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Abstract— In this paper we consider a distributed peer-based
system with a centralized controller responsible for managing
the peers. For this system customers request large volumes of
information such as video clips which instead of retrieving from
a centralized repository of a parent organization are obtained
from peers that possess the clips. Peers act as servers only
for a short duration and therefore the parent organization (i.e.
centralized controller) would need to add new peer servers from
time to time. This centralized “admission” control of deciding
whether or not to admit a customer with a video clip as a
peer based on the system state (number of waiting requests
and number of existing peers) is the crux of this research. The
problem can be posed as a discrete stochastic optimal control
and is formulated using a Markov decision process approach
with infinite horizon and discounted cost/reward. We show that
a stationary threshold policy in terms of the state of the system
is optimal. In other words the optimal decision whether or
not to accept a customer as a peer server is characterized
by a switching curve. In typical Markov decision processes,
it is extremely difficult to derive an analytical expression for
the switching curve. However, using an asymptotic analysis,
by suitably scaling time and states taking fluid limits, we
show how this can be done for our problem. In addition,
the asymptotic analysis can also be used to show that the
switching curve is independent of the model parameters such
as customer arrival rate, downloading times and peer-server
lifetimes. Several numerical results are presented to support
the analytical claims based on asymptotic analysis.

I. INTRODUCTION

The demand for digital multimedia contents and delivery
on the World Wide Web (WWW) has been growing rapidly.
Increasing volume of contents implies service providers
require large amount of network resources (e.g. network
bandwidth, servers, storage, etc.). Until now, since the de-
mand of digital multimedia contents has been limited to
small music files and the advance of technology has made
the resource costs cheaper, a service provider could provide
services without imposing significant delay to customers.
However, the demand for digital media is now moving
to video files (e.g. movies, music videos, online lectures,
user created contents, etc.). These kinds of contents require
significantly more resources than what simple music files
require. In addition, they may cause a service provider to
suffer from maintaining adequate quality of service (QoS)
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for customers. To address this problem, peer-to-peer (P2P)
architecture is a viable alternative for multimedia companies
to “outsource” service as it can cover bursts of demands and
can offer a scalable capacity as the number of peers increases.
Therefore user requests for digital multimedia contents can
be satisfied by peers that have downloaded them in the past.
The objective of this paper is to devise a control policy for
the service provider to manage the peers with multimedia
contents. The uniqueness of the scenario considered in this
research are:

• Content exchange – Unlike free P2P networks (e.g.
BitTorrent, eDonkey, etc.) which are based on a give-
and-take philosophy, here customers pay for contents
and all customers do not become peer servers.

• Rewarding peers – Peer servers are paid based on the
time they are available for service as opposed to actual
time spent serving or amount of contents; rewarding by
availability encourages customers to join as peer servers
more willingly.

• QoS cost – The discrete stochastic optimal control litera-
ture frequently uses holding cost for waiting customers.
Here, however, a modified holding cost that we call QoS
cost is considered.

• Finite lifetime – Peer servers have finite lifetime and can
choose to become unavailable at any time (by moving,
deleting content, network malfunctioning, etc.). In many
P2P architectures it is assumed that peers are always
available.

Considering the above issues, the objective of our research
is to devise a control policy for our P2P architecture to
determine when to allow a user to become a peer server
(based on the number of users in the system and the number
of peer servers) by trading off QoS cost against rewarding
peers. Most of the recent research on P2P networks focuses
on modeling and performance analysis (Ge et al [1], Clévenot
and Nain [2], Qiu and Srikant [3]), or optimal peer search and
selection (Adler et al [4]). However control of P2P networks
is relatively unexplored. To the best of our knowledge, only
Tewari and Kleinrock [5] and, Cohen and Shenker [6] deal
with management strategies in P2P networks. However, their
main objective is to improve the effectiveness of content
search. Furthermore, their concerns are not P2P networks
managed by a centralized commercial company but rather
free P2P networks. In addition, the research uses a determin-
istic analysis as opposed to the stochastic control considered
here.
To address our research objective, we formulate our prob-
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Fig. 1. Problem illustration

lem as a Markov Decision Process (MDP). To obtain the
optimal policy we use techniques such as truncating state
space and perform value-iteration with uniformization (see
Bertsekas [7]). We make three interesting observations: i) a
stationary threshold policy is optimal, ii) the optimal policy
is invariant to input parameters and is only affected by the
cost function, and iii) asymptotic closed form expression for
the switching curve is obtained. In fact, the optimality of a
stationary threshold policy is not surprising since many other
admission control problems display such behavior. However,
the parameter-invariance and closed form expression of the
switching curve are unique. We explain these two findings
through a fluid approximation by scaling time and states.
Fluid approximation is commonly used for asymptotic be-
havior of decision process since it is relatively tractable
analytically (Altman et al [8] and Savin et al [9]).
The rest of the paper is organized as follows. In Section
II, we describe our problem and formulate it as an MDP.
Although our model has an infinite state space, by truncating
the state space, we illustrate the stationary threshold policy
being optimal in Section III. In Section IV, we explain how
the optimal policy looks in the asymptotic regime using fluid
approximation. We obtain the asymptotic optimal policy as
a closed-form algebraic expression and it also explains the
parameter-invariance. Finally, in Section V, we make some
concluding remarks and suggest directions for future work.

II. MODEL AND ANALYSIS

A. Problem statement

Fig. 1 is a simplified illustration of our problem. We
consider an online entertainment company that sells digital
video contents via the WWW. The company has a main
server that stores video contents. Customers access the main
server and purchase contents through the company’s web
site. The company operates P2P networks consisting of
peers who purchased that contents before and are given the
authorization for delivering contents to new customers. After
a new customer arrives, he/she waits for a free “server” (an
appropriate peer or the main server itself) to be assigned.

After a download is complete, the company decides whether
or not the customer that just finished downloading should
be admitted as a new peer. Each peer server stays available
for service for a limited time. The peers in P2P network are
rewarded by the company based on the time they spend as a
peer. The P2P network grows whenever the company accepts
a new peer and shrinks whenever a peer leaves the system.
The objective of this paper is to find an optimal policy for
the company to decide when it has to accept or to reject a
new peer. Keeping our objective in mind, we formulate this
problem as an MDP.

B. MDP formulation

1) System states: We define the state of system {X(t)}
as a two-dimensional stochastic process X(t) =

(
x(t), y(t)

)
where x(t) is the number of customers and y(t) is the number
of peers in the P2P pool (or network) at time t. Before
formulating the MDP we need to identify the type of events
to decide if a control action is appropriate. In our problem,
three types of events can occur: customer arrival, service
completion, and peer’s departure. Since a control action is
taken only when a service completion occurs, we need an
indicator that tells us the event is a service completion. To
reflect this, we amend the system state slightly as follows.
Assume that all peers are managed in a peer pool. When
a service completes, the customer that just finished getting
served is sent to a waiting space (not to the peer pool). He/she
should stay there until next event occurs regardless of the
decision (i.e. accepted or rejected). If accepted, he/she starts
service in a waiting space and at the time of next event is
sent to the peer pool. If rejected, he/she stays at a waiting
space and leaves the system when next event occurs. With
this adjustment, define X(t) =

(
x(t), y(t), z(t)

)
as the state

of the system where z(t) is the number of customers in the
waiting space, and x(t) and y(t) are as defined earlier. Note
that since the customer in the waiting space stays for only
one inter-event time, z(t) can only take the value 0 or 1. For
the next step, define the control variable U(·). The variable
U(·) depends on the value of z(t) because a decision is taken
about adding a peer only when a service is completed; if any
other event occurs, no decision is required and the company
doesn’t do anything. Therefore,

U(z) =
{
{0} if z = 0
{0, 1} if z = 1 . (1)

In (1), when z = 1, the control value 1 means accepting a
new peer and 0 means rejecting a new peer.
Now we have the states and control space of the system. The
next thing we can do is defining the transition probability for
the MDP formulation.

2) Transition probability: We assume that customers ar-
rive to the system according to a Poisson process with rate
λ and the service time of each customer is exponentially
distributed with mean 1/µ in both the main server and peers.
If a customer becomes a peer, he or she stays as a peer
for a random amount of time that follows an exponential
distribution with mean 1/θ. With these assumptions, let
T denote the time between decision epochs and Q

(
T <
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τ, (x′, y′, z′)|(x, y, z), u
)

denote the transition probability
from state (x, y, z) to (x′, y′, z′) given control u. Then, for
τ > 0, Q is defined as follows;

Q
(
T < τ, (x+ 1, y + zu, 0)|(x, y, z), u)

)
=

λ

β(x, y + zu)

(
1− e−β(x,y+zu)τ

)
, (2)

Q
(
T < τ, (x− 1, y + zu, 1)|(x, y, z), u)

)
=

min(x, y + zu)µ

β(x, y + zu)

(
1− e−β(x,y+zu)τ

)
, (3)

Q
(
T < τ, (x, y + zu− 1, 0)|(x, y, z), u)

)
=

(y + zu)θ

β(x, y + zu)

(
1− e−β(x,y+zu)τ

)
, (4)

where β(x, y) = λ+ min(x, y)µ+ yθ.

3) Cost function: In the previous sections, we defined the
states and obtained the transition probabilities. Now we move
to the final step of the MDP formulation, namely, defining
the cost functions. The objective of our study is to find
the optimal peer admission policy that minimizes the cost.
Cost is incurred in two ways: service delay (related to the
number of customers in queues) which we will call QoS cost
and maintenance of peers (related to the number of peers).
Therefore based on these factors the cost per unit time g(·, ·)
is defined as follows:

g
(
X,u

)
= c
(

(x− (y + zu))+

y + zu

)
+ q(y + zu), (5)

where c(·) and q(·) are functions representing the QoS
cost of customers and the reward cost of peers respectively,
(x)+ = max(x, 0), and X = (x, y, z).
In the function c(·), the numerator is the number of cus-
tomers waiting in queues to begin service and the denom-
inator denotes the number of queues (i.e. peers). It uses
the instantaneous queue length per peer for the argument
of c(·) instead of the total number of customers in the queue
or system. It is natural to think like this since the cost
incurred when there are 10 peers and 10 waiting customers
in queues is different from that incurred when 2 peers and
10 waiting customers in queues. From (2)-(4), we know that
the length between decision epochs (T ) is random. Therefore,
the optimal cost J∗ is defined based on the description in
Bertsekas [7]:

J∗
(
X(0)

)
=min lim

n→∞
E
{∫ tn

0

e−γtg
(
X(t), u(t)

)
dt
}
,

where, tn is the time of nth event and γ is the discount-
ing factor. For continuous time models like this problem,
uniformization technique is usually considered to modify
the problem into a discrete time problem. However, the
uniformization technique cannot be applied to this problem
directly since the transition rate (β) is not bounded. To
resolve this, we look back to the system. The company
manages peers and may have the capacity in managing
peers. Since the capacity is naturally finite, it is acceptable
to restrict the maximum number of peers if it is defined
reasonably.

C. Model adjustment
Let M denote the maximum number of peers that the

company allows. Then M should be chosen carefully since
a small M might make the system unstable (i.e. Mµ < λ).

Assume that the system is stable with M such that Mµ > λ.
Then, the transition rate is bounded by λ+M(µ+θ). Using
the method described in Bertsekas [7], the new uniformized
transition probabilities (P ) are obtained as follows:

P
(
(x+ 1, y + zu, 0)|(x, y, z), u

)
=

λ

λ+M(µ+ θ)
,

P
(
(x− 1, y + zu, 1)|(x, y, z), u

)
=

min(x, y + zu)µ

λ+M(µ+ θ)
,

P
(
(x, y + zu− 1, 0)|(x, y, z), u

)
=

(y + zu)θ

λ+M(µ+ θ)
,

P
(
(x, y, z)|(x, y, z), u

)
=

(M −min(x, y + zu))µ+ (M − y − zu)θ
λ+M(µ+ θ)

.

Since the cost function satisfies Assumption P in Bertsekas
[7], there exists a stationary policy and the optimal cost
function J∗ satisfies the Bellman equation, i.e.,

J∗(x, y, 0) = R
(
g((x, y, 0), 0) + λJ∗(x+ 1, y, 0)

+ min(x, y)µJ∗(x− 1, y, 1)

+ yθJ∗(x, y − 1, 0)

+
{(
M −min(x, y)

)
µ

+ (M − y)θ
}
J∗(x, y, 0)

)
, (6)

J∗(x, y, 1)= min
u∈{0,1}

R
(
g((x, y, 1), u) + λJ∗(x+ 1, y + u, 0)

+ min(x, y + u)µJ∗(x− 1, y + u, 1)

+ (y + u)θJ(x, y + u− 1, 0)

+
{(
M −min(x, y + u)

)
µ

+ (M − y − u)θ
}
J(x, y, 1)

)
, (7)

where R = 1/
(
λ + M(µ + θ) + γ

)
and γ is a discount

factor.
There are several ways to obtain the optimal cost and policy.
In this paper, we use the value iteration method. In the
following section, we will show some interesting results
using numerical examples.

III. VALUE ITERATION RESULTS

In the previous section, in order to utilize the uniformiza-
tion technique, we assume that there is a limit on the
maximum number of peers (M ). First, we conduct value
iteration for different M ’s to study the effect of M . Then, we
move to the effects of the parameters (i.e. λ, µ, θ) and effects
of the different cost functions. The optimal policy obtained
by solving the Bellman equation using value iteration is a
stationary threshold type policy called “switching curve”.
To prove the optimality of threshold policy mathematically,
some conditions (see Porteus [10]) need to be shown as
being satisfied. Due to space restrictions, we will provide
the detailed mathematical proof only in an extended version
of this paper; we will also provide the plots of the actual
costs obtained from value iteration in the extended version.
Fig. 2 shows a typical shape of a switching curve. Horizontal
and vertical axes represent the number of customers and the
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Fig. 2. The effects of maximum number of peers (M = 25 vs M = 50
vs M = 100)

number of peers in the system respectively. If the system
state lies to the right side of the curve, the optimal control
action is to accept the customer that completed downloading
to become a peer and join the pool.

A. Optimality of the policy obtained from the finite state
space model

We consider three examples that have the same parameters
λ = 50, µ = 3, θ = 1. However the maximum number of
peers (M ) is selected as 25, 50, and 100. Fig. 2 shows the
switching curves for our three examples. As seen in Fig. 2,
the optimal policies are exactly overlapped (except that a
close observation would reveal that for the case of M = 25
the maximum number of peers stop at 25). The boundary of
each example is not plotted since on the boundary there is
no choice but to reject a new peer. When we perform value
iteration for several other examples, exactly the same results
are obtained. Therefore, we can conclude that M does not
affect the optimal policy.
This phenomenon can be explained using the Bellman equa-
tion defined in (6) and (7). By adjusting the left and right
hand side of (6) and (7), we obtain[
λ+

{
min(x, y + zu∗)µ+ (y + zu∗)θ

}
+ γ

]
J∗(x, y, z) =

g
(
(x, y, z), u∗

)
+ λJ∗(x+ 1, y + zu∗, 0)

+ min(x, y + zu∗)µJ∗(x− 1, y + zu∗, 1)

+ (y + zu∗)θJ∗(x, y + zu∗ − 1, 0) (8)

where g(·, ·) is as given in (5) and u∗ is the action that
minimizes the right hand side of (6) and (7).
As seen in (8), we find that M does not affect the recursion
relation of J∗. If all other parameters are same, the optimal
policy would also be same for all states within the boundary.

B. Effect of input parameters

Now we move our attention to the effect of parameters
such as λ, µ and θ. First, we observe the change of the
optimal policy when λ changes. In fact, we conjecture that
the threshold value becomes small as λ increases. However,
the observation shows different results. Fig. 3 shows the
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Fig. 3. The effects of arrival rates (λ = 100 vs λ = 50 vs λ = 10)

threshold curves when λ has values 10, 50, and 100. As
shown in Fig. 3, the changes on the threshold values are very
small although the arrival rate becomes ten times bigger. To
see whether this phenomenon occurs for other parameters,
we observe the results by changing other parameters (µ and
θ). However, the changes of µ and θ show a negligible effect
on the threshold values of the optimal policy (due to space
limitation, we do not illustrate them). The mathematical
explanation of this phenomenon will be provided in Section
IV.
So far we have shown that the parameters (M , λ, µ, and θ)
have no significant effect on the optimal policy. The question
that comes to mind immediately is then what affects the
optimal policy? We address that next.

C. The effects of the cost functions

As described earlier, the cost function in this problem
consists of two parts: QoS cost of customers and reward
cost of peers. Intuitively, the latter can be thought as a linear
function of the number of peers. However, the QoS cost
of customers should be defined carefully since it reflects
how customer delay is treated. If customer delay is critical,
the QoS cost should be increasing rapidly as the number
of customers increases and vice versa. In that light, we
observe the changes of the optimal policy when the cost
functions change. Three different QoS costs c1

(
(x, y, z), u

)
,

c2
(
(x, y, z), u

)
, and c3

(
(x, y, z), u

)
are considered for com-

parison and for which the optimal policy is plotted in Fig.
4. They are defined as follows:

Linear: c1
(
(x, y, z), u

)
=

(x− y − zu)+

y + zu
(9)

Quadratic: c2
(
(x, y, z), u

)
=
( (x− y − zu)+

y + zu

)2

(10)

Cubic: c3
(
(x, y, z), u

)
=
( (x− y − zu)+

y + zu

)3

(11)

Going from c1(·, ·) to c3(·, ·), the system becomes more time
critical. Fig. 4 shows intuitive results. If the customers’ delay
is crucial, the system accepts a new peer earlier to reduce
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Fig. 4. The effects of the cost function

the delay. On the other hands, if the customers’ delay is less
crucial, the system accepts a new peer later to reduce the
maintenance cost of peers.

IV. FLUID APPROXIMATION

The next step is to perform an asymptotic analysis in order
to see if we could describe the switching curve as an analyt-
ical expression. As a byproduct, the analysis also shows in
the limit the switching curve is independent of model input
parameters. Qiu and Srikant [3] use fluid and diffusion ap-
proximations to model the behavior of P2P networks since it
is not tractable to model it using standard queueing methods
even if the system has Markovian properties. Usually, these
approximations scale both in time and state space, and get a
limit process that is mathematically tractable using functional
strong law of large numbers (FSLLN) and functional central
limit theorem (FCLT); for the details of FSLLN and FCLT,
see Whitt [11]. Inspired by their work, we apply the scaling
of both time and state space to our Bellman equation (7).
In order to apply scaling, we adjust our model slightly. Let
X(t) =

(
x(t), y(t), z(t)

)
denote the state of the system at

time t. For fluid approximation, the new state space S′ is set
as follows:

S′ = A×A\{0} × {0, ε}.

where, A = {0, ε, 2ε, . . .} and ε > 0 is a scaling factor.
Note that since rational numbers are countable and dense in
[0,∞), as ε→ 0, S′ → S, where

S = R+ ×R+\{0} × {0}.
Then, we can rewrite our Bellman equations defined in (7)
as follows:

J∗(x, y, ε) = min
u∈{0,1}

R
(

1

ε
g
(
(x, y, ε), u

)
+
λ

ε
J∗(x+ ε, y + uε, 0)

+
min(x, y + uε)µ

ε
J∗(x− ε, y + uε, ε)

+
(y + uε)θ

ε
J∗(x, y + uε− ε, 0)

+
1

ε

{(
M −min(x, y + uε)

)
µ

+ (M − y − uε)θ
}
J∗(x, y, ε)

)
, (12)

where R = ε/
(
λ + M(µ + θ) + γ

)
and γ is a discount

factor.
The value ε is a scaling constant which in spirit is identical
to 1/η used for scaling time and state space in fluid approx-
imations in Massey [12]. With (12), we could think that on
the boundary of the threshold, whichever action we choose,
the optimal cost is the same. Therefore

J(x, y, ε)u=1 = J(x, y, ε)u=0. (13)

Combining (12) and (13), we obtain the following relation:

−
{
g
(
(x, y, ε), 1

)
− g
(
(x, y, ε), 0

)}
= λ
{
J∗(x+ ε, y + ε, 0)− J∗(x+ ε, y, 0)

}
+ µ
{

min(x, y + ε)J∗(x− ε, y + ε, ε)

−min(x, y)J∗(x− ε, y, ε)
}

+ θ
{

(y + ε)J∗(x, y, 0)− yJ∗(x, y − ε, 0)
}

−
{(

min(x, y + ε)−min(x, y)
)
µ+ εθ

}
J∗(x, y, ε). (14)

Note that scaling for the time space disappears in (14) as
ε→ 0. For x > y and y+ε ≤ x, we rewrite (14) as follows:

−
{
g
(
(x, y, ε), 1

)
− g
(
(x, y, ε), 0

)}
= λ
{
J∗(x+ ε, y + ε, 0)− J∗(x+ ε, y, 0)

}
+ µ
{

(y + ε)J∗(x− ε, y + ε, ε)− yJ∗(x− ε, y, ε)
}

+ θ
{

(y + ε)J∗(x, y, 0)− yJ∗(x, y − ε, 0)
}

− (µ+ θ)J∗(x, y, ε). (15)

Dividing by ε in both sides of (15) and taking limit (i.e.
ε→ 0), we can obtain the following form:

∂J∗(x, y, 0)
∂y

=
−g∗(x, y)

λ+ (µ− θ)y
, (16)

where g∗(x, y) = limε→0
g
(
(x,y,ε),1

)
−g
(
(x,y,ε),0

)
ε .

Likewise, assuming that λ + µx − θy 6= 0, for x ≤ y, we
obtain the following:

∂J∗(x, y, 0)
∂y

=
−g∗(x, y)
λ+ µx− θy

. (17)

Since ∂J(x,y,0)
∂y = 0 on the boundary of threshold, by setting

the left-hand side of (16) and (17) to zero, we can obtain
the formula for threshold as the solution of the following
equation:

g∗(x, y) = 0. (18)

Note that the solution of (18) is independent of the model
parameters (λ, µ, and θ). Therefore, we can explain the
invariance on the model parameters observed in Section III
with (18).
Now, we verify how our threshold formula (18) works well
against the results of value iteration in Section III. Fig. 5 and
6 show the plots of the threshold values obtained from value
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iteration and threshold formulae corresponding to quadratic
and cubic QoS cost functions (10) and (11) respectively;
although we have a threshold formula x = y2 for the linear
QoS cost function (9), due to space restrictions we would
not provide a figure of that case. For each case, we obtain
the threshold formulas as follows:

x=
y(1 +

√
1 + 2y)

2
for quadratic QoS cost

x=

{
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√
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) 1
3

+
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3

√
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√
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}
· y

for cubic QoS cost. As seen in Fig. 5 and 6, the plot
obtained by our threshold formula is fairly close to the plots
obtained by value iteration when no scaling is done.

V. CONCLUSION

In this paper we formulate a discrete state and discrete
action stochastic optimal control problem to manage peers

for online entertainment companies that carry multimedia
files like videos. The control problem results in a Markov
decision process and the optimal policy is obtained using
value iteration method by truncating the state space suitably.
Although the truncation is an approximation we show that
the optimal policy does not change with the truncation limit.
In fact the optimal policy is also practically invariant with
respect to input parameters (such as arrival rate, service time
and server lifetime parameters). Since the input parameters
do not influence the threshold values of the optimal policy
significantly and only the cost function affects them drasti-
cally, it is possible to conjecture that if the parameters are not
constant (e.g. varying over time) the optimal policy might
still be invariant. The most significant contribution of this
research is a characterization of the switching curve obtained
for the optimal threshold policy. We use fluid limits for this
characterization and derive a formula for the threshold using
an asymptotic analysis. We show that this asymptotic result
is extremely close to the regular non-asymptotic case that can
be numerically evaluated using value iteration. In addition,
the fluid limits also can be used to show the invariance of
the optimal policy to the input parameters.

There are several extensions to this research that can be
considered in the future. Firstly, the peer-servers can go into
an alternating on-off mode. Secondly, the video file itself
could become obsolete after a period of time and thereby
the optimal policy may not be stationary. Thirdly, one could
consider relaxing some of the assumptions made in the model
formulation.

REFERENCES

[1] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Mod-
eling peer-to-peer file sharing systems,” in Proc. IEEE INFOCOM’03,
2003.
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