
Quantitative Models for Performance Enhancement of Information
Retrieval from Relational Databases

Jenna Estep

Corvis Corporation,
Columbia, MD 21046

Natarajan Gautam

Harold and Inge Marcus Department of Industrial and Manufacturing Engineering,
Pennsylvania State University,

University Park, PA 16802

Abstract
We consider a collection of relational databases that are accessed by users with different profiles. We develop
optimal retrieval strategies and system designs to present to the users their required information from relevant
databases. We use queuing-theory-based analytical models as well as simulations to obtain system performance
measures.
Keywords: Information retrieval, customer profile, queuing models, simulation, response time, caching, pipelining.

1. Introduction

Consider a system where a user makes a query and also lists his or her profile. Based on the query and the profile,
the system retrieves an appropriate set of databases and presents to the user. There are several such systems that are
both currently deployed and also in consideration for future deployment. One such instance is while making a query
to a web search engine or a library catalog wherein if the user also specifies his/her profile, only the most relevant
documents could be retrieved. For example if a student enters “Conference” and “Quality” in the search field and in
the profile field he/she enters, “student”, “Industrial Engineering” and “Eastern US”, then he/she could expect a list
of conferences in the Easter United States that encourage student papers on the topic “quality” (Industrial
Engineering related, not other disciplines). Another such example is where a customer is interested in a map of a
certain region that is customized so that besides the street information, the restaurants catering to his/her profile are
also marked on the map. There are also several Military applications where especially during combat, instead of
overloading the user with information only the most appropriate ones based on the user profile can be presented. In
fact this research study stemmed out of one such application that Raytheon Systems Inc. was developing.

One key to succeeding in this endeavor is to provide greater accuracy in retrieving the most relevant information for
users based on their profiles. For example, displaying information that is truly of interest to users in an e-business
system can increase sales by directing customers to products more suited to them, while creating a larger customer
base because customers will be attracted to a website that is “customized” to match their profile. Instead of
overloading the user with information, most of which is of no consequence, it would be beneficial to customize a
web page with information relevant to the user. One such system is available in Yahoo [7]. Whenever a user logs
into the Yahoo site, the system looks at the profile on record and displays information or data that is relevant to that
user, including advertisements, local attractions, etc.

These systems currently operate as follows: the user enters the main search terms and then his or her profile. Then
the user submits the query and the system calculates using Bayesian networks (see [2] and [6]) the most appropriate
set of documents to retrieve. This is done using a standard Bayesian Network software package such as Hugin [4].
The system rank-orders the documents, retrieves them and presents them to the user. There are two main concerns in
these systems, (i) how to select the most relevant documents based on the user profile, and (ii) how to speed up the
retrieval process? In this paper we will address the latter concern keeping in mind that the user would spend a lot of
time entering the profile information and therefore would be quite impatient to get the query results. To improve the
response time to user requests, we consider a few techniques such as starting to retrieve documents simultaneously

as the user types up his/her profile, storing some popular documents in a cache, and, pipelining the retrieval process.
The main contribution of this research can be summarized as follows:

• A quantitative modeling tool to evaluate the performance benefits for the various enhancement schemes.
Thereby several what-if analyses can be easily undertaken to determine the enhancement in response times
by considering several factors.

• Bringing together the enhancement techniques (caching, pipelining and intermediate retrievals) under one
framework that have been traditionally considered in isolation. This way the combined benefits of all the
schemes can be simultaneously considered.

This paper is organized as follows: the first enhancement of retrieving the databases simultaneously while the user is
entering his/her profile as opposed to waiting until the user completes entering the entire profile is modeled in
Section 2. In Section 3 an investigation of how the response time can be reduced by using a cache and pipelining is
undertaken. We present our concluding remarks and make suggestions for future work in Section 4.

2. Enhancement: Intermediate Retrievals

The current implementation of the system (that we will call “current system” henceforth) operates as follows: the
user enters his/her entire profile, and then the processor computes (computing time) the best databases using the
profile information, retrieves the most relevant databases (retrieval time), and finally transmits and displays the most
relevant databases. The total time to complete these activities defines the time in system, or response time.
However, this existing system has several demerits. One of the major problems is its long response time, i.e. the
time from the point when the user enters the profile until the most relevant databases are displayed.

The goal in this section is to investigate methods of reducing the retrieval time. The current system has user profile
that can be segregated into different profile characteristics. Consider a system where the computing and retrieval
based on the first profile characteristic can begin as soon as the user enters that first characteristic. That way, while
the second characteristic is being entered, the computing and retrieving based on the first characteristic can occur.
The idea behind this enhanced system is that the most relevant databases based on the first characteristic will not
differ that much from those based on a combination of the first and second characteristics. For example, suppose
that the five most relevant databases based on characteristic one are databases A, B, D, E, and G. Now suppose that
the most relevant databases based on characteristics one and two are A, C, D, F, and H. Assuming that the user
takes a long time to enter characteristic 2, databases A and D would have already been retrieved, so the system must
discard the other three and replace them by retrieving databases C, F, and H. All of this is occurring while the user
is still entering his/her profile. In the experiments we consider it is possible for the next user characteristic to be
typed before all the databases are retrieved for the previous characteristic. By the time the last characteristic is
entered, perhaps only one or two new databases will have to be retrieved.

Note that in the current system, all databases are retrieved only after the last profile characteristic is entered. The
worst this intermediate retrieval enhancement can perform (i.e. when the last characteristic requires retrieving all
databases afresh) is as good as the current system. For most practical applications, at least 2 or 3 documents can be
retrieved while the user is typing up characteristics. However note that this enhancement can result in excessive
computational time as a computation phase is undertaken every time the user enters a characteristic.

2.1 Analysis: Current System
The database retrieval process has four stages: keyboard entry, computing, retrieving, and transmit & display. From
now on, for convenience, we assume that the user has to enter five characteristics. Once the user enters the 5
characteristics, the computing and retrieving the five most relevant databases process starts. Finally, the databases
selected are transmitted and displayed. Note that there are five profile characteristics and 5 databases only for ease
of description. However, this can easily be relaxed so that the results can be generalized to cases with n profile
characteristics. The response time for this model can be represented by the random variable TI, which is a function
of the random times required for each of the four stages in this process:

• K = time to enter entire profile (i.e. all five profile characteristics)
• C = time to compute the five most relevant databases
• R = time to retrieve the five most relevant databases
• D = time to transmit and display the most relevant databases.

Therefore, the total response time, TI, can be expressed as follows:
TI = K + C + R + D.

This response time will be compared with the response time for the intermediate retrieval system in order to
illustrate that the intermediate retrieval system will reduce the time in system. This enhanced system is described in
the following section.

2.2 Analysis: Enhanced System with Intermediate Retrievals
Define the following random variables:

• Kt = time to input profile characteristic t, where t = 1, 2, 3, 4, 5
• Ct = time to compute the most relevant databases based on characteristics 1 to t, where t = 1, 2, 3, 4, 5
• Rt = time to retrieve remaining relevant databases based on characteristics 1 to t, where t = 1, 2, 3, 4, 5
• D = time to transmit and display the most relevant databases.

The random variables K1 through K5 and C1 through C5 are iid. The time parameters for using the keyboard
(inputting a characteristic) are the same for each characteristic. However, R1 through R5 are not independent.
Using these random variables, the expression for TII is

TII = K1 + K2 + K3 + K4 + K5 + C5 + R5 + D.
The assumption here is that two different processors are being used such that simultaneously doing computing and
retrieving does not slow the processing rate. To compare the above formula with that for TI, note that the time
parameters for using the keyboard (K1 through K5) are the same for each characteristic. Therefore, the time to input
all five characteristics K1 + K2 + K3 + K4 + K5 will be equivalent to the time to enter the entire profile, defined as K
in TI. In addition, C5 is equivalent to C because this model assumes that the computing time does not depend on the
number of characteristics entered. The only difference in response time is due to the difference between R and R5.
Clearly, R5 will be less than R, and TII is stochastically smaller than TI. Simulation is used to show that this is
indeed true and to quantify the reduction in response time achieved by using the intermediate retrieval system.

2.3 Results
Several input models in terms of random variables, relevant database computation and parameter values have been
used to illustrate the enhancement in performance of the intermediate retrieval scheme. However due to space
restrictions only one example is provided here. In a forthcoming paper we will illustrate other examples as well.

System Average Computing Time Average Time in System
Current 0.49891 52.531

Intermediate retrieval 2.5007 43.483

Table 1: Simulation results for current and enhanced systems

With 95% confidence, there is a significant difference in the mean time in system between the current system and
the enhanced system with intermediate retrievals. From Table 1, the average response time for the enhanced model
is 9.04 seconds lower than the that of the current model. This is a fairly significant difference. However the
computing time for the intermediate retrieval system is more than 5 times higher.

3. Enhancement: Caching and Pipelining

In this section we investigate the use of caching as well as pipelining mechanisms to enhance the performance of the
current system. The current system requires that all users obtain all their information from disks (main memory).
One way to decrease the response time is to store and retrieve information from a cache, which is typically much
faster than disk retrieval. The constraint is that the amount of information that can be cached is limited. The
caching policy considered in this paper is that when each user exits the system, the five documents that were
retrieved are stored in the cache for possible use by the next user. We compare these techniques based on caching
against the current system. Note that the intermediate retrieval of databases discussed in Section 2 is not included in
the comparisons.

Two situations are considered. The first, called the sequential service, allows only one user in the system and any
new users arriving should have to wait until the databases are displayed for the current user. In the second case,
called pipelined service, several users can be in the system at various stages of the retrieval process (such as

keyboard entry, computing/retrieving and transmission/display). We will first analyze the sequential service system
followed by the pipelined service system. Note that both systems use caching strategies. They will be compared
against the current system that is essentially the sequential service system with no caching.

3.1 Sequential Service
The time in system or the response time for a user who is about to start entering his/her profile is a random variable
T. Clearly T is the sum of the profile entry time, computation time, retrieval time, and transmission/display time.
Define the following variables:

• T_1 = time to enter profile
• T_2 = computing time to determine 5 most relevant databases
• T_3 = time to retrieve 5 most relevant databases
• T_4 = transmission and display time.

Since the above times T_1, T_2, T_3, and T_4 are independent,
T = T_1 + T_2 + T_3 + T_4

E(T) = E(T_1) + E(T_2) + E(T_3) + E(T_4)
Var(T) = Var(T_1) + Var(T_2) + Var(T_3) + Var(T_4)

The random variables T_1, T_2 and T_4 have a general distribution, with a given mean and standard deviation. In
order to obtain T_3, it is required to know the number of databases to retrieve from the cache and the number to
retrieve from the disk. Therefore, we define:

• D = time to retrieve one database from the disk, with mean β and variance S_β.
• C = time to retrieve one database from the cache, with mean α and variance S_α.

For the current system, E(T_3) = 5β and Var(T_3) = 25 S_β. These values can be used to find E(T) and Var(T).
However for the sequential service system with cache, we need to first know the probability distribution of the
number of documents to retrieve from the disk in order to compute E(T_3) and Var(T_3). Let p_i be the probability
that i of the five databases must be retrieved from the disk (based on the user profile). We assume that the cache size
is five and therefore all the cache contains are the five documents retrieved by the previous user.

We consider several models for p_i values but present only one here due to space restrictions (others will be
included in a forthcoming paper). Researchers [1] have shown that the popularity of web documents follows a Zipf-
like distribution. If there are M documents, then the probability that document i will be accessed is K/(iⁿ), where r is
a parameter which Zipf used as one, but other values can be used, too. K is a normalizing constant such that ∑K/iⁿ =
1. Therefore, document one is most popular and document M is the least popular. We use this distribution to get p_i
values. Based on the p_i values we compute E(T_3) and Var(T_3) for the sequential service system via conditioning
on the number of documents to be retrieved from the disk (detailed results will appear in a forthcoming paper).

0
100
200
300
400
500
600
700

0 25 50 75 100
Beta

E(
T)

Figure 1: Comparing the sequential service system with the current system

Sequential service

Current System

In order to compare the sequential service system with the current system, E(T) and one standard deviation from
E(T) are plotted for both systems over a range of β values, where β is the mean time to retrieve one database from
the disk. The comparison is illustrated in Figure 1. The decrease in time in system is very large when using a cache,
with a reduction of about 40 percent for mid-range β-values and 80 percent for high β-values.

3.2 Pipelined Service
In Section 3.1 we only compared the time between entering the profile and displaying the databases. In this section
we are going to consider a queuing model where users arrive according to a Poisson process with mean rate λ into
the systems and wait for any users in service before beginning their service. All queues will be served according to a
first-come-first-serve basis. Another way to think about Section 3.1 is that the mean rate λ is so small that there is
never a user waiting for another to complete.

We first describe the performance of the sequential and the current systems and then move on to the pipelined
service case. For the sequential and the current systems the waiting room for users is outside the system (i.e., before
entering the profile). Both systems can be analyzed using M/G/1 queuing models. The service times are indeed the
T values described in Section 3.1. We assume that the service times are iid. Therefore we use the Pollaczek-
Khintchine (PK) formula and obtain the mean queue length L (see [5]). The expected wait in the system, W, (which
is the expected time in system including time in the queue) can be obtained via Little's formula: L =λW.

For the pipelined service system, the model is similar to the sequential service system in terms of caching, with the
exception that it involves some simultaneous processing, which reduces the time in system. Multiple users enter
profiles on their keyboards (using their own browsers). When the profiles are submitted, they are processed
(involving computing and retrieving of databases) one user at a time. The relevant databases can then be transmitted
and displayed simultaneously for the various users. A tandem queuing network with 3 stages back to back is used to
model the system.

The total time in the system is equal to the sum of the times spent in the three stages: keyboard,
computing/retrieving and transmission/display. Since all the users can potentially enter their profiles in parallel, the
first stage of the queuing network is modeled as an M/G/∞ queue. The keyboard time is equal to the time to enter
all five user characteristics and has the same general distribution for all servers. Since the output process from an
M/G/∞ queue is a Poisson process with parameter λ [3], the second stage that involves computing and retrieving the
five most relevant databases can be modeled as an M/G/1 queue. The mean of the time in this stage can be computed
using a conditional argument (via p_i values described in Section 3.1) and the PK formula [3]. Finally the mean of
the time spent in the third stage (i.e. transmission/display) can be directly computed since information can be
simultaneously transmitted and displayed on all the user machines.

Current System for COV=10

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 25 50 75 100
Beta

W

Sequential and pipelined (COV=10)

0
100
200
300
400
500
600

0 25 50 75 100
Beta

W

Figure 2: Comparing the pipelined, sequential and the current systems

We compare the pipelined service system with the sequential (Section 3.1) and the current systems. The expected
time in system, W, is plotted against the range of β-values. W is plotted for different coefficients of variation
(COV). The retrieval time is proportional to the document size. It is said that the size of web documents can have a
very high COV [8]. Therefore we use COV values of 10 and show that the caching schemes (both pipelined and
sequential) perform far better than the current system. Also, the pipelined system performs slightly better than the
sequential case in our example. See Figure 2 for an illustration of the results.

4. Conclusions and Future Research

There are two directions for improving the current implementation of retrieving relevant databases based on a user
profile. One is changing the structure of the Bayesian networks that are used to compute and retrieve the most
relevant databases (we will present this in a forthcoming paper), and the other involves ways to reduce the user's
time in system. We showed two different ways to reduce the user's time in the system: by intermediate retrievals and
by caching/pipelining. Using simulation, it is found that the use of intermediate retrieval of databases can
significantly reduce the user's time in system compared to the current implementation, although it does require more
computing time. The reduction is greatest when the mean retrieval time per database is higher (5 seconds), resulting
in a response time that is 9 seconds lower (17% reduction).

Finally, we investigate various models to reduce the response time through the use of a cache and pipelining for one
or multiple users in the system at a time. When a maximum of one user is in the system at a time, the model using a
cache (sequential service) has about 40 to 80 percent lower time in system than the original model while using a
Zipf-like distribution for popularity of databases. When there can be more than one user in the system at a time, a
system with parallel service in addition to using a cache is introduced. Users can simultaneously enter their profiles,
and the most relevant databases can be transmitted and displayed simultaneously on the multiple users' machines.
The models using cache always have a lower time in system when compared with the current system, and pipelined
service is even slightly lower than sequential.

There are several areas where further research can be done. The first is to vary the cache size to find the optimal
cache size while considering time in system and use of the computer's resources. One design issue is how to
optimally allocate capacity to each stage in the process if only one CPU is used. Another issue is how to determine
the steady state cache contents. All of these techniques can be used in Internet applications, which are expanding at
a high rate in today's economy.

Acknowledgements
The authors thank the anonymous reviewers for suggestions that led to considerable improvements in the content
and presentation of this paper. The authors are also grateful to Raytheon Systems Inc. for partially supporting this
research.

References
1. Breslau, L., Cao, P., Fan, L., Phillips, G., , Shenker., 1999, “Web Caching and Zipf-like Distributions:

Evidence and Implications”, INFOCOM-99, 126-134.
2. Charniak, E. 1991, “Bayesian networks without tears”, AI Magazine, Winter, 50-63.
3. Gross, D., and Harris, C.,M. 1998, “Fundamentals of Queuing Theory” Third Edition. John Wiley & Sons, Inc.
4. Hugin Lite 1999, <http://www.hugin.dk/>.
5. Kulkarni, V.G., 1995, “Modeling and Analysis of Stochastic Systems”, Chapman & Hall, New York.
6. Pearl, J., 1988, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference” Morgan

Kaufmann, San Mateo, CA.
7. Yahoo, 1999 <http://www.yahoo.com>.
8. Zhang, Izmailov, Reininger, Ott, 1999, “Web Caching Framework: Analytical Models and Beyond”, IEEE

Workshop on Internet Applications, 132-141.

