
mal design and admission control problems using the effective bandwidth of the out-
put from the leaky buckets at the source. Since using effective bandwidth analysis
at a buffer to measure QoS performance is reasonably standard, the main research
effort in this paper is in obtaining (but not illustrating the use of) the output effec-
tive bandwidth from the leaky buckets. For that same reason, we use a simplis-
tic network structure of one buffer (as opposed to a network of buffers) to illustrate
the use of the output effective bandwidth analysis with the understanding that well-
known results can be used if the single node is replaced by a network. The con-
cept of effective bandwidths is now well documented and accepted (see [Gibbens and
Hunt, 20; Chang and Thomas, 6; Kesidis et al., 26; Elwalid and Mitra, 18; Choud-
hury et al., 11; Elwalid et al., 16; Kulkarni, 27; de Veciana et al., 13, 15]). In this
paper we use stochastic fluid-flow models to describe the traffic flow, following the
large literature using fluid-flow models for communication systems (see [Anick et al., 3;
Elwalid and Mitra, 17], etc.). Chen and Yao [9, 10], Ott and Shanthikumar [31], Harrison
[24], Chen and Mandelbaum [8], etc., demonstrate how to convert any discrete arrival
system into a fluid-flow system and apply the fluid-flow model results.

In summary, we address two main issues in this paper: one is, given the charac-
teristics of the input source, how to set the parameters of the leaky bucket, such that
the negotiated QoS guarantees at the source node can be met. The other issue deals
with the border node where we consider both the design of network parameters such as
buffer sizes and link speeds as well as connection admission control which is to decide
whether or not to accept an arriving connection for admission based on the currently
admitted sources. The contribution of this research includes the optimal leaky bucket
parameter problem formulation (including deriving expressions for the constraints), the
algorithm for the optimization problem and the output effective bandwidth analysis for
design and admission control at the border node so that negotiated QoS guarantees are
met.

Broadly, there are two types of leaky buckets, the buffered and the unbuffered
leaky buckets. In section 2 we describe the notation for both buffered and unbuffered
leaky bucket models. In section 3 we consider the source node to formulate and solve
a mathematical programming problem to optimally choose the leaky bucket parameters.
In section 4 we consider the border node to solve channel capacity design and connection
admission control problems using effective bandwidth of the output from leaky buckets
derived in section 5. In section 6 we present the numerical results for various cases of
buffered and unbuffered leaky buckets design and admission control problems. Finally,
in section 7 we state the conclusions and future extensions of the work.

2. Leaky bucket preliminaries

In this section we first describe the working and the notation used for both buffered as
well as unbuffered leaky buckets. “Leaky Bucket” is a control mechanism for admitting
data into a network. It consists of a data buffer and a token pool as shown in figure 3.
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Figure 3. Single leaky bucket.

We use a fluid-flow leaky bucket model assuming that the data traffic and tokens can be
modeled as fluids. Tokens are generated continuously at a fixed rate γ into the token
pool of size M. The new tokens are discarded if the token pool is full. External data
traffic enters the data buffer (of size BD) from a source modulated by an environmental
process {Z(t), t � 0}. Traffic is generated by this source at rate r(Z(t)) at time t .

If there are tokens in the token pool, the incoming fluid takes an equal amount of
tokens and enters the network. If the token pool is empty then we have two alternative
implementations:

• Buffered leaky bucket: the packets wait in the infinite capacity data buffer (BD = ∞)
for tokens to arrive.

• Unbuffered leaky bucket: there is no data buffer (BD = 0) for the packets and any
packet that does not find a token enters the network carrying a “violation” tag. Later
such violation traffic can be dropped if congestion develops.

The leaky bucket is usually located at the user end. When the user (or source)
generates traffic to a destination in the network, the leaky bucket acts as a credit man-
agement mechanism that controls the traffic entering the network. In practice, since the
traffic flows through several different networks owned by different organizations, one
way to provide QoS is to appropriately budget the required performance over the differ-
ent network domains. In this paper we concentrate on guaranteeing QoS across the first
two nodes, namely, the “source node” and the “border node” which are typically owned
by the same organization.

We now describe the notation used for the source nodes and the border node (refer
to figure 4). Assume that there are N (a fixed positive integer) sources of traffic at a
source node. Also assume that the ith (i = 1, 2, . . . , N) input source is policed by
a leaky bucket with parameters γi and Mi . We shall consider both the buffered and
unbuffered leaky bucket cases. The output from the N leaky buckets is multiplexed
onto the border node (with a single buffer of size B and constant output capacity c).
Upon exiting this buffer, the multiplexed traffic enters a downstream node such as a
router or switch owned by a different organization from where each source of traffic is
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Figure 4. The leaky buckets node model.

appropriately routed to its destination. Note that in the unbuffered case all the packets
(tagged or untagged) enter this buffer of size B. However, when the buffer gets full, the
tagged packets are first dropped from the buffer before any of the untagged ones are
affected.

3. Source node: optimal leaky bucket parameters

We now solve the problem of selecting optimal leaky bucket parameters, given the QoS
requirements across the source nodes (see the left half of figures 2 and 4). First the set-
ting is described in terms of the QoS requirements and source traffic characteristics (sec-
tion 3.1). Then an optimization problem is formulated for both buffered and unbuffered
leaky buckets (section 3.2). Finally, an algorithm is described to solve the optimization
problem (section 3.3).

3.1. QoS requirements and source traffic characteristics

In this paper we consider selecting optimal leaky bucket parameters Mi and γi

(1 � i � N) subject to satisfying the following QoS constraints (arising from break-
ing down the end-to-end QoS guarantee requirements into individual node QoS require-
ments) at the source node:

• In case of the buffered leaky bucket, the QoS guarantee specifies that as long as the
ith source adheres to its agreed upon characteristics, the fraction of the traffic that
faces a delay of more than a fixed amount d∗

i is bounded above by ζi . (We refer to
this as the waiting time constraint for the buffered leaky bucket.)
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• In the case of the unbuffered leaky bucket, the QoS guarantee specifies that as long
as the ith source adheres to its agreed upon characteristics, the fraction of the traffic
that gets tagged as violation traffic is bounded above by ζi . (We refer to this as the
tagging constraint for the unbuffered leaky bucket.)

Note that since there is no loss at the leaky buckets, we are not considering QoS
loss requirement here.

Assume that the ith (i = 1, 2, . . . , N) source is a general on-off source with on-
times generally distributed with CDF Ui(·) (and mean τ i

U ) and off-times generally dis-
tributed with CDF Di(·) (and mean τ i

D). Note that the letters U and D are used to denote
“up” and “down” as a surrogate for “on” and “off”, respectively. When source i is on,
traffic is generated at rate ri also known as the peak rate, and, when the source is off, no
traffic is generated. The mean input rate from the ith source is

mi = riτ
i
U

τ i
D + τ i

U

. (1)

The Laplace–Stieltjes Transforms (LSTs) of the on-times and off-times for the ith source
are denoted by Ũi(s) and D̃i(s).

3.2. Formulation

To choose the optimal leaky bucket parameters subject to satisfying given QoS waiting
time or tagging constraints across the source node, consider the following nonlinear pro-
gramming (NLP) problem:

Minimize
N∑
i=1

γi

Subject to:
I. Waiting time or tagging constraint at the leaky bucket,

II. mi < γi � ri, for 1 � i � N,

III.
N∑
i=1

Mi � M.

We first explain the objective function. The parameter γi of the ith leaky bucket
serves the following function: no matter how badly the source behaves, the data rate in
arbitrarily long bursts that the source can send into the network is bounded above by γi .
Thus if all sources were to simultaneously misbehave, the network will get traffic at a
maximum rate of

∑N
i=1 γi . Hence it makes sense to minimize

∑N
i=1 γi in order to ensure

that this worst case situation is kept the best possible.
Constraint (I) arises out of the QoS guarantee stipulations in section 3.1. Explicit

algebraic expressions for constraint (I) for the buffered and unbuffered leaky bucket
cases are provided in sections 3.2.1 and 3.2.2, respectively. In constraint (II), mi < γi
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is needed for stability, and γi � ri is needed to keep the the leaky bucket operation
nontrivial. The quantitative expression for constraint (I), to be derived later, is valid only
in the range mi < γi � ri . In constraint (III), the parameter Mi can be thought of the
largest instantaneous burst that the leaky bucket will allow from the ith source. Thus if
M is the largest burst that the network can handle (for example, we may set M = B or
M = B/2, where B is the size of the buffer in the border node) then it makes sense to
add constraint (III). It will be seen that this turns out to be a crucial constraint.

3.2.1. Buffered leaky buckets: constraint (I)
Consider the buffered leaky bucket system where the data buffer has infinite capacity.
Recall that d∗

i is defined such that the expected fraction of traffic from the ith source that
faces a delay greater than d∗

i must be less than or equal to ζi . The following theorem
illustrates the waiting time constraint at the input buffer.

Theorem 1. The waiting time constraint at the buffered leaky bucket is satisfied if

C∗
i

γi

mi

e−ηi (Mi+γid
∗
i ) � ζi, (2)

where

C∗
i = Ũi(−η(ri − γi)) − 1

ηi(τ
i
U + τ i

D)

ri

(ri − γi)γi

/
min
x�0

{∫ ∞
x

eηi(ri−γi)(y−x) dUi(y)

1 − Ui(x)

}
, (3)

ηi is the solution to

Ũi(−ηi(ri − γi))D̃i(ηiγi) = 1.

Proof. See appendix A. �

Therefore we can use the inequality (2) above as constraint (I) in our formulation
for buffered leaky buckets. In section 3.2.3 we illustrate the algebraic expressions for C∗

i

and ηi for the special cases when the sources are exponential and erlang on-off sources.
Otherwise C∗

i and ηi can be calculated using the results in [Gautam et al., 19].

3.2.2. Unbuffered leaky buckets: constraint (I)
Consider the unbuffered leaky bucket system where there are no input buffers or data
buffers and packets enter the network with “violation” tags if there are no tokens avail-
able to them. The tagging constraint can be obtained by suitably modifying the waiting
time constraint at the input buffer for the buffered leaky bucket as stated in the following
theorem:

Theorem 2. The tagging constraint at the unbuffered leaky bucket is satisfied if

C∗
i

γi

mi

(
ri − γi

mi

)
e−ηiMi � ζi, (4)
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where C∗
i is as defined in equation (3), ηi is the solution to Ũi(−ηi(ri −γi))D̃i(ηiri) = 1,

and ζi is the expected fraction of traffic entering the network carrying a violation tag.

Proof. See appendix B. �

Therefore we can use inequality (4) as constraint (I) in our formulation for un-
buffered leaky buckets.

3.2.3. Special cases
We now describe some closed-form results for special cases of the on-off input processes
to the leaky buckets. The expressions will be used in the numerical examples in section 6.
When source i (for i = 1, . . . , N) is an exponential on-off source with on-time CDF
Ui(x) = 1−e−αi x , off-time CDF Di(x) = 1−e−βix and peak rate ri , we can show using
equation (3) that (see [Gautam et al., 19])

C∗
i = mi

γi

(5)

and

ηi = ri(γi − mi)αi

(ri − γi)(ri − mi)γi

, (6)

where mi = riβi/(αi + βi).
Also, consider the case when source i (i = 1, . . . , N) is an on-off source with

Erlang(NU, αi) on-time distribution, Erlang(ND, βi) off-time distribution and peak
rate ri . The Erlang distribution convention used here is such that an Erlang(k, l) ran-
dom variable has mean k/ l and variance k/ l2. Note that the mean on and off times τU
and τD respectively are τU = NU/αi and τD = ND/βi . Also, the LSTs of the on and
off times are Ũi(s) = (αi/(αi + s))NU and D̃i(s) = (βi/(βi + s))ND , respectively. In
[Gautam et al., 19] it is shown that (can also be derived from equation (3))

C∗
i = (αi/(αi − ηi(ri − γi)))

NU − 1

τU + τD

ri

γi(ri − γi)ηi{αi/(αi − ηi(ri − γi))} (7)

and ηi is the solution to(
βi

βi + ηiγi

)ND
(

αi

αi − ηi(ri − γi)

)NU

= 1. (8)

3.3. Analysis: solving the NLP

Before solving the NLP in section 3.2, we combine the buffered and unbuffered leaky
bucket cases into a single case and state a common solution methodology. We restate
the nonlinear optimization problem for the buffered and unbuffered leaky bucket, and,
discuss a solution procedure. Note that the LHS of constraint (II)

mi < γi
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would be automatically satisfied as γi = mi will imply that Mi = ∞ which is not pos-
sible using our algorithm that always searches within the feasible region. Hence we can
drop the LHS of constraint (II) with the understanding that while solving, γi will never
approach mi as Mi will quickly approach ∞ in that case. Using theorems 1 and 2, we
restate the NLP as:

min

{
N∑
i=1

γi

}
,

subject to the constraints,

H(γi)e
−ηiMi � ζi, for i = 1, 2, . . . , N, (9)

M1 + M2 + · · · + MN �B, (10)

γi � ri, for i = 1, 2, . . . , N, (11)

where

H(γi) =


C∗

i

γi

mi

e−ηiγid
∗
i if buffered leaky bucket

C∗
i

γi

mi

(
ri − γi

mi

)
if unbuffered leaky bucket

with (see equation (3))

C∗
i = Ũi(−η(ri − γi)) − 1

ηi(τ
i
U + τ i

D)

ri

(ri − γi)γi

/
min
x�0

{∫ ∞
x

eηi(ri−γi)(y−x) dUi(y)

1 − Ui(x)

}
, (12)

and ηi the solution to Ũi(−ηi(ri − γi))D̃i(ηiγi) = 1.
We assume that we do not have the trivial case γi = ri and Mi = 0 for all

i = 1, . . . , N as the only feasible solution to the optimization problem since that
would mean that there is no use for the leaky buckets. Also, if there is an optimal
solution such that the constraint M1 + M2 + · · · + MN � B is not binding, an alter-
nate optimal solution can be found by arbitrarily increasing a particular Mj value (since
ηj > 0 the waiting time or tagging constraint will continue to be satisfied) such that
M1 + M2 + · · · + MN = B. Therefore we solve the optimization problem using the
constraint M1 + M2 + · · · + MN = B.

Using a standard nonlinear programming technique, namely, the Karush–Kuhn–
Tucker conditions (or KKT conditions which can be obtained in any standard text cover-
ing nonlinear programming) we derive the following algorithm to solve the optimization
problem. Greif and Golub [21] describe the KKT conditions in detail and illustrate so-
lution techniques.
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Algorithm.

1. Choose an arbitrary w > 0

2. Solve for γi (for all 1 � i � N) in

w
∂H(γi)

∂γi

+ ∂ηi

∂γi

wH(γi)
1

ηi

log

[
ζi

H(γi)

]
= −H(γi)ηi

3. Set γi = min{γi, ri}
4. Repeat steps 2 and 3 by appropriately modifying w until∑

i:γi<ri

− 1

ηi

log

[
ζi

H(γi)

]
= B

5. Set the optimal leaky bucket parameters as

γ ∗
i = γi

M∗
i =


0 if γi = ri

− 1

ηi

log

[
ζi

H(γi)

]
otherwise

Note that under special cases when the sources are exponential or erlang on-off sources,
a suitable binary search can be performed to identify a w that solves the equation in
step 4 of the above algorithm.

4. Border node: design and admission control

Now we use the optimal leaky bucket parameters for design and admission control
schemes at the border node (see the right halves of figures 2 and 4). The design problem
is to determine the optimal value of the output channel capacity c (see figure 4). For the
connection admission control problem, a decision needs to be made whether or not to
accept a request for connection into the network.

For both the design as well as the admission control problems at the border node,
we consider the following QoS requirements for each source i (1 � i � N):

• In the case of the buffered leaky bucket, the fraction of the traffic from the ith source
that is discarded by the buffer (of size B) at the border node due to overflows is
bounded above by εi . Also, the traffic of class i flowing out of the border node
should not face a delay larger than κi at the border node.

• In the case of the unbuffered leaky bucket, the fraction of non-violation traffic from
source i that is discarded by the buffer (of size B) at the border node due to overflows
is bounded above by εi . Also, the non-violation traffic of class i flowing out of the
border node should not face a delay larger than κi at the border node.
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To study the QoS requirements for design and admission control at the border
node, we use the well documented and accepted effective bandwidth methodology. An
overview of the effective bandwidth methodology is first presented. Then design and
admission control issues will be addressed.

4.1. Effective bandwidths: an overview

The concept of effective bandwidths is used in the analysis of design and admission
control problems. We recapitulate some of the recent results on effective bandwidths
from [Chang and Thomas, 6; Chang and Zajik, 7; de Veciana et al., 13, 15; Kesidis et al.,
26; Kulkarni, 27].

Consider a single buffer fluid model driven by a random environmental process
{Z(t), t � 0} (see figure 5). When the environment is in state Z(t), the fluid enters the
buffer at rate r(Z(t)). Let B(t) be the amount of fluid in the buffer at time t . The buffer
has infinite capacity and is serviced by a channel of constant output rate c. Let A(t) be
the total amount of fluid input from the source to the buffer in time t . Thus

A(t) =
∫ t

0
r
(
Z(u)

)
du. (13)

We define effective bandwidth of the source, eb(v), for v > 0, as

eb(v) = lim
t→∞

1

vt
log E

{
exp

(
vA(t)

)}
. (14)

The stochastic behavior of the traffic source is captured by the effective bandwidth in an
asymptotic sense. It is known that eb(v) is an increasing function of v. Also as v → 0,
eb(v) → E[r(Z(∞)] (the mean traffic generation rate) and as v → ∞, eb(v) →
supt{r(Z(t)} (the peak traffic generation rate). If K independent sources with effective
bandwidths eb1(v), eb2(v), . . . , ebK(v) are multiplexed, the resultant traffic’s effective
bandwidth is

∑K
k=1 ebk(v). From large deviations theory, for large x,

lim
t→∞P

(
B(t) > x

) ≈ e−ηx, (15)

where η is the solution to

eb(η) = c.

It is not easy to calculate the effective bandwidth using equation (14). However,
when the environmental processes can be modeled as Continuous time Markov Chains

Figure 5. Single buffer fluid model.
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(CTMCs), Semi-Markov Processes (including general on-off sources), Markov Regen-
erative Processes (MRGP) or regenerative processes, etc., we can compute their effec-
tive bandwidths using the results shown in [Elwalid and Mitra, 18; Kesidis et al., 26;
Kulkarni, 27], etc. Some of them (useful for this paper) are described below using the
notation e(M) for the largest real eigenvalue of a square matrix M:

• Suppose {Z(t), t � 0} is a CTMC with generator matrix Q and diagonal matrix R

such that Rii = r(i). Then the effective bandwidth of this CTMC source is eb(v) =
(1/v)e(Q + vR).

• Suppose {Z(t), t � 0} is an alternating on-off process such that the LSTs of the on
and off times are Ũ (·) and D̃(·), respectively. Also, traffic is generated at rates r and
0 when the source is in the on and off state, respectively. Then define /(u, v) =
Ũ (uv − rv)D̃(uv) so that u∗(v) = inf{u > 0: e(/(u, v)) < ∞}. Then the effective
bandwidth of this on-off source is a unique solution to /(eb(v), v) = 1 whenever a
solution exists such that u∗ < eb(v) < r. When a solution does not exist, eb(v) = u∗.

The input to the border node with a single buffer is the multiplexed traffic from
N leaky buckets. In order to do the effective bandwidth analysis we need to calculate
the effective bandwidth of the output from the leaky bucket. The output traffic from
a leaky bucket cannot be modeled as CTMCs, Semi-Markov Processes, or MRGPs for
which effective bandwidths can be computed. Therefore a detailed analysis of calculat-
ing the effective bandwidth of the output from buffered and unbuffered leaky buckets are
described in sections 5.1 and 5.2, respectively.

4.2. Design problem: determining the channel capacity

Suppose we want to design the channel capacity c to handle a given set of sources policed
by buffered or unbuffered leaky buckets. Let ε = mini εi (this means all sources will
face a loss-probability of at most ε). If ebi(δ) is the effective bandwidth of the traffic
entering the border node from leaky bucket i (see figure 4), then it is known that (see
[Chang and Thomas, 6; Kesidis et al., 26]) the QoS loss criterion is satisfied if

N∑
i=1

ebi (δ) < c

where δ = − log(ε)/B and B is the buffer size. This result is valid in the asymptotic
region

B → ∞, ε → 0 so that − log(ε)

B
→ δ ∈ (0,∞),

otherwise the results are approximate but usually conservative. Also, the maximum
delay constraint can be satisfied if c > B/κi for all i. Therefore the main research
question (that will be addressed in section 5) is how to obtain the effective bandwidth of
the output from a leaky bucket.
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In summary, to address the design problem, we first solve the optimization problem
using the algorithm in section 3.3 for these given sources and a given buffer size B, and
obtain the optimal values of γi and Mi for 1 � i � N . With the optimal parameters γi

and Mi , we use the results of sections 5.1 and 5.2 to obtain the effective bandwidth ebi (v)

of the output from each leaky bucket. Then the minimum capacity needed to satisfy the
loss probability constraint is hence given by

c∗ = max

{
B

mini(κi)
,

N∑
i=1

ebi (δ)

}
.

4.3. Connection admission control problem

Suppose the capacity c and the buffer size B are given. Say, we have N sources request-
ing service. We use the optimal parameters γi and Mi that have been computed by the
algorithm in section 3.3. Then, from the analysis in sections 5.1 and 5.2 we compute
ebi(δ), where δ is explained in section 4.2. Let

c∗ =
N∑
i=1

ebi(δ).

If c∗ < c and c > B/mini(κi) then we can admit all the sources, otherwise some will
have to be denied access. Furthermore, if we have already admitted N sources, and a new
(N +1)st source arrives, we use the new optimal parameters Mi and γi (1 � i � N +1),
and compute (using the output effective bandwidth analysis in section 5)

c∗ =
N+1∑
i=1

ebi(δ).

If c∗ < c and c > B/mini (κi), we can admit the new source and reset the leaky bucket
parameters of all the existing sources.

5. Output effective bandwidth analysis

The output from a leaky bucket acts as an input to a downstream network node such as
the border node. Hence, in this section we characterize the output from the leaky bucket
and calculate the effective bandwidth of the output traffic. The analysis for the buffered
and unbuffered cases are a little different and need to be treated separately.

5.1. Buffered leaky bucket: output effective bandwidth analysis

Refer to figure 3 for the notation used here. We consider a more general stochastic
process Z(t) to derive the output effective bandwidth. The on-off source used in the
earlier sections is a special case of this Z(t) process. Let X(t) be the amount of traffic
in the data buffer at time t . Let Y (t) be the amount of tokens in the token pool at time t
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(Y (t) � M). Note that fluid starts accumulating in the data buffer (X(t) > 0) only when
the token pool is empty (Y (t) = 0). As long as tokens are available (Y (t) > 0), fluid
does not wait at the data buffer (X(t) = 0). Therefore X(t)Y (t) = 0, for all t . Clearly,
when the token pool is not empty (Y (t) > 0), the output from the leaky bucket is at rate
r(Z(t)) at time t and when the token pool is empty, the output from the leaky bucket is
at rate γ . Hence the output rate from the leaky bucket at time t , R(t), is given by

R(t) =
{
γ if Y (t) = 0,
r
(
Z(t)

)
if Y (t) > 0. (16)

Define a process {W(t), t � 0} (see [Anantharam and Konstantopoulos, 1]) as

W(t) = X(t) + M − Y (t). (17)

We will see later that this process is critical in obtaining the effective bandwidths as
well as in the appendices A and B to derive the expressions for constraint (I) in the
optimization problem. In fact, we will observe that if we replace the leaky bucket with
an infinite-size buffer with output capacity γ , the buffer content process of that buffer
will be identical to the W(t) process. To determine the effective bandwidth of the output
from the leaky bucket, we first characterize the {W(t), t � 0} process. The dynamics of
the X(t) and the Y (t) processes are given by

dX(t)

dt
=

{
r
(
Z(t)

) − γ if X(t) > 0,
0 if X(t) = 0,

(18)

dY (t)

dt
=


γ − r

(
Z(t)

)
if 0 < Y(t) < M,

−{
r
(
Z(t)

) − γ
}+

if Y (t) = M,
0 if Y (t) = 0,

(19)

where for any quantity a, {a}+ = max(a, 0).
From equation (17) we get,

W(t) > M ⇒ X(t) > 0 and Y (t) = 0,
0 < W(t) � M ⇒ X(t) = 0 and 0 < Y(t) < M,

W(t) = 0 ⇒ X(t) = 0 and Y (t) = M.

In fact, R(t) can be written as

R(t) =
{
γ if W(t) � M,
r
(
Z(t)

)
if W(t) < M.

Also,

dW(t)

dt
= dX(t)

dt
− dY (t)

dt
=


r
(
Z(t)

) − γ if X(t) > 0 and Y (t) = 0,

r
(
Z(t)

) − γ if X(t) = 0 and 0 < Y(t) < M,{
r
(
Z(t)

) − γ
}+

if X(t) = 0 and Y (t) = M

=
{
r
(
Z(t)

) − γ if W(t) > 0,{
r
(
Z(t)

) − γ
}+

if W(t) = 0.
(20)
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Thus the dynamics of the W(t) process are identical to those of the buffer-content
process of an infinite-sized buffer with output capacity γ and input rate r(Z(t)) at time t .
Therefore to obtain the properties of the W(t) process, for example, its probability dis-
tribution, all one needs to do is look up the vast literature on the buffer-content process
(see [Kulkarni, 28] and the references therein) of an infinite sized buffer with output ca-
pacity γ and input rate r(Z(t)). We exploit the structure of the {W(t), t � 0} process
in the analysis that follow.

Sample paths of Z(t), X(t), Y (t), and W(t) are shown in figure 6. Define the first
passage time V (see figure 6) as

V = inf
{
t > 0: W(t) = 0 | W(0) = 0,W(0+) > 0

}
, (21)

where the term “0+” denotes the time instant immediately after t = 0. Note that V is the

Figure 6. Z(t), X(t), Y(t), and W(t) for buffered leaky buckets.
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time duration between when W(·) becomes nonzero until it for the first time becomes
zero. It is also the time duration when the token buffer is not full (i.e. Y (·) < M).

Let 6(V ) be the total amount of traffic output from the leaky bucket in time V .
During the time interval (0, V ), W(t) > 0 and token pool is non-full. Hence the tokens
enter the token pool at rate γ during the time interval (0, V ). Since the token pool is full
at times 0 and V , the total number of tokens removed from the pool over (0, V ) must
be the same as the total number of tokens that entered the pool over (0, V ) which is γ V

since γ is the rate of token generation and V is the time. Hence we get

6(V ) = γ V . (22)

Define A(t) as the total fluid arrival into the leaky bucket from the source in time t .
Also, let O(t) be the total fluid output from the leaky bucket in time t . Using the re-
sult in equation (22), the following theorem states the effective bandwidth of the output
of the leaky bucket when {Z(t), t � 0} is a semi-Markov process (SMP). (Note that
de Veciana [14] derives the effective bandwidth of the output of the leaky bucket for a
discrete traffic model. The following theorem is the equivalent result for a fluid traffic
model. Also, the proof uses a different approach as that of [de Veciana, 14].)

Theorem 3. Let {Z(t), t � 0} be an SMP on a finite state space S . Let O(t) be the
total output from the leaky bucket over [0, t]. The effective bandwidth of the output of
the leaky bucket

ebO(v) = lim
t→∞

1

vt
log E

{
exp

(
vO(t)

)}
is given in terms of the effective bandwidth of the input, ebA(v), as

ebO(v) =
{ ebA(v) if 0 � v � v∗,

v∗

v
ebA(v

∗) − γ
v∗

v
+ γ if v > v∗,

(23)

where v∗ is obtained by solving

d

dv∗
[
v∗ebA(v

∗)
] = 0

and

ebA(v) = lim
t→∞

1

vt
log E

{
exp

(
v

∫ t

0
r
(
Z(t)

)
dt

)}
.

Proof. Define the set G (comprising of all states of the SMP with traffic generation
rates larger than γ ) as follows

G = {
i: r(i) > γ, i ∈ S

}
.
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The output rate from the leaky bucket, R(t), at time t in equation (16) can be rewritten
as

R(t) =
{
γ if W(t) � M,
r(i) if 0 < W(t) < M, i ∈ S and Z(t) = i.

(24)

We showed earlier that the dynamics of the W(t) process are identical to those of the
buffer-content process of an infinite-sized buffer with output capacity γ and input rate
r(Z(t)) at time t . However on a sample-path basis the output from the leaky bucket is not
identical to that of a single buffer with output capacity γ and input rate r(Z(t)) at time t .
But we now show by observing the output process at appropriate Markov regenerative
epochs that the asymptotic properties such as the effective bandwidth would be the same.
We first consider the actual W(t) process and later the fictitious W(t) process which is
the fluid contents of a buffer with output capacity γ and input rate r(Z(t)) at time t .

• The actual W(t) process in the leaky bucket context: Consider the bivariate stochas-
tic process {(W(t), Z(t)), t � 0} that modulates the output from a leaky bucket
according to equation (24). Now, suppose W(0) = 0 and Z(0) = i, for i ∈ G.
Then, {(W(t), Z(t)), t � 0} is a Markov regenerative process (MRGP) that Markov-
regenerates whenever it reaches the state (0, j), j ∈ G. The length of the Markov-
regenerative cycle is seen to be S1 = V + E, where V is as in equation (21) and E

is the duration when W(t) = 0 and Z(t) = i, i ∈ S − G (see figure 6). Now, from
equation (22), the total output during V is γ V , while the total output during E is, say,
F(E). Hence the total output during the first Markov-regenerative cycle is

F1 = γ V + F(E).

• The fictitious W(t) process which is the total fluid in a buffer with same input as
the leaky bucket and output capacity γ : Consider a source modulated by the {Z(t),

t � 0} process inputs fluid at rate r(Z(t)) at time t into the buffer. For this model, we
noticed that the buffer-content process is identical to {W(t), t � 0}. Now, suppose
W(0) = 0 and Z(0) = i, for i ∈ G. Then, {(W(t), Z(t)), t � 0} for this model
is also a Markov regenerative process that Markov-regenerates whenever it reaches
the state (0, j), j ∈ G. The length of the Markov-regenerative cycle is seen to be
S1 = V + E, where V is as in equation (21) and E is the duration when W(t) = 0
and Z(t) = i, i ∈ S − G. Whenever the buffer is non-empty, the output rate is γ ,
hence the total output during V is γ V . Also, the total output during E is F(E).
Therefore the total output during the first Markov-regenerative cycle is

F1 = γ V + F(E).

Since the same MRGP models the two cases, the output from the “fictitious” single
buffer model and the output from the actual leaky bucket model, it follows that in the
two cases the effective bandwidths are identical. The results of the effective bandwidths
of the output from a buffer are derived in [Chang and Zajik, 7; Kulkarni and Gautam,
29]. Hence we have the effective bandwidth of the output from the leaky bucket (which
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is identical to that of the output from the buffer with capacity γ ) in terms of the effective
bandwidth of the input as given in the theorem. �

Therefore, given the effective bandwidth of the input traffic to the leaky bucket, it
is easy to obtain the effective bandwidth of the output traffic from the leaky bucket by
simply replacing the leaky bucket by a single infinite capacity buffer with capacity γ

and measuring the output effective bandwidth of this infinite capacity buffer in terms of
its input. As mentioned in section 4.1, when the environmental processes of the input
traffic can be modeled as CTMCs, Semi-Markov Processes, MRGPs, or regenerative
processes, etc., we can compute their effective bandwidths using the results shown in
[Elwalid and Mitra, 18; Kesidis et al., 26; Kulkarni, 27], etc.

Note that the effective bandwidth of the leaky bucket is identical to that of the
output from a buffer (with output rate γ ), and is independent of M! This means that M
does not play any role as far as reducing the effective bandwidth, but acts strictly as a
policing device that prevents arbitrarily large peak-rate bursts from entering the network.

We would like to comment upon a curious discontinuous behavior at this point.
Although the effective bandwidth of the output is related to that of the input as stated in
theorem 3 for all M < ∞, we have ebO(v) = ebA(v) if M = ∞. This is because the
{(W(t), Z(t)), t � 0} process is transient if M = ∞, thus making the above analysis
inapplicable. However, in that case (i.e. M = ∞), the leaky bucket is transparent and
O(t) = A(t) for all t � 0 assuming that the token buffer is full at time 0, thus making
the two effective bandwidths identical. In practice using M = ∞ is never a good idea,
and hence this discontinuity will not bother us in our analysis.

5.2. Unbuffered leaky bucket: output effective bandwidth analysis

For the unbuffered leaky bucket, we only consider the case when the environmental
process governing the fluid input from a source, {Z(t), t � 0}, is a 2-state on-off
process (Z(t) = 0 or 1, which implies whether the source is off or on respectively at
time t). Therefore we say that the fluid input is from a general on-off source with on
time distribution U(·) (with mean τU ) and off time distribution D(·) (with mean τD).
When the source is on it generates traffic at rate r and at rate 0 when off. Therefore
r(Z(t)) = rZ(t).

In this unbuffered leaky bucket case, a packet that arrives at the leaky bucket is sent
into the network with a “violation” tag if no tokens are available at the time of its arrival.
We will concentrate on the untagged packets as the tagged ones would be dropped in
the event of a congestion. Let Y (t) and W(t) be as defined in section 5.1. Note that
X(t) = 0 for all t in this unbuffered leaky bucket case. A sample path of W(t) is shown
in figure 7. Since there is no data buffer, W(t) = M − Y (t) and W(t) ranges from 0
to M. Note that W(t) process is identical to a buffer content process of a fluid queue
with on-off input, constant output with rate γ , and, a finite buffer of size M.
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Figure 7. W(t) process for unbuffered leaky bucket.

To obtain the effective bandwidth of the output process, we follow the procedure
used in section 5.1. The output rate from the leaky bucket is R(t) at time t and is given
by

R(t) =
{
γ if W(t) = M,
r if W(t) < M and Z(t) = 1,
0 if W(t) < M and Z(t) = 0.

(25)

Let V be as in equation (21). Then equation (22) remains valid in the unbuffered
case. Hence the effective bandwidth of the output process from the unbuffered leaky
bucket is equivalent to that of of the output process from a single finite buffer (of size M)
with general on-off source input and output capacity γ . However, the effective band-
width of the output cannot be easily written in terms of that of the input due to the fluid
loss (as a result of untagged traffic) at the input buffer.

However, when the sources are exponential on-off sources (i.e. on and off times are
exponentially distributed) with mean on-time 1/α and mean off-time 1/β, the effective
bandwidth of the output from the buffer can be calculated using the following LSTs in
[Narayanan and Kulkarni, 30] as follows:

Ṽ (w)=E
{
e−wV

}
=

[
(β + w + γ s1)e

(s0−s1)M
(
w(w + β + γ s0 + α) + αγ s0

)
− (β + w + γ s0)

(
w(w + β + γ s1 + α) + γ αs1

)]
×

[
β
(
e(s0−s1)M

(
w2 + wβ + wγ s0 + αw + αγ s0

)
+ (−w2 − wβ − wγ s1 − αw − γ αs1

))]−1
,

where

s0 = −b̂ −
√
b̂2 + 4w(w + α + β)γ (r − γ )

2γ (r − γ )
,
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s1 = −b̂ +
√
b̂2 + 4w(w + α + β)γ (r − γ )

2γ (r − γ )
,

and

b̂ = (r − 2γ )w + (r − γ )β − γ α.

Also,

Ẽ(w) = E
{
e−wE

} = β

β + w
,

where E is the duration when W(t) = 0 and Z(t) = 0, (see figure 7) which corresponds
to a full token buffer and the new tokens overflowing with the traffic source being off.
Using the effective bandwidth for on-off source analysis in section 4.1, one can derive
u∗ as

u∗ = γβ − αγ − rβ + 2
√
αβγ (r − γ )

rv
+ γ.

The effective bandwidth of the output of the unbuffered leaky bucket, ebO(v), is a unique
solution to Ṽ (vebO(v) − γ v)Ẽ(vebO(v)) = 1, whenever a solution exists such that
u∗ < ebO(v) < r. When a solution does not exist, ebO(v) is given by ebO(v) = u∗.

When M = 0, it can be shown that the effective bandwidth of the output, ebO(v),
reduces to the effective bandwidth of an on-off source with exp(α) on-times, exp(β) off-
times, and, on-time traffic generation rate γ . This is as expected. However, we get the
same discontinuous behavior as M → ∞ as in the buffered case, and it arises for the
same reason explained in the buffered case.

Closed-form algebraic expressions for ebO(v) are intractable even when the
sources are exponential on-off sources. Therefore for general on-off sources, we de-
velop an approximation method given below. When the traffic carrying the “violation”
tag is an extremely small fraction of the output traffic from the leaky bucket (a fraction
of the order of 10−4 is typical), then as an approximation, the effective bandwidth of the
untagged packets, ebO(v), is considered to be equal to the effective bandwidth of the
input (ebA(v)) to the leaky bucket. Note that since O(t) is stochastically less than A(t)

for all t , ebO(v) � ebA(v). Thereby this approximation is indeed a conservative one and
hence can be appropriately used in our optimization models.

6. Results

In this section we present some numerical examples to illustrate the optimal leaky bucket
parameters at the source nodes, the effective bandwidth of traffic between the source
node and the border node, and, design and admission control problems at the border node
for various cases of buffered and unbuffered leaky buckets. The title of each example
corresponds to the type of problem in the border node, the type of leaky bucket, and, the
type of input traffic source.
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6.1. Capacity design, buffered leaky buckets, Erlang on-off sources case

Consider buffered leaky buckets where the sources of traffic belong to four different
classes such that there are three class-1 sources, two class-2 sources, four class-3 sources
and three class-4 sources. All the sources are Erlang on-off sources with parameters NU ,
α, ND, β, and r, as defined in section 3.2.3 and with QoS parameters ζ and d∗ at the
source node as defined in section 3.1, and κ and ε at the border node as defined in
section 4. The numerical values of the parameters are summarized in table 1. The buffer
size of the border node is B = 10. Solving the optimization problem using the algorithm
in section 3.3 subject to satisfying the QoS constraints (besides other constraints) at the
source, we obtain the optimal leaky bucket parameters γ ∗ and M∗ for the buffered leaky
bucket for each of the classes of traffic (see table 1).

Then using the output effective bandwidth analysis (detailed in section 5.1), we
obtain ebi (δ) (for i = 1, 2, 3, 4), where δ = −log{mini εi}/B. Therefore from the
analysis in section 4.2, the optimal channel capacity at the border node can be designed
as c = 3eb1(δ) + 2eb2(δ) + 4eb3(δ) + 3eb4(δ). For the numerical values in table 1, the
optimal channel capacity is 10.141.

6.2. Design and control table, buffered leaky buckets, Erlang on-off sources case

Consider the case when there are two types of sources, say, real-time sources and non-
real-time sources that generate traffic policed by buffered leaky buckets. For example,
there are k1 iid type 1 Erlang on-off sources with N1

U = 5, α1 = 2, N1
D = 2, β1 = 5,

r1 = 2.0, ζ1 = 10−5, d∗
1 = 0, ε1 = 0.0001, κ1 = 2 and k2 iid type 2 Erlang on-off

sources with N2
U = 3, α2 = 3, N2

D = 2, β2 = 5, r2 = 1.2, ζ2 = 0.003, d∗
2 = 0,

ε2 = 10−7, κ2 = 20. The border node buffer has capacity B = 10. For a given (k1, k2),
we can obtain the optimal γ ∗

1 , γ ∗
2 , M∗

1 and M∗
2 by solving the nonlinear optimization

problem. Using the effective bandwidth of the output of a type i source ebi(δ), the loss
probability constraint is satisfied if

k1eb1(δ) + k2eb2(δ) < c,

and the delay constraint is satisfied if B/c < min(κ1, κ2). If both are satisfied we say
that the pair (k1, k2) is feasible.

Table 2 gives the values of γ ∗
1 , γ ∗

2 , M∗
1 , M∗

2 , eb1(δ), and eb2(δ) for the pairs
{(k1, k2): 1 � k1 � 5, 1 � k2 � 5}. The legend at the bottom of the table describes the

Table 1
Source and QoS parameters and optimal leaky bucket parameters.

Class NU α ND β r ζ d∗ ε κ γ ∗ M∗

1 4 4 3 5 1.2 0.001 0.1 0.0000001 2 0.990656 0.443116
2 3 2 6 3 1.4 0.0001 0.0 0.00001 1 1.400000 0.000000
3 2 4 4 5 2.1 0.00035 0.2 0.0000001 3 1.324647 1.641966
4 5 6 2 2 1.3 0.000007 0.5 0.000001 10 0.975620 0.712276
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Table 2
Design and admission control table.

k1 1 2 3 4 5
k2

1 1.808 0.903 1.8386 0.9240 1.8634 0.9343 1.8800 0.9446 1.8938 0.9548
5.772 4.236 3.6002 2.7791 2.5251 2.3484 1.9965 2.0170 1.6334 1.7558
1.785 0.893 1.7928 0.9026 1.7930 0.9054 1.7930 0.9070 1.7930 0.9074

2 1.833 0.917 1.8607 0.9343 1.8800 0.9446 1.8938 0.9548 1.9076 0.9583
3.905 3.153 2.6257 2.3484 1.9965 2.0171 1.6334 1.7557 1.3233 1.6801
1.792 0.900 1.7930 0.9054 1.7930 0.9070 1.7930 0.9074 1.7930 0.9074

3 1.858 0.934 1.8800 0.9446 1.8965 0.9549 1.9076 0.9617 1.9186 0.9686
2.730 2.348 1.9965 2.0171 1.5675 1.7558 1.3233 1.6095 1.1059 1.4813
1.793 0.905 1.7930 0.9070 1.7930 0.9074 1.7930 0.9074 1.7930 0.9074

4 1.880 0.944 1.8993 0.9548 1.9131 0.9617 1.9241 0.9686 1.9324 0.9720
1.996 2.017 1.5037 1.7558 1.2115 1.6095 1.0059 1.4813 0.8654 1.4225
1.793 0.907 1.7930 0.9074 1.7930 0.9074 1.7930 0.9074 1.7930 0.9074

5 1.902 0.955 1.9159 0.9651 1.9269 0.9720 1.9379 0.9754 1.9434 0.9789
1.442 1.756 1.1580 1.5435 0.9579 1.4225 0.7775 1.3671 0.6938 1.3149
1.793 0.907 1.7930 0.9074 1.7930 0.9074 1.7930 0.9074 1.7930 0.9074

Legend:

γ ∗
1 γ ∗

2

M∗
1 M∗

2

eb1(δ) eb2(δ)

values corresponding to each (3×2) cell. Notice that γ ∗
i values change very little across

the table as compared to the M∗
i values. One reason is that there is a constraint on the

sum of M∗
i values but the γ ∗

i values are by themselves independent of other γ ∗
j values.

Also observe that the effective bandwidth values are almost identical across all the cells.
The explanation for that is the output effective bandwidth is usually equal to the input
effective bandwidth (unless v > v∗, see section 5.1) which remains the same in all the
cases.

This table 2 can be used for both the design problem as well as the admission
control problem as follows. For example, suppose we want to be able to handle 3 sources
of type 1 and 4 of type 2 at the border node. Then for the pair (3, 4) we see that the
sum of the output effective bandwidths is 3 × 1.7930 + 4 × 0.9074 = 9.0086. Also
B/min(κ1, κ2) = 5. Hence we must choose c > 9.0086 in order to handle this traffic.
On the other hand, suppose c = 12.2 is given. Then the pair (4, 5) is feasible if we
use the optimal parameters from table 2, however the pair (5, 5) is infeasible. Thus the
call admission can be done using such a table. For implementing these call admission
policies, a look-ip table can be maintained with values similar to table 2 and referred to
whenever a decision needs to be made.
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6.3. Admissible region, buffered leaky buckets, Erlang on-off sources case

Consider k1 identical sources belonging to class 1 and k2 identical sources belonging
to class 2 traffic. All feasible pairs (k1, k2) are shown in the region R (including the
boundary) of figure 8 for the case of buffered leaky buckets with input from two classes
(real-time and non-real-time) of Erlang on-off sources with N1

U = 7, α1 = 1, N1
D = 6,

β1 = 0.4, r1 = 1.2, ζ1 = 10−8, d∗
1 = 0, ε1 = 0.0001, κ1 = 40 N2

U = 8, α2 = 2.4,
N2

D = 5, β2 = 0.4, r2 = 2.0, ζ2 = 10−5, d∗
2 = 0, ε2 = 10−7, κ2 = 100. The border node

buffer has capacity B = 200 and the border node output channel capacity is 8.1.

6.4. Capacity design, unbuffered leaky buckets, exponential on-off sources case

Consider unbuffered leaky buckets (notice that section 6.1 considers buffered) where
the sources of traffic belong to three different classes such that there are three class-1
sources, two class-2 sources, and, four class-3 sources. All the sources are exponential
on-off sources with parameters α, β and r as defined in section 3.2.3 with QoS require-
ments ζ at the source as defined in section 3.1 and κ and ε at the border node as defined
in section 4. The numerical values of the parameters are summarized in table 3. The
buffer size of the border node B = 17.

Solving the optimization problem using the algorithm in section 3.3, we obtain
the optimal leaky bucket parameters γ ∗ and M∗ for the unbuffered leaky bucket for
each of the classes of traffic (see table 3). Then using the output effective bandwidth

Figure 8. The 2-class buffered leaky bucket node admissible region.
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Table 3
Source and QoS parameters and optimal leaky bucket parameters.

Class α β r ζ ε κ γ ∗ M∗

1 1.0 0.4 1.22 0.03 0.000001 40 0.8148 1.8801
2 0.5 0.2 1.83 0.08 0.0001 10 1.3921 2.3994
3 1.5 0.5 1.11 0.001 0.00000001 4 0.8061 1.6494

analysis illustrated in section 5.2, we obtain ebi(δ) (for i = 1, 2, 3). Using the analysis
in section 5.2, the effective bandwidth of the untagged traffic from the unbuffered leaky
buckets for the three classes of traffic can be calculated as eb1(δ) = 0.5987, eb2(δ) =
1.2251 and eb3(δ) = 0.4098 for the numerical values in table 3. Therefore from the
analysis in section 4.2, the optimal channel capacity can be designed as c = 3eb1(δ) +
2eb2(δ) + 4eb3(δ). For the numerical values in table 3, the optimal channel capacity at
the border node is 5.8855.

Now instead of using the initial analysis in section 5.2 to calculate the effective
bandwidth of the untagged traffic from the unbuffered leaky buckets, if a conservative
approach is taken and the effective bandwidth of the untagged traffic is approximated
as that of the traffic input from the source into the unbuffered leaky buckets, then the
effective bandwidths are eb1(δ) = 0.6005, eb2(δ) = 1.3729 and eb3(δ) = 0.4141.
This approximation is explained towards the end of section 5.2. The resulting optimal
channel capacity at the border node is 6.2037. Therefore in most cases it is not necessary
to go through the tedious calculations mentioned in section 5.2, instead a conservative
approach can be taken to obtain the effective bandwidths and hence the channel capacity
of the border node.

6.5. Admission control, unbuffered leaky buckets, Erlang on-off sources case

Consider k1 identical sources belonging to class 1 and k2 identical sources belonging
to class 2 traffic. All feasible pairs (k1, k2) are shown in the region R (including the
boundary) of figure 9 for the case of unbuffered leaky buckets with input from two
classes (real-time and non-real-time) of iid Erlang on-off sources with N1

U = 8, α1 =
2.4, N1

D = 5, β1 = 0.4, r1 = 2.0, ζ1 = 0.001, ε1 = 0.0001, κ1 = 40, N2
U = 7, α2 = 1,

N2
D = 6, β2 = 0.4, r2 = 1.2, ζ2 = 0.01, ε2 = 0.000001, κ2 = 100. The border node

buffer has capacity B = 200 and the output channel capacity is 8.1. This admissible
region can be mapped onto a look-up table and used for admission control.

7. Conclusions and extensions

In this paper we considered the scenario of multiple sources that belong to multiple
classes which generate traffic that is policed by leaky buckets. Given the QoS constraints
in terms of loss and delay at the first two stages of the traffic path (namely, the source
node and a border node, both of which are typically owned by the same organization) for
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Figure 9. The 2-class unbuffered leaky bucket node admissible region.

all the classes of traffic, we formulated and solved a nonlinear programming problem to
optimally select the leaky bucket parameters using the source input characteristics.

We considered two leaky bucket implementations: buffered and unbuffered. One of
the constraints of the nonlinear optimization problem was the waiting time constraint for
the buffered leaky bucket case and tagging constraint for the unbuffered leaky buckets
case. We derived algebraic expressions for those constraints. Then we developed an
algorithm using the Karush–Kuhn–Tucker (KKT) conditions to solve for the optimal
leaky bucket parameters at the source node.

In order to analyze the traffic into the border node, we derived expressions for the
effective bandwidth of the output from a leaky bucket when the input source is modulated
by (i) a semi-Markov process for the buffered leaky bucket case, and, (ii) an exponential
on-off source for the unbuffered leaky bucket case. Then we used the output effective-
bandwidth to solve the QoS problem for overflow probability and delay at the border
node buffer. We used the optimal leaky bucket parameters and output effective band-
widths to address network design and admission control problems at the border node. In
terms of implementation, the numerical solutions can be executed off-line to compute
the design and admission control schemes. These can be stored and used via table-look-
up to implement on-line design decisions and admission control. The computations do
not need to be executed at every decision, but only when the input parameters change.

An important extension that we propose to work on in the future is to solve a
network-wide global optimization problem with leaky bucket sources at different nodes
of a private network. The constraints are end-to-end QoS measures that have to be
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guaranteed to the users. We will also consider dual leaky buckets and multiple tandem
leaky buckets in this extension.
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Appendix A. Proof of theorem 1

The proof follows the arguments in [Gün et al., 23] for the exponential on-off source
case using the steady state analysis of the {(W(t), Z(t)), t � 0} process defined in the
proof of theorem 3. Consider the {Wi(t), t � 0} process illustrated in figure 10. From
section 5.1, we know that the {Wi(t), t � 0} process behaves like the buffer-content
process of a single infinite-buffer fluid-model with input from a general on-off source
with distributions Ui(·) and Di(·). Traffic is generated at rate ri when the source is on,
and at rate 0 when it is off. The output channel capacity is a constant γi . As t → ∞, let
Wi(t) → Wi . Using the SMP bounds technique for general on-off sources in [Gautam
et al., 19; Palmowski and Rolski, 32], we can derive

P(Wi > w) � C∗
i e−ηiw,

where

C∗
i = Ũi(−η(ri − γi)) − 1

ηi(τ
i
U + τ i

D)

ri

(ri − γi)γi

/
min
x�0

{∫ ∞
x

eηi (ri−γi )(y−x) dUi(y)

1 − Ui(x)

}
,

and ηi is the solution to Ũi(−ηi(ri − γi))D̃i(ηiγi) = 1. Define Zi as the steady state
random variable representing the environmental process {Zi(t), t � 0}, i.e., as t → ∞,

Figure 10. The {Wi(t), t � 0} process.
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Zi(t) → Zi . Note that Zi(t) = 0 or Zi(t) = 1 represents the source being in the off
or on state respectively at time t . Using the results for alternating renewal processes, we
can show that

P(Zi = 1) = E(Zi) = mi

ri
.

The fraction of time the source is in the on state whenever Wi is greater than a positive
number w is γi/ri . This is because the ratio of on-times to off-times whenever Wi > w

is γi/(ri − γi). Therefore

P(Zi = 1 | Wi > w) = γi

ri
.

Furthermore, the conditional steady-state distribution of the {W(t), t � 0} process is
given by

P {Wi > w | Zi = 1} =P(Zi = 1 | Wi > w)
P (Wi > w)

P (Zi = 1)

�C∗
i

γi

mi

e−ηiw.

Similar to Zi , define Xi as follows: as t → ∞, Xi(t) → Xi . The waiting time constraint
is equivalent to

P {Xi > γid
∗
i | Zi = 1} � ζi,

since a delay of d∗
i is equivalent to γid

∗
i amount of fluid in the data buffer. Clearly,

P {Xi > γid
∗
i | Zi = 1} = P {Wi > Mi + γid

∗
i | Zi = 1}.

Hence the waiting time constraint is satisfied if

C∗
i

γi

mi

e−ηi (Mi+γid
∗
i ) � ζi.

Appendix B. Proof of theorem 2

As t → ∞, let Wi(t) → Wi . For this proof we compare the Wi random variables of the
buffered against those of the unbuffered leaky bucket cases. Instead of using a new set
of notation, we represent it as a conditional probability. Using a sample path argument
we can easily show that P(Wi = Mi | unbuffered leaky bucket i) is always less than or
equal to P(Wi > Mi | buffered leaky bucket i). Also for an unbuffered leaky bucket,
whenever Wi = Mi , a fraction (ri − γi)/mi of traffic enters the network with a violation
tag.

The tagging constraint is equivalent to

ri − γi

mi

P (Wi = Mi | Zi = 1, unbuffered leaky bucket i) � ζi
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and is satisfied if

ri − γi

mi

P (Wi > Mi | Zi = 1, buffered leaky bucket i) � ζi.

Hence using the proof of theorem 1 in appendix A, the tagging constraint is satisfied if

C∗
i

γi

mi

(
ri − γi

mi

)
e−ηiMi � ζi .
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