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1. Derivation of ¢/(-,-,-)’s in Section 5

For a fixed 7, suppose x](t) ~ N(E[z](t)],o7(t)?). For x = (z1,z2)’, we have
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Then, we have an expression of gi(t,z). In order to obtain the unknown o7 (t) for com-

putation, we replace o7 (t) with \/u; as described in equations (22) and (23) in the paper



and obtain ¢ (t,z,u). Note g/(-,-,) and ¢g2(-,-,) are the same except a constant part with

respect to x. Therefore, it is enough to derive g/(-,-). We can show that
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Let y1(t) = «](t) — E[z](t)] + 21. Then,
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Then, we have an expression of g2 (¢, z). Just like g3 (¢, z, u), we obtain g/ (¢, x,u) by replacing

ol (t) with \/u;.

2. Numerical studies for multi-class preemptive queues

We provide two numerical results comparing standard and adjusted limits to approximate
multi-class preemptive queues. Figure 1 illustrates a two-class multi-server queue we con-
sider. Customers in class 1 and 2 arrive to the queue with rate A} and A? respectively. Service
rates are p1; for class 1 customers and 7 for class 2 customers. Class 1 customers have higher
priority and preemptive discipline applies for serving customers. We show numerical results

first and then provide g functions that we used for those queues in the following sections.
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Figure 1: Multi-class preemptive queue
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2.1. Numerical results

Table 1 describes the setting of each experiment. In Table 1, “svrs” is the number of servers
(ne), “A11” and “Ajy” are alternating arrival rates of class 1 customers (\}), “\y” is the arrival
rate of class 2 customers (\?), “alter” is the time length for which each class 1 arrival rate
lasts, and “time” is the end time of our analysis. We conduct 10,000 independent simula-

tion runs for each experiment. Figures 2 and 5 compare standard and adjusted fluid limits.

Table 1: Experiment setting

’ exp ‘ SVTS ‘ A1 ‘ A2 ‘ Ao ‘ [y = pa ‘ alter ‘ time ‘
1 | 200 | 120 | 200 | 20 1 2 20
2 | 300 | 190 | 205 | 100 1 2 10

We notice that in both experiments, the adjusted fluid limit provides excellent approxima-
tion results and outperforms the standard fluid limit. For the diffusion limits, as seen in
Figures 3 and 6, both approaches show non-trivial inaccuracy especially for the estimation
of Var[zy(t)]. However, we still observe that the adjusted diffusion limit provides better
estimation results than the standard diffusion limit. The reason why the adjusted diffusion
limit shows inaccuracy for Var|xs(t)] is that the empirical density is not close to Gaussian
density. In Figures 4 and 7, we can see that the empirical density functions of z5(t) in both

experiments do not match with Gaussian PDF well while those of z;(t) do match well.
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Figure 3: Comparison between diffusion limits: exp. 1
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Figure 4: Empirical density vs Gaussian density at ¢ = 9: exp. 1
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Figure 5: Comparison between fluid limits: exp. 2
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Figure 6: Comparison between diffusion limits: exp. 2
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Figure 7: Empirical density vs Gaussian density at ¢ = 9: exp. 2



2.2. Rate functions for adjusted limits (g(-,-,)’s)

For constant rates, i.e., A} and \?, g functions are the same as original rate functions (f).
The one corresponding to p; (x1(t) Any) is the same as the g3 function in the main paper. We,
therefore, just provide the g function for p?(zo(t) A (ny — x1(¢))™) which is new and indeed
complicated. Without loss of generality, we assume n = 1 for the sake of simplicity; for any
fixed 7, we can easily find an equivalent formulation of which 7 value is 1 using substitution.

Let Z(t) = (21(t), Z(t))’ be the adjusted fluid limit and X(t) = ( o1(t)? cov(t) ) be

cov(t) oy(t)?
the covariance matrix of the adjusted diffusion limit. In addition, define the followings:

w(t) = ny— z(t),
v(t) = Z(t) + Z2(t) — ny,
ou(t)? = o(t)?
o,(t)? = o1(t)* + oa(t)* + 2cov(t),
CoVuy(t) = —o1(t)? — cov(t),
_ COV(2)
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covye(t) = —cov(t),
COVya(t)
purll) = @)
Pu(t) = ¢(0,v(t),0u(1)),
Pouw(t) = ¢(0,w(l),0u(l)),
P2(t) = @(0, z(t), 0a(t)),
Py(t) = 2(0,w(t),ou()),
(I)v(t> = @(O,U(t),av(t)),
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Bunlt) = BO0,0() = 0 (8) - pun(t) - 0)/0(0). VT = PP

bul®) = 9(0,0(0) = 0u(0) - punl®) - 0(8)00(1), 4003/ T= punlDP)

Boult) = B0,0(0) = 0,(8) - pun(t) - wt) /0 1) 0u(OVT = (0P
B , , Ouw(t)? covyy(t)

vult) = (007, oo, (oo o)),



buall) = G000 = 5ul0) - pualt) - 220/ 72(0), 3OV = pal0P).

Bualt) = B0,0(0) ~ 0u(t) puat) - 2(0)/o2(t), ()3 T— pual?)?)

Gault) = 9(0.2(6) = 32(8) - pua(t) - wt) [ 0) 32DV T— a0

Bault) = D0, 22(0) ~ 02(t) - pualt) - w(0) /s (1), 02()y/T— D)
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where W(a,b,c) is the function values at point a of the multivariate Gaussian CDF with
mean b and covariance matrix c¢. Note that ¢(-,-,-) and ®(-,-,-) are defined in Section 5.

Then, the g(-,-,-) function corresponding to u?(z2(t) A (ny — x1(t))") is

g(t, Z(t), (1) = p; (w(t) —w(t) - Oy (t) + 00 (1) - Gu(t) +v(t) - Py(t) — 0 (1) - G (t)
- U(t) ’ \ijv(t) + Uv(t) ) ((pwv<t> ’ va(t) ' Uv(t) + pwv(t) : vaw(t) : ¢w<t) ' Jw(t))
+ Z2(t) - Wun(t) — 02(t) - (Pua(t) - @2(1) - 02(t) + pua(t) - Paw(l) - Pu(t) - Uw(ﬂ)-
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