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1. Derivation of gηi (·, ·, ·)’s in Section 5

For a fixed η, suppose xη1(t) ∼ N(E[xη1(t)], σ
η
1(t)2). For x = (x1, x2)

′, we have

gη3
(
t, x
)

= ηE

[
µ1
t

((xη1(t)
η
− E[xη1(t)]

η
+
x1
η

)
∧ nt

)]
= E

[
µ1
t

(
(xη1(t)− E[xη1(t)] + x1) ∧ ηnt

)]
= µ1

t

{
E
[
(xη1(t)− E[xη1(t)] + x1)Ixη1(t)−E[xη1(t)]+x1≤ηnt

]
+ηntPr[x

η
1(t)− E[xη1(t)] + x1 > ηnt]

}
.

Let y1(t) = xη1(t)− E[xη1(t)] + x1. Then,

gη3
(
t, x
)

= µ1
t

[∫ ηnt

−∞

y1(t)√
2πση1(t)

exp

(
− (y1(t)− x1)2

2ση1(t)2

)
dy1(t) + ηntPr[y1(t) > ηnt]

]

= µ1
t

[
−ση1(t)√

2π

∫ ηnt

−∞
−y1(t)− x1

ση21
exp

(
− (y1(t)− x1)2

2ση1(t)2

)
dy1(t)

+x1Pr[y1(t) ≤ ηnt] + ηntPr[y1(t) > ηnt]

]

= µ1
t

[
− ση1(t)2

1√
2πση1(t)

exp

(
− (ηn− x1)2

2ση1(t)2

)

+(x1 − ηnt)Pr[y1(t) ≤ ηnt] + ηnt

]
.

Then, we have an expression of gη3(t, x). In order to obtain the unknown ση1(t) for com-

putation, we replace ση1(t) with
√
u1 as described in equations (22) and (23) in the paper
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and obtain gη3(t, x, u). Note gη4(·, ·, ·) and gη5(·, ·, ·) are the same except a constant part with

respect to x. Therefore, it is enough to derive gη5(·, ·). We can show that

gη5
(
t, x
)

= ηE
[
βtpt

(xη1(t)
η
− E[xη1(t)]

η
+
x1
η
− nt

)+]
= βtpt

{
E
[(

(xη1(t)− E[xη1(t)] + x1) ∨ ηnt
)]
− ηnt

}
= βtpt

{
E
[
(xη1(t)− E[xη1(t)] + x1)Ixη1(t)−E[xη1(t)]+x1>ηnt

]
+ηntPr[x

η
1(t)− E[xη1(t)] + x1 ≤ ηnt]− ηnt

}
.

Let y1(t) = xη1(t)− E[xη1(t)] + x1. Then,

gη5
(
t, x
)

= βtpt

[∫ ∞
ηnt

y1(t)√
2πση1(t)

exp

(
− (y1(t)− x1)2

2ση1(t)2

)
dy1(t)

+ηntPr[y1(t) ≤ ηnt]− ηnt

]

= βtpt

[
−ση1(t)√

2π

∫ ∞
ηnt

−y1(t)− x1
ση1(t)2

exp

(
− (y1(t)− x1)2

2ση1(t)2

)
dy1(t)

+x1Pr[y1(t) > ηnt] + ηntPr[y1(t) ≤ ηnt]− ηnt

]

= βtpt

[
ση1(t)2

1√
2πση1(t)

exp

(
− (ηn− x1)2

2ση1(t)2

)

+(x1 − ηnt)Pr[y1(t) > ηnt]

]
.

Then, we have an expression of gη5(t, x). Just like gη3(t, x, u), we obtain gη5(t, x, u) by replacing

ση1(t) with
√
u1.

2. Numerical studies for multi-class preemptive queues

We provide two numerical results comparing standard and adjusted limits to approximate

multi-class preemptive queues. Figure 1 illustrates a two-class multi-server queue we con-

sider. Customers in class 1 and 2 arrive to the queue with rate λ1t and λ2t respectively. Service

rates are µ1
t for class 1 customers and µ2

t for class 2 customers. Class 1 customers have higher

priority and preemptive discipline applies for serving customers. We show numerical results

first and then provide g functions that we used for those queues in the following sections.
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Figure 1: Multi-class preemptive queue

2.1. Numerical results

Table 1 describes the setting of each experiment. In Table 1, “svrs” is the number of servers

(nt), “λ11” and “λ12” are alternating arrival rates of class 1 customers (λ1t ), “λ2” is the arrival

rate of class 2 customers (λ2t ), “alter” is the time length for which each class 1 arrival rate

lasts, and “time” is the end time of our analysis. We conduct 10, 000 independent simula-

tion runs for each experiment. Figures 2 and 5 compare standard and adjusted fluid limits.

Table 1: Experiment setting

exp svrs λ11 λ12 λ2 µ1 = µ2 alter time

1 200 120 200 20 1 2 20
2 300 190 205 100 1 2 10

We notice that in both experiments, the adjusted fluid limit provides excellent approxima-

tion results and outperforms the standard fluid limit. For the diffusion limits, as seen in

Figures 3 and 6, both approaches show non-trivial inaccuracy especially for the estimation

of V ar[x2(t)]. However, we still observe that the adjusted diffusion limit provides better

estimation results than the standard diffusion limit. The reason why the adjusted diffusion

limit shows inaccuracy for V ar[x2(t)] is that the empirical density is not close to Gaussian

density. In Figures 4 and 7, we can see that the empirical density functions of x2(t) in both

experiments do not match with Gaussian PDF well while those of x1(t) do match well.
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Figure 2: Comparison between fluid limits: exp. 1
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Figure 3: Comparison between diffusion limits: exp. 1
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Figure 4: Empirical density vs Gaussian density at t = 9: exp. 1
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Figure 5: Comparison between fluid limits: exp. 2
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Figure 6: Comparison between diffusion limits: exp. 2
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Figure 7: Empirical density vs Gaussian density at t = 9: exp. 2
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2.2. Rate functions for adjusted limits (g(·, ·, ·)’s)

For constant rates, i.e., λ1t and λ2t , g functions are the same as original rate functions (f).

The one corresponding to µ1
t (x1(t)∧nt) is the same as the g3 function in the main paper. We,

therefore, just provide the g function for µ2
t (x2(t) ∧ (nt − x1(t))+) which is new and indeed

complicated. Without loss of generality, we assume η = 1 for the sake of simplicity; for any

fixed η, we can easily find an equivalent formulation of which η value is 1 using substitution.

Let Z̄(t) = (z̄1(t), z̄2(t))
′ be the adjusted fluid limit and Σ(t) =

(
σ1(t)

2 cov(t)
cov(t) σ2(t)

2

)
be

the covariance matrix of the adjusted diffusion limit. In addition, define the followings:

w(t) = nt − z̄1(t),

v(t) = z̄1(t) + z̄2(t)− nt,

σw(t)2 = σ1(t)
2,

σv(t)
2 = σ1(t)

2 + σ2(t)
2 + 2cov(t),

covwv(t) = −σ1(t)2 − cov(t),

ρwv(t) =
covwv(t)

σw(t) · σv(t)
,

covw2(t) = −cov(t),

ρw2(t) =
covw2(t)

σ2(t) · σw(t)
,

φv(t) = φ(0, v(t), σv(t)),

φw(t) = φ(0, w(t), σw(t)),

φ2(t) = φ(0, z̄2(t), σ2(t)),

Φw(t) = Φ(0, w(t), σw(t)),

Φv(t) = Φ(0, v(t), σv(t)),

φwv(t) = φ(0, w(t)− σw(t) · ρwv(t) · v(t)/σv(t), σw(t)
√

1− ρwv(t)2),

Φwv(t) = Φ(0, w(t)− σw(t) · ρwv(t) · v(t)/σv(t), σw(t)
√

1− ρwv(t)2),

φvw(t) = φ(0, v(t)− σv(t) · ρwv(t) · w(t)/σw(t), σv(t)
√

1− ρwv(t)2),

Φvw(t) = Φ(0, v(t)− σv(t) · ρwv(t) · w(t)/σw(t), σv(t)
√

1− ρwv(t)2),

Ψwv(t) = Ψ

(
(0, 0)′, (w(t), v(t))′,

(
σw(t)2 covwv(t)

covwv(t) σv(t)
2

))
,
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φw2(t) = φ(0, w(t)− σw(t) · ρw2(t) · z̄2(t)/σ2(t), σw(t)
√

1− ρw2(t)2),

Φw2(t) = Φ(0, w(t)− σw(t) · ρw2(t) · z̄2(t)/σ2(t), σw(t)
√

1− ρw2(t)2),

φ2w(t) = φ(0, z̄2(t)− σ2(t) · ρw2(t) · w(t)/σw(t), σ2(t)
√

1− ρw2(t)2),

Φ2w(t) = Φ(0, z̄2(t)− σ2(t) · ρw2(t) · w(t)/σw(t), σ2(t)
√

1− ρw2(t)2),

Ψw2(t) = Ψ

(
(0, 0)′, (w(t), z̄2(t))

′,

(
σw(t)2 covw2(t)

covw2(t) σ2(t)
2

))
,

where Ψ(a, b, c) is the function values at point a of the multivariate Gaussian CDF with

mean b and covariance matrix c. Note that φ(·, ·, ·) and Φ(·, ·, ·) are defined in Section 5.

Then, the g(·, ·, ·) function corresponding to µ2
t (x2(t) ∧ (nt − x1(t))+) is

g(t, Z̄(t),Σ(t)) = µ2
t

(
w(t)− w(t) · Φw(t) + σw(t)2 · φw(t) + v(t) · Φv(t)− σv(t)2 · φv(t)

− v(t) ·Ψwv(t) + σv(t) · (Φwv(t) · φv(t) · σv(t) + ρwv(t) · Φvw(t) · φw(t) · σw(t))

+ z̄2(t) ·Ψw2(t)− σ2(t) · (Φw2(t) · φ2(t) · σ2(t) + ρw2(t) · Φ2w(t) · φw(t) · σw(t)
)
.
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