
Opportunities for Network Coding:
To Wait or Not to Wait

Yu-Pin Hsu∗, Navid Abedini∗, Solairaja Ramasamy∗, Natarajan Gautam†, Alex Sprintson∗ and Srinivas Shakkottai∗
∗Dept. of ECE, Texas A&M University
†Dept. of ISE, Texas A&M University

Email: {yupinhsu, novid abed, solairaja, gautam, spalex, sshakkot}@tamu.edu

Abstract—It has been well established that reverse-carpooling
based network coding can significantly improve the efficiency
of multi-hop wireless networks. However, in a stochastic envi-
ronment when there are no opportunities to code because of
packets without coding pairs, should these packets wait for a
future opportunity or should they be transmitted without coding?
To help answer that question we formulate a stochastic dynamic
program with the objective of minimizing the long-run average
cost per unit time incurred due to transmissions and delays. In
particular, we develop optimal control actions that would balance
between costs of transmission against those of delays. In that
process we seek to address a crucial question: what should be
observed as the state of the system? We analytically show that just
the queue lengths is enough if it can be modeled as a Markov
process. Subsequently we show that a stationary policy based
on queue lengths is optimal and describe a procedure to find
such a policy. We further substantiate our results with simulation
experiments for more generalized settings.

I. INTRODUCTION

In recent years, there has been a growing interest in the
applications of network coding techniques in wireless com-
munication networks. It was shown that the network coding
technique can result in significant improvements in the perfor-
mance of multi-hop wireless networks. For example, consider
a wireless network coding scheme depicted in Figure 1(a).
Here, wireless nodes n1 and n2 need to exchange packets
x1 and x2 through a relay node. A simple store-and-forward
approach needs four transmissions. However, the network
coding solution uses a store-code-and-forward approach in
which the two packets x1 and x2 are combined by means of a
bitwise XOR operation at the relay and broadcast to nodes 1
and 2 simultaneously. Nodes n1 and n2 can then decode this
coded packet to obtain the packets they need.
Effros et al. [1] introduced the strategy of reverse carpool-

ing that allows two information flows traveling in opposite
directions to share a path. Figure 1(b) shows an example
of two connections, from n1 to n4 and from n4 to n1 that
share a common path (n1, n2, n3, n4). The wireless network
coding approach results in a significant (up to 50%) reduction
in the number of transmissions for two connections that use
reverse carpooling. In particular, once the first connection is
established, the second connection (of the same rate) can be

This work was supported in part by NSF grant CMMI-0946935, NSF grant
CNS-0954153, and DTRA grant HDTRA1-09-1-0051.

x2



x1



n1

n2 n3 n4



1 1f

2

q

q

R

2

1

f 2

1 2

f

f

n1

n2

x1 ⊕ x2

Fig. 1. (a) Wireless Network Coding (b) Reverse carpooling (c) 3-Node
Relay Network.

established in the opposite direction with little additional cost.

In this paper, we focus on design and analysis of scheduling
protocols that exploit the fundamental trade-off between the
number of transmissions and delay in the reverse carpooling
schemes. In particular, to cater to delay-sensitive applications,
the network must be aware that savings achieved by coding
may be offset by delays incurred in waiting for such opportu-
nities.
Consider a relay node that transmits packets between two

of its adjacent nodes that has flows in opposite directions, as
depicted in Figure 1(c). The relay maintains two queues q1 and
q2, such that q1 and q2 store packets that need to be delivered
to nodes 2 and 1, respectively. If both queues are not empty,
then it can relay two packets from these queues by performing
an XOR operation. However, what should the relay do if one
of the queues have packets to transmit, while the second queue
is empty? Should the relay wait for a coding opportunity or
just transmit a packet from a non-empty queue without coding?
This is the fundamental question we seek to answer. In essence



we would like to trade off efficiently transmitting the packets
against high quality of service (i.e., low delays).

A. Related Work

Network coding research was initiated by seminal work by
Ahlswede et al. [2] and since then attracted major interest
from the research community. Many initial works on the
network coding technique focused on establishing multicast
connections between a fixed source and a set of terminal nodes.
Network coding technique for wireless networks has been

considered by Katabi et al. [3]. They proposed an architecture,
referred to as COPE, which contains a special network coding
layer between the IP and MAC layers. In our earlier work [4],
we showed how to design coding-aware routing controllers
that maximize coding opportunities (and hence reduce the
number of transmissions) in multihop networks. However, in
contrast to all the above literature the objective of this paper is
to study the delicate tradeoff between transmission costs and
waiting costs when network coding is an option.

B. Main Results

Our objective is to develop policies that yield a transmit/do
not transmit decision at each time instant. We define our ob-
jective as the long-run average transmission cost plus waiting
time cost on a per-unit-time basis. Thus, the relay can transmit
and incur a transmission cost, or wait in the hope that a codable
packet will arrive, which allow the transmission cost to be
shared between two packets.
We first consider the case of a single relay, and assume

that arrivals into both queues follow independent Bernoulli
processes. We find that the optimal policy is a stationary
queue-length threshold policy with one threshold for each
queue at the relay, and whose action is simple: if a coding
opportunity exists, code and transmit; else transmit a packet
if the threshold for that queue is reached. We show how to
find the optimal thresholds, and find exact expressions for
the expected cost based on the stationary distribution of the
Markov Chain when controlled by this policy.

II. SYSTEM OVERVIEW

Consider a multi-hop wireless network operating a time-
division multiplexing scheme to store and forward packets
from various sources to destinations. Time is slotted into small
intervals and in each interval every node gets to transmit at
most one packet of a flow. This packet is transmitted during a
“mini-slot” that the node has been assigned. We assume that
this mini-slot is instantaneous for all practical purposes. Also,
in this paper we will not consider any scheduling issues and
assume that we have scheduled mini-slots assigned to each
node for each flow where nodes have opportunities to transmit
if they choose to. With that said, we will now describe the
scenario from the perspective of a single node, especially a
relay that has the potential for network coding packets from
flows in opposing directions. We will revert to the entire
network only in Section IV.

A. Scenario from a Relay’s Perspective
Consider Figure 1(c). We call two of the adjacent nodes

to the relay R as nodes 1 and 2. Say there is a flow f1 that
goes from node 1 to 2 and another flow f2 from node 2 to 1,
both of which are through the relay under consideration. The
packets (type 1 and type 2) from both flows respectively go
through separate queues, q1 and q2, at node R. With respect to
the relay we now define a slot as the time between successive
opportunities for the relay to transmit. In each slot a packet
arrives from node i (during its transmission opportunity) to qi

with probability pi for i = 1, 2. Also, with probability (1−pi)
no packet arrives from node i in a slot. Thus, a maximum
of one packet arrives from each adjacent node to the relay
during a slot (this is according to the network definition and
scheduling we described earlier). At the end of a slot, the relay
gets an opportunity to transmit.
Notice that at the end of a slot, the relay can transmit a

maximum of one packet. When both queues are non-empty,
one packet from q1 and one from q2 can be transmitted
together as a single packet using XOR coding. This scenario,
in which transmitting a combination of packets results in
decreasing the required number of transmissions, is referred
as a coding opportunity. Whenever such a coding opportunity
exists between the packets of two flows, the relay encodes the
packets and transmits the coded packet back to the adjacent
nodes. However, if there is only one type of packet at the
end of a slot, there are two options: (a) one of those packets
gets transmitted without coding or (b) we wait for a future
slot to receive a matching packet in the other queue to utilize
the coding opportunity. We assume that transmissions within
a type is according to a first-in-first-out basis.
Note that the relay node faces one of three kinds of

situations: (i) one packet of one type and at least one packet of
another type; (ii) only one type of packet(s); (iii) no packets.
The decision in situations (i) and (iii) is straightforward, one
would code using XOR in situation (i) and transmit, whereas
do nothing in situation (iii). However in situation (ii), it is
unclear as to what is the best course of action, do nothing
(thus worsening delay) or transmit without coding (thus being
inefficient). In other words, to wait or not to wait, that is the
question.

B. Markov Decision Process Model
To develop a strategy for the relay to decide at every

transmission opportunity, its best course of action, we use
a Makov decision process (MDP) model. For i = 1, 2 and
n = 0, 1, 2, . . ., let Y i

n be the number of packets in queue i at
the end of time slot n just before an opportunity to transmit.
Let An be the action chosen at the end of the nth time slot
with An = 0 implying the action is to do nothing and An = 1
implying the action is to transmit. As we described before, if
Y 1

n + Y 2
n = 0, then An = 0 because that is the only feasible

action. Also, if Y 1
n Y 2

n > 0, then An = 1 because the best
option is to transmit a coded XOR packet as it both reduces
the number of transmissions as well as latency. However, when
exactly one of Y 1

n and Y 2
n is non-zero, it is unclear what the

best course of action is.



To develop a strategy for that, we first define costs for
latency and transmission. Let Ct be the cost for transmitting a
packet and Ch be the cost for holding a packet for a length of
time equal to one slot. Without loss of generality, we assume
that if a packet was transmitted in the same slot it arrived,
its latency is zero. Also, the cost of transmitting a coded
packet is the same as that of a non-coded packet. That said,
our objective is to derive an optimal policy that minimizes
the long-run average cost per slot. For that we define the
MDP {(Yn, An), n ≥ 0} where Yn = (Y 1

n , Y 2
n ) is the state

of the system and An the control action chosen at time n.
The state space (i.e. all possible values of Yn) is the set
{(i, j) : i ≥ 0, j ≤ 1 or j ≥ 0, i ≤ 1}.
Let C(Yn, An) be the cost incurred at time n if action An

is taken when the system is in state Yn. Therefore,

C(Yn, An) = Ch([Y 1
n − An]+ + [Y 2

n − An]+) + CtAn (1)

where [x]+ = max(x, 0). The long-run average cost for some
policy u is given by

V (u) = lim
N→∞

1

N + 1
Eu

[

N
∑

n=0

C(Yn, An)|Y0 = (0, 0)

]

(2)

where Eu is the expectation operator taken for the system
under policy u. Notice that our initial state is an empty system,
although the average cost would not depend on it. Our goal
is to obtain the optimal policy u∗ that minimizes V (u). For
that we first describe the probability law for our MDP and
then in subsequent section develop a methodology to obtain
the optimal policy u∗.
For the MDP {(Yn, An), n ≥ 0}, the probability law can

be derived for i ≥ 0 and j ≥ 0 as following in terms of
Pa (Yn, Yn+1), the transition probability from state Yn to Yn+1

associated with action a ∈ {0, 1}.














































P1

(

(i, j), ([i − 1]+, [j − 1]+)
)

= p̂1

P1

(

(i, j), (max(i, 1), [j − 1]+)
)

= p̂2

P1

(

(i, j), ([i − 1]+, max(j, 1))
)

= p̂3

P1

(

(i, j), (max(i, 1), max(j, 1))
)

= p̂4

P0

(

(i, j), (i, j)
)

= p̂1

P0

(

(i, j), (i + 1, j)
)

= p̂2

P0

(

(i, j), (i, j + 1)
)

= p̂3

P0

(

(i, j), (i + 1, j + 1)
)

= p̂4

(3)

where p̂1 = (1−p1)(1−p2), p̂2 = p1(1−p2), p̂3 = (1−p1)p2,
and p̂4 = p1p2. Also note the caveats that: i and j cannot both
be greater than 1; if i = j = 0, then An = 0; if i > 0 and
j > 0, then An = 1.

III. ANALYSIS

As we described in the previous section, our goal is to obtain
the optimal policy u∗ that minimizes g(u), defined in (2). To
that end, we first find the space of possible policies and then
identify the optimal policy within this space. Our first question
is: what is the appropriate state space: is it just queue length,
or should we also consider waiting time?

A. Should we maintain waiting time information?
Intuition tells us that if a packet has not been waiting long

enough then perhaps it could afford waiting a little more but if
a packet has waited too long, it may be better to just transmit
it. That seems logical considering that we tried our best to
code but we cannot wait too long because it hurts in terms of
holding costs. Also, one could get waiting time information
from time-stamps on packets that are always available. Given
that, would we be making better decisions by also keeping
track of waiting times of each packet? We answer that question
by means of a theorem which requires the following lemma
for a generic MDP {(Xn, Dn), n ≥ 0} where Xn is the state
of the MDP and Dn is the action at time n.
Lemma 1: (Puterman [5]) For an MDP {(Xn, Dn), n ≥ 0},

given any history dependent policy and starting state, there
exists a randomized Markov policy with the same long-run
average cost.
Using the above lemma we show next that it is not necessary

to maintain waiting time information.
Theorem 2: For the MDP {(Yn, An), n ≥ 0}, if there exists

a randomized history dependent policy that is optimal, then
there exists a randomized Markov policy u∗ that minimizes
V (u) defined in (2). Further, one cannot find a policy which
also uses waiting time information that would yield a better
solution than V (u∗).

Proof: See [6].

B. Structure of the optimal policy
In the previous sections, we showed that there exists an

optimal policy that does not include the waiting time in the
state of the system. In this section we focus on queuelength-
based policies and determine the structure of the optimal
policy. In the MDP literature (see Sennott [7]), the conditions
for the structure and location of optimal policy usually rely on
the results of the infinite horizon β-discounted cost case and
let β approach 1 to obtain the average cost case. Accordingly,
for our MDP {(Yn, An), n ≥ 0}, the total expected discounted
cost incurred by a policy θ is

Vθ,β(i, j) = Eθ

[

∞
∑

n=0

βnC(Yn, An)|Y0 = (i, j)

]

. (4)

In addition, we define Vβ(i, j) = minθ Vθ,β(i, j) as well as
vβ(i, j) = Vβ(i, j) − Vβ(0, 0).
Proposition 3: Vβ(i, j) is finite for all i, j, and discount

factor β.
Proof: See [6].

Proposition 3 implies that Vβ(i, j) satisfies the optimality
equation [7],

Vβ(i, j) = min
a∈{0,1}

[Ch([i − a]+ + [j − a]+) + Cta

+β
∑

k,#

Vβ(k, #)Pa

(

(i, j), (k, l)
)

]. (5)

The next lemma specifies the conditions that must be
satisfied by the optimal stationary policy.
Lemma 4: (Sennott [7]) There exists a stationary policy that

is optimal for the MDP {(Yn, An), n ≥ 0} if the following



conditions are satisfied: (i) Vβ(i, j) is finite for all i, j, and
discount factor β; (ii) there exists a nonnegative N such that
vβ(i, j) ≥ −N for all i, j, and β; and (iii) there exists a
nonnegative Mi,j such that vβ(i, j) ≤ Mi,j and

∑

k,l

Pa

(

(i, j), (k, l)
)

Mk,l < ∞ (6)

for every i, j, β, and action a.
Using Lemma 4 we show next that the MDP defined in this

paper has an optimal policy that is stationary.
Theorem 5: For the MDP {(Yn, An), n ≥ 0}, there exists

a stationary policy u∗ that minimizes V (u) defined in (2).
Proof: See [6].

Now that we know that the optimal policy is stationary,
the question is how do we find it. The standard methodology
to obtain stationary policy for infinite-horizon average cost
minimization problem is to use a linear program as described
below.
Consider a generic MDP {(Xn, Dn), n ≥ 0} where Xn is

the state and Dn is the action at time n. Assume that the MDP
has a finite number of states in the state space and the number
of possible actions is also finite. Assume that the Markov
chain resulting out of any policy is irreducible. Let u be a
stationary randomized policy described for state Xn = i and
action Dn = a as follows:

uia = P{Dn = a|Xn = i}

for all i in the state space and all a in the action space.
Note that uia is the probability of choosing action a when the
system is in state i. Further, define the expected cost incurred
when the system is in state i and the action is a as

cia = E[C(Xn, Dn)|Xn = i, Dn = a]

where C(Xn, Dn) is the cost incurred at time n if action Dn

is taken when the system is in state Xn.
Lemma 6: (Serin and Kulkarni [8]) The optimal random-

ized policy u∗
ia that minimizes the long-run average cost per

unit time (equal to the length of a slot) can be computed as

u∗
ia =

x∗
ia

∑

b x∗
ib

where x∗ = [x∗
ia] is the optimal solution to the linear program:

Minimize
∑

i

∑

a

ciaxia

subject to
∑

i

∑

a

xia = 1

∑

a

xja −
∑

i

∑

a

pij(a)xia = 0 ∀j

xia ≥ 0 ∀i, a.

As described in Ross [9], the linear program (LP) produces
for each i optimal values x∗

ia that are all zero except one a
which would be 1. Hence the optimal policy would in fact be
a stationary deterministic policy.
However, we cannot directly apply the above results to our

MDP {(Yn, An), n ≥ 0}, as our MDP has infinite states and

the Markov chain under every policy is not irreducible (for
example if we always transmit, it is not possible to reach some
of the states). To circumvent that, we construct a finite size
LP with N states and force it to be irreducible by creating
dummy transitions with probability ε > 0 between some states.
Let us call this LP (N, ε). From the lemma above, LP (N, ε)
has a stationary deterministic policy that is optimal. By letting
N → ∞ and ε → 0 we argue that our MDP would have an
optimal deterministic policy. With that said, it is not efficient
to obtain the optimal policy by solving LP (N, ε) for large N
and small ε.
We now know that the optimal policy is stationary deter-

ministic. But, how do we find it? If we know that the optimal
policy satisfies some structural properties then it is possible to
search through the space of stationary deterministic policies
and obtain the optimal one.
Theorem 7: For the MDP {(Yn, An), n ≥ 0}, the optimal

policy is of threshold type. There exist the optimal thresholds
L∗

1 and L∗
2 so that the optimal deterministic action in states

(i, 0) is to wait if i ≤ L∗
1, and to transmit without coding

if i > L∗
1; while in state (0, j) is to wait if j ≤ L∗

2, and to
transmit without coding if j > L∗

2.
Proof: See [6].

C. Analysis: obtaining the optimal deterministic stationary
policy
We have shown in the previous section that the optimal

policy is stationary, deterministic and threshold type. The next
step is to find it. Notice that we only need to consider the
subset of deterministic stationary policies.
Theorem 8: The optimal thresholds L∗

1 and L∗
2 are

(L∗
1, L

∗
2) = arg min

L1,L2

Ctτ(L1, L2) + Chλ(L1, L2) (7)

where

τ(L1, L2) = p1p2π0,0 + p2

L1
∑

i=1

πi,0 + p1

L2
∑

j=1

π0,j +

p1(1 − p2)πL1,0 + p2(1 − p1)π0,L2
(8)

λ(L1, L2) =
L1
∑

i=1

iπi,0 +
L2
∑

j=1

jπ0,j (9)

for which

π0,0 =
1

(

1−αL1+1

1−α

)

+
(

1−1/αL2+1

1−1/α

)

− 1
(10)

πi,0 = αiπ0,0 (11)
π0,j = π0,0/α

j (12)

α =
(1 − p2)p1

(1 − p1)p2

(13)

Proof: See [6].
Whenever Ch > 0, it is relatively straightforward to obtain

L∗
1 and L∗

2. Since it costs Ct to transmit a packet and Ch for
a packet to wait for a slot, it would be better to transmit a
packet than make a packet wait for more than Ct/Ch slots.



0 2 4 6 8 10 12 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Average delay 

A
ve

ra
ge

 #
 tr

an
sm

is
si

on
s

Waiting−Transmitting Trade−off

 

 

(0.2, 0.17)
(0.5, 0.5)
(0.7,0.5)
(0.9, 0.3)
(0.9,0.8)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

Holding Cost

M
in

im
um

 A
ve

ra
ge

 C
os

t

(P1,P2)=(0.5,0.5)

 

 

Waiting Time Policy

QL+WT Policy

Queue Length Policy

Optimal Randomized(analytical)

Optimal Deterministic(analytical)

Opportunistic Policy

(b)

0 0.05 0.1 0.15 0.20.55

0.6

0.65

0.7

0.75

Holding Cost

M
in

im
um

 A
ve

ra
ge

 C
os

t

Line Network (P1,P2)=(0.5,0.5)

 

 

QL Policy
Opportunistic Policy
WT Policy
QL+WT Policy

(c)

Fig. 2. (a) Trade-off between average delay and number of transmissions in a single relay using queue-length threshold policy for different Bernoulli arrival
rates (p1, p2), (b) Comparison of the minimum average cost (per packet) in a single relay with Bernoulli arrival rates (0.5, 0.5), for different policies, (c)
Comparison of different policies in a line network with two intermediate nodes and two Bernoulli flows with mean arrival rates (0.5, 0.5)

Thus L∗
1 and L∗

2 would always be less than Ct/Ch. Hence
by completely enumerating between 0 and Ct/Ch for both L1

and L2, we can obtain L∗
1 and L∗

2. One could perhaps find
faster techniques than complete enumeration, but it certainly
serves the purpose.

IV. NUMERICAL EXPERIMENTS AND RESULTS

In this section we present several numerical results to
demonstrate the analytical formulation as well as its exten-
sions. We study the performance of a number of policies:
1) Opportunistic Coding: when a packet arrives, coding is
performed if a compatible packet is available, otherwise
transmission takes place immediately.

2) Queue-length-based threshold: a Stationary Determinis-
tic (SD) policy that our analysis suggests it should be
optimal for the Bernoulli case.

3) Randomized-Queuelength-based threshold: a Stationary
policy that Randomizes (SR) over deterministic policies.
We expect that it would not perform any better than
deterministic queue-length-based policies.

4) Queue-length-plus-Waiting-time-based thresholds: a
History Dependent policy (HR) which is likely to give
the best possible performance.

5) Waiting-time-based thresholds: an HR policy that we
create for the purpose of comparison to illustrate that
history on its own is only of limited value.

We simulate these policies on two different cases: (i) the single
relay with Bernoulli arrivals (Figures 2(a) and 2(b)) and (ii) a
line network with 4 nodes, in which the sources are Bernoulli
(Figure 2(c)). Note that in this case, since the departures from
one queue determine the arrivals into the other queue, the
arrival processes are significantly different from Bernoulli. Our
simulations is done in Java and for each scenario we report
the average results of 105 iterations.
Our numerical studies illustrate that, as expected, a deter-

ministic queue-length based policy is optimal for different
network scenarios. The results are intriguing as they suggest
that achieving a near-perfect tradeoff between waiting and
transmission costs is possible using simple policies; and cou-
pled with optimal network-coding aware routing policies like

the one in our earlier work [4], have the potential to exploit
the positive externalities that network coding offers.

V. CONCLUSION
In this paper we developed algorithms that explore the del-

icate tradeoff between waiting and transmitting using network
coding. We started with the idea of exploring the whole space
of history dependent policies, but showed step-by-step how
we could move to simpler regimes, finally culminating in a
stationary deterministic queue-length threshold based policy.
The policy is attractive because its simplicity enables us to
characterize the thresholds completely, and we can easily
illustrate its performance on multiple networks. We showed
by simulation how the performance of the policy is optimal
in the Bernoulli arrival scenario, and how it also does well in
other situations such as for line networks. Our results also have
some bearing on the general problem of queuing networks with
shared resources that we will explore in the future.

REFERENCES
[1] M. Effros, T. Ho, and S. Kim, “A Tiling Approach to Network Code

Design for Wireless Networks,” Proc. of IEEE Information Theory
Workshop (ITW), pp. 62–66, 2006.

[2] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[3] S. Katti, H. Rahul, D. Katabi, W. H. M. Médard, and J. Crowcroft, “XORs
in the Air: Practical Wireless Network Coding,” Proc of ACM Special
Interest Group on Data Communication (SIGCOMM), 2006.

[4] V. Reddy, S. Shakkottai, A. Sprintson, and N. Gautam, “Multipath Wire-
less Network Coding: A Population Game Perspective,” Proc. of IEEE
International Conference on Computer Communications (INFOCOM),
2010.

[5] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, New York, NY, 1994.

[6] Y. P. Hsu, N. Abedini, S. Ramasamy, N. Gautam, A. Sprintson,
and S. Shakkottai, “Opportunities for Network Coding: To Wait
or Not to Wait,” Technical Report, 2011. [Online]. Available:
http://arxiv.org/abs/1105.4143

[7] L. Sennott, “Average Cost Optimal Stationary Policies in Infinite State
Markov Decision Processes with Unbounded Costs,” Operations Re-
search, vol. 37, pp. 626–633, 1989.

[8] Y. Serin and V. Kulkarni, “Markov Decision Processes Under Observ-
ability Constraints,” Math. Meth. Oper. Res., vol. 61, pp. 311–328, 2005.

[9] S. M. Ross, Introduction to Stochastic Dynamic Programming. Academic
Press, New York, NY, 1994.


