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Abstract

User-level Networking (ULN) is gaining rapid accep-
tance in the commercial world with Virtual Interface Archi-
tecture (VIA), and Infiniband more recently, being touted as
the interface of choice to diverse peripherals. There is an
important issue with respect to ULNs that has been largely
unaddressed. This is the issue of accommodating multiple
communication channels (scalability) and being able to sus-
tain the Quality-of-Service (QoS) requirements of each of
these channels. Removing the operating system from the
critical path makes the scalability and QoS issue all that
much harder since the supervisory role to prevent interfer-
ence across channels has to be performed by the network in-
terface. This paper argues for a different approach to struc-
turing the processing of operations (called PVIA) on the
network interface than what is widely used. This newer ap-
proach makes it easier to incorporate QoS features, which
is referred to as QoSVIA. All these mechanisms have been
implemented on an actual Myrinet cluster. The results from
the implementation, together with detailed simulations, il-
lustrate the potential of QoSVIA being able to accommo-
date the QoS needs of a larger number of channels than the
mechanisms in use today.

1. Introduction

A driving force behind the advocation of clusters has
been the lower latencies achieved by a reduction in the over-
heads of conventional networking stacks and the avoidance
of crossing protection boundaries [17, 11, 14, 12, 15, 9, 10].
Hardware [7] and software [3, 4, 5, 1, 2] implementations
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of VIA have been or are currently being developed, together
with preliminary studies examining the performance of this
platform.

The previous studies and the published performance re-
sults of ULNs have only looked at latency and bandwidth of
a single communication channel [6, 4]. Only a recent study
[13] has looked at the issue from the scalability viewpoint.
In this paper, QoS is a broad term that is used to describe the
desirable performance criteria for a given communication
channel. This could include (a) low latency (Best-Effort),
(b) high bandwidth/throughput (BE), (c) (deterministic or
statistical) guaranteed latency (bound on the interval be-
tween injection at one node and ejection at another), and
(d) (deterministic or statistical) guaranteed bandwidth (over
a period of time) which could be CBR (Constant Bit Rate) or
VBR (Variable Bit Rate) traffic. In this paper, we limit our-
selves to Best-Effort (BE), CBR and VBR channels, with
the term QoS channel being broadly used to refer to the lat-
ter two.

Developing QoS-aware communication for a cluster re-
quires a substantial design effort at several levels of the sys-
tem architecture: network, network interface and operating
system scheduler.

For the purposes of this discussion, we assume that the
network is already QoS-aware, i.e. one of the other tech-
niques is used to ensure that when different channels across
nodes pump in messages, the network would deliver them
to the corresponding destinations as specified by the nego-
tiated QoS parameters. We also do not consider the issue
of host CPU scheduling in this paper, and assume that the
processes can inject/eject messages as needed.

This paper examines the issues in designing a ULN such
as VIA on an off-the-shelf interface (Myrinet), and first
shows that the optimizations for a single channel which
several current implementations use (which we refer to as
SVIA), may not be very efficient with the presence of mul-
tiple channels. A firmware design (called PVIA) that at-
tempts to increase the concurrency of activities on the NIC
is shown to give better performance in such cases. Subse-
quently, the PVIA design is augmented with a rate-based
scheduler (QoSVIA) to meet the bandwidth requirements
of CBR and VBR channels. PVIA and QoSVIA have been
implemented and evaluated on a Pentium (running Linux)



cluster connected by Myrinet, and compared with a publicly
distributed VIA implementation [4] that is representative of
a SVIA design.

The rest of this paper is organized as follows. The
next section gives a quick background on cluster network
interfaces (Myrinet in particular) and ULN (with respect
to VIA). The design and implementation of the different
firmware designs is discussed in Section 3. Experimental
evaluation of this system is conducted in Section 4. Finally,
Section 5 summarizes the contributions of this paper and
outlines directions for future work.

2. Overview of ULN and NIC Operations

We describe the ULN and NIC operations by discussing
the implementation of VIA.
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Figure 1. Myrinet NIC
In ULNs, the operating system (device driver) is used

only to set up channels of communication (when protec-
tion checks are done). Subsequently, user processes can di-
rectly interface to the network. This has been made possible
due to innovations in network interface cards (NIC), such as
Myrinet, which are able to monitor regions of memory for
messages to become available, and directly stream them out
onto the network without being explicitly told to do so by
the operating system running on the host CPU. Similarly,
an incoming message is examined by the NIC, and directly
transferred to the corresponding application receive buffers
in memory (even if that process is not currently scheduled
on the host CPU). Figure 1 shows the network interface card
for Myrinet. This card contains a processor called LANai, a
DMA engine (referred to as HDMA in this paper) which is
used to transfer data between host memory and card buffer
(SRAM), a DMA engine (referred to as NSDMA) to trans-
fer the data from SRAM out onto the network, and a DMA
engine (referred to as NRDMA) to transfer data on to the
SRAM from the network.

The following actions are important considerations when
implementing a ULN:

� How does an application process notify the NIC about
a message that it wants to send, or how does the NIC
detect the presence of an outgoing message? Similarly,
how does it inform the NIC about a message that it
wants to receive?

� How and when should the NIC bring down the mes-
sage from the host memory down onto its local buffer?
Subsequently, when should this message be sent out on
the network?

� How and when should the NIC pick up an incom-
ing message from the network? Subsequently, when
should this is transferred up to the host memory?

The hardware features on the Myrinet which help us im-
plement these actions are discussed next. In this paper,
we are not examining the protection operations of VIA and
limit ourselves to the Send and Recv operations.

2.1. Doorbells

Event (send or receive) notification to the NIC by ap-
plication processes is done in VIA by a mechanism called
doorbells. Each VIA channel has two sets of doorbells, one
each for send and receive. When an application wants to
send or receive a message, it creates a header for it (called a
descriptor), makes this accessible to the NIC, and then rings
a doorbell for that channel. The newer interface (LANai
7) provides a hardware queuing mechanism whereby (door-
bell) writes to different channels can be merged (by hard-
ware) into a single queue in FCFS order, which can then
be polled by the LANai [13] to save the polling cost. But
this can lead to additional overheads if the implementation
needs to service messages in a different order (based on QoS
requirements).

2.2. HDMA Operation

Once a doorbell (send or receive) is detected, the LANai
first needs to get hold of the descriptor before it can get
to the corresponding data buffer. Since the NIC SRAM is
a precious resource, some of the VIA implementations [4]
keep the descriptors on the host memory, and this needs to
be DMA-ed (using HDMA) down to the card SRAM. The
LANai then examines the descriptor before it DMAs (again
using HDMA) down (for a send, with the reverse direction
used for a receive) the data.

The newer interface (LANai 7) offers a hardware queu-
ing mechanism for DMA operations as well, wherein the
LANai can simply insert a DMA request in a queue, and can
in its own time come back and check the status for comple-
tion.

2.3. NSDMA and NRDMA operation

These DMAs on the Myrinet NIC do not provide hard-
ware queuing features. If the LANai has request for the
NSDMA when it is busy, then it has to maintain its own
queue (in software), and come back periodically to check
for availability.

3. Firmware Design

The key determinant to the performance and efficacy of
a ULN mechanism is the firmware running on the LANai
(called the LANai Control Program or LCP), which ties
all these actions together and coordinates the different con-
current activities in a seamless manner to maximize the
throughput and responsiveness. For guaranteed service, the
scheduling and coordination of NIC activities becomes even



more critical. At the same time, the LCP has to be fairly ef-
ficient since the LANai is relatively slow compared to the
host CPU.

As described in the previous section, the LCP needs to
perform the following operations:

� Poll doorbell queue(s) for a send/receive notification.

� Transfer the descriptor associated with the doorbell
from the host memory onto the SRAM using HDMA.

� Transfer the data associated with a send descriptor
from host memory to SRAM using HDMA.

� Transfer the packet onto the network using NSDMA.

� Pick up packet from network using NRDMA.

� Transfer data from SRAM to the host memory using
HDMA.

� Transfer completion information (of send/receive) to
host memory using HDMA.

The speed at which these operations are performed, and
any overlap/pipelining of operations to maximize concur-
rency are important for not just the latency/bandwidth of a
single channel, but also the scalability (and perhaps meeting
the guaranteed performance) of the ULN as a whole. The
LANai itself is the only entity that can initiate these oper-
ations and three such ways of structuring it are discussed
below.

3.1. Sequential VIA (SVIA)

A simple way of structuring the LCP is to sequentialize
the entire sequence of operations itemized above. The re-
sulting sequence of operations from the time the application
posts a send, till the completion information is propagated
back to the host is shown pictorially in Figure 2. A simi-
lar sequence can be performed for the receive consequently.
We refer to such an implementation as SVIA.

The advantage with this approach is that it is optimized
to bring down the latency of a single message on a channel
from the time its doorbell is detected to the time it is sent
out on the network. There is very little time lost between
the completion of one operation of the message to the ini-
tiation of the next. As a result, several current VIA imple-
mentations [4] use this approach. At best, there is a slight
overlap in [4] where the NRDMA is polled for incoming
messages when the LANai is waiting for a HDMA transfer
to be complete. The drawback with SVIA is that it is not
optimized to handle (a) multiple messages (or potentially a
longer message) on a channel, or (b) messages on multiple
(send or receive) channels. One way of optimizing the for-
mer (multiple messages or a longer message on a channel) is
to overlap the functioning of the HDMA and NSDMA oper-
ations (for a send), so that both can go on concurrently. This
is the approach that has been successfully used in Trapeze
[18] to maximize the bandwidth of a single channel.

3.2. Parallel VIA (PVIA)

One could view the LCP as a finite state machine mov-
ing from one state to another based on NIC events (doorbell
posting, DMA completion etc). Such a view without any
overheads for event detection and state transitioning, would
represent an ideal implementation that maximizes the con-
currency (keeps hardware resources as busy as possible at
all times) of activities on the NIC. Our PVIA (since it tries
to increase the concurrency of activities on the card) tries to
achieve this view. Implementation of such a view requires
event notification and state maintenance mechanisms.

Event Notification: While one could have chosen an in-
terrupt based mechanism to notify the LANai of event oc-
currences (such as DMA completion), we have instead
opted for a polling mechanism to detect these events in
PVIA due to a couple of reasons. First, not all events can
interrupt the LANai (e.g. doorbell posting), and a polling
based mechanism is necessary for these in any case. Sec-
ond, the overhead of an interrupt mechanism are high, es-
pecially with a relatively slow processor such as the LANai.
The downside of a polling mechanism is that there could be
a gap between the event occurrence and when the LANai
responds to it (depending on how busy the LANai is).

State Maintenance: The LCP needs to keep track of the
state of each NIC device (if it is busy or not, and what re-
quest is currently being serviced). In addition, to avoid busy
waiting for a device, it needs to queue up any additional re-
quests. The NIC state is thus a tuple containing the request
being serviced by each hardware device (HDMA, NSDMA,
and NRDMA), and a queue of waiting requests for each of
these devices.

The LCP for PVIA thus sequentially goes through
each hardware device (doorbell queue, HDMA, NSDMA,
NRDMA), checking each for an event to be processed
(doorbell posted, HDMA descriptor/data transfer complete,
NSDMA transfer complete, incoming message has arrived),
and if so it processes this event - either activates the next
hardware activity in the pipeline to process this event, or
simply inserts it into a hardware (HDMA) or software (NS-
DMA) queue - and proceeds to the next hardware device in
the sequence (does not have to wait for that device to com-
plete).

3.3. QoS-aware VIA (QoSVIA)

With the LANai having to cater to several channels, it
becomes extremely important as to how the channel activ-
ities need to be serviced (queued) to meet the performance
criteria. While FCFS may not be a bad choice for a system
with just Best-Effort traffic (that is used in PVIA), that may
not be the case for a system with mixed traffic types. In
QoSVIA, we take the above-mentioned PVIA implemen-
tation and augment it with some scheduling algorithms to
determine channel priorities. VirtualClock [20] is one well-
known rate-based scheduling algorithm that can be used
here to regulate the allocation of resources to different chan-
nels based on bandwidth requirements. The idea of this al-
gorithm is to emulate a Time Division Multiplexing (TDM)
system, and its adaptation to QoSVIA is outlined below.
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Figure 2. Sequence of Actions in Sending a Message

When a VI channel is opened (this is a driver call), the
application also specifies the desirable bandwidth if it needs
to use it for CBR/VBR traffic (in the VipCreateVI call). The
driver then needs to communicate with both its NIC as well
as the destination NIC to find out whether they can han-
dle the load (without degrading service of other channels).
If they cannot, then an error is returned to the application,
which can then try to renegotiate. In our current implemen-
tation, we have not yet implemented this admission control
mechanism (incorporating this is part of our future work),
and assume that the NICs are able to handle the load.

The driver translates this bandwidth information into a
period, called Vtick, which essentially specifies the ideal
inter-arrival/service time between successive packets for a
pre-determined packet size. A smaller Vtick specifies a
higher bandwidth requirement. For Best-Effort channels,
Vtick is set to infinity. The Vtick for the channel is then
conveyed to the LCP, which keeps this information together
with the other channel specific data. In addition, the LCP
maintains another variable, auxVC for each channel, and
calculates this value when it notices a doorbell for that chan-
nel (i) as follows:

auxVCi � max�current time� auxVCi�

auxVCi � auxVCi � Vticki

timestamp the doorbell with auxVCi

The VirtualClock algorithm specifies that packets be served
in increasing timestamp order to allocate bandwidth for re-
sources proportional to their specified requirements.

Once the time stamp is determined, the next issue is
to figure out how to allocate the resources based on these
timestamps. The resources that are specifically of concern
are the HDMA and the NSDMA. NRDMA brings in mes-
sages in FIFO order and the LCP has no control over this or-
dering - it can only pull out these messages and perhaps put
them in timestamp order in the HDMA queue to be eventu-
ally transferred to host memory.

When the doorbell on a channel is posted, it is times-
tamped using the VirtualClock algorithm, and the corre-
sponding descriptor is inserted in the hardware HDMA
queue in timestamp order. Similarly, the software NSDMA
queue is maintained in time stamp order. While one could
hypothesize that maintaining the NSDMA queue in FCFS
order would suffice since a time-stamp based ordering has
already been imposed in the previous stage of the pipeline,

it could so happen that a doorbell for a message with a more
critical deadline (higher priority) arrives later than a mes-
sage currently being serviced (or already serviced) by the
HDMA. Keeping the NSDMA queue also in timestamp or-
der helps us address some of those problems (though not
completely).

We would like to point out that HDMA (hardware) queue
maintenance in timestamp order introduces an additional
complication. With two entities (LANai and HDMA) ma-
nipulating the queue, there is the fear of race conditions.
This is not really a problem if insertions are always done
at the tail, as is the case in normal SVIA/PVIA, since the
HDMA will not miss seeing any request. However, inser-
tion in timestamp order (possibly in the middle of the queue)
can create problems, and we do not have the luxury of cre-
ating critical sections. In our implementation, we address
this problem by tolerating slight inaccuracies (inserting in
a slightly different position) in cases where the position for
insertion is very close to the head (where the HDMA is op-
erating) of the queue. Some of these inaccuracies may get
remedied in the next pipeline stage - the software NSDMA
queue that is also maintained in time-stamp order.

The basic difference between PVIA and QoSVIA is only
in the time-stamping of events using the VirtualClock al-
gorithm and the possible insertions into the middle of the
HDMA/NSDMA queues (PVIA inserts only at the tail).
There is a cost that is paid in performing these operations
and our experimental evaluations will compare the benefit
gains with the incurred costs.

Finally, it is well understood [19] that a rate-based ser-
vice discipline, such as VirtualClock, can potentially starve
best-effort channels (as long as there is demand from a
CBR/VBR channel). There are alternate scheduling mech-
anisms, such as hierarchical schedulers [8], that one could
use to avoid some of these problems.

4. Performance Results

PVIA and QoSVIA have been implemented and eval-
uated on both an experimental platform as well as using
simulations, and compared with SVIA. For SVIA, we use
a publicly distributed version [4] which is representative
of several other implementations optimized for low latency
on a channel. The evaluation platform consists of a Pen-
tium/Linux cluster connected by a Myrinet switch. Each
node of the cluster has dual 400 MHz Pentium Pros with



256MB memory and a 66 MHz 64 bit PCI bus.
The metrics of concern are the (a) jitter fraction (denoted

as �) for the QoS (CBR or VBR) channels, and (b) 1-way
latency for messages on BE channels. Jitter fraction is de-
fined as follows. Let us say a QoS channel has negotiated
a certain bandwidth (e.g. an inter-arrival time for a speci-
fied message size) with the underlying system. When mes-
sages are pumped into this channel (we are assuming that
the workload generator can pump in at the negotiated rate in
the very least if not larger, based on our assumption that the
native OS scheduler is QoS aware as stated in Section 1), the
application expects the messages to be separated by at most
the negotiated inter-arrival time at the receiver end. Else, it
incurs a jitter for that message, with a jitter duration equal
to the difference between the inter-receipt time of the mes-
sages and the negotiated inter-arrival time. Jitter fraction is
a normalized version of this metric, where the mean jitter
duration (over all the messages) is divided by the negotiated
inter-arrival time. While we have obtained the mean jitter
duration and the number of messages incurring jitters in the
experiment, the results shown below are specifically for �
which we feel is more useful from the application’s view-
point (for example, a 1 ms jitter duration on a 1 MByte/sec
channel is not as significant as a 1 ms jitter duration on a
10 MByte/sec channel, and � captures this difference). The
number (or fraction) of packets incurring jitters is also an
issue we consider in some cases.

4.1. Results from Experimental Platform

Raw Performance of VIA Implementations Before we
examine the QoS capabilities of the three VIA implemen-
tations, we first examine the raw performance (that others
have typically optimized for), to see how much overhead is
added by PVIA and QoSVIA on BE channels (without any
QoS traffic). We investigate this issue by first giving the
breakup of the 1-way latency (generated by using a simple
ping-pong experiment on 1 channel between two machines)
for SVIA, PVIA and QoSVIA.

Table 1 gives the time when the different send/receive
operations. Finally, the 1-way latencies (halving the round-
trip time) are also given. It should be noted that one may ex-
pect the 1-way latency to reflect the sum of the Status Done
on the Send and Receive sides. While this is roughly the
case, it should be noted that measurement of these NIC ac-
tivities are not really measured using round-trip messages,
and use a different clock on the NIC (while the round-trip
latency is measured at the host by the application). Experi-
mental variations from one run to the next also account for
such discrepancies. Still the breakup, gives a good indica-
tion of the overhead of different operations.

It is quite apparent that the restructuring of the firmware
in PVIA and QoSVIA add to the overheads of these oper-
ations (state and queue maintenance) compared to SVIA,
which is to be expected. However, these overheads are
relatively independent of message size (and only depen-
dent on the efficiency of the LCP). As a result, the dif-
ferences between these implementations become less im-
portant as we move to larger message sizes, even with a
ping-pong experiment which does not allow any scope for
parallelism/pipelining in the NIC operations. Further, the
overheads for QoSVIA compared to PVIA, due to time-
stamping and priority queue orderings, are not very signif-

icant (the priority queue is not really stressed in this case
since the ping-pong experiment keeps at most one message
in the queue at any time).

Msg. Size SVIA PVIA QoSVIA
4 8 26 32

1K 14 28 34
4K 48 36 46
16K 152 86

Table 2. Average 1-way Message Latency in
microsecs using Ping-Bulk experiment

To study a more realistic situation where there is scope
for parallelism, we run a ping-bulk experiment between two
machines (sender pumps in several messages and waits for
several messages, with the receiver doing the reverse) us-
ing two uni-directional (one for send and another for re-
ceive) channels between two machines. It should be noted
that the window size (number of messages to send before
switching directions) can have an effect on the LCP perfor-
mance. Small window sizes would limit the scope of paral-
lelism, and large window sizes may create problems since
VIA does not mandate flow control. By varying the window
size, we have found the point that provides the lowest aver-
age 1-way latency per message in each experiment, and the
corresponding results are shown in Table 2 as a function of
the message size for the three LCP designs.

The results in this table confirm our arguments about
the necessity for a parallel/pipelined firmware with larger
loads on a channel. The overheads of the optimizations are
overshadowed by the performance enhancements at higher
loads. For instance, both PVIA and QoSVIA outperform
SVIA after message sizes of 4K. With small messages (1K
or less), the overheads of the optimized LCP are not able
to overlap with the diminished operation costs. With larger
messages, the benefits of the overlap materialize. Though
not explicitly shown here, we can expect similar benefits
from PVIA/QoSVIA with multiple channels (even if the
load on a channel does not increase), since there is literally
no change in the behavior of the firmware with increase in
BE channels (the doorbells on different channels are merged
by the hardware into a single queue).

Performance with CBR Channels (QoS) In the next ex-
periment, we evaluate the three LCPs using CBR traffic.
The experiment is composed as follows. We employ one
sender machine that uses three classes of QoS channels (re-
quiring 1 MByte/sec, 2 MBytes/sec and 3 MBytes/sec re-
spectively) to send out messages to three receiver machines
(each receiver receives one class of channels). The load is
increased by increasing the number of channels in each class
as 1,2,3,4 and 5 channels, giving overall injected loads of 6,
12, 18, 24 and 30 MBytes/sec respectively. Carefully de-
signed workload generators were used to inject messages
in the different channels at the specified rates, and the time
difference between successive receipt of messages at the re-
ceiver is used to measure jitter duration and �. The resulting
jitter fraction (�) with the three LCPs is shown in Figure
3. We can observe that SVIA has slightly higher � (around
10% in many cases) than the other two schemes. Between
PVIA and QoSVIA, there is very marginal differences (the



NIC Operation SVIA PVIA QoSVIA
4 1K 4K 16K 4 1K 4K 16K 4 1K 4K 16K

Send
HDMA Prog. (Desc.) 3 3 3 3 7 7 7 7 9 9 9 9
Desc. Down 6 6 6 6 11 10 11 10 13 13 13 13
HDMA Prog. (Data) 9 9 9 11 19 19 23 34 24 24 30 49
Data Down 11 18 43 141 23 28 52 148 27 33 57 152
NSDMA Done 12 25 69 244 28 39 82 254 32 43 86 261
HDMA Prog. (Status) 13 27 71 245 33 45 87 260 37 49 91 266
Status Done 14 28 72 247 38 49 92 264 41 53 95 270

Receive
HDMA Prog. (Desc.) 3 3 3 3 0 0 0 0 0 0 0 0
Desc Down 5 5 5 5 0 0 0 0 0 0 0 0
HDMA Prog. (Data) 8 8 9 11 10 10 14 24 12 12 17 35
Data Up 10 17 42 138 14 19 42 138 15 21 44 139
HDMA Prog. (Status) 11 18 43 140 19 24 47 143 20 25 48 143
Status Done 12 20 44 141 23 28 51 146 24 29 52 147

1-way Latency 30 53 121 385 69 90 153 423 73 90 157 426

Table 1. Break-up of time expended in different operations during message transfer for different
message sizes. Times are in microsecs, and indicate the time when that operation is completed
since the send doorbell is rung for the send side, and receive doorbell is rung for the receive side.
Receive descriptors are pre-posted.

latter is a little better though the difference is hardly no-
ticeable in the graph). The differences between PVIA and
QoSVIA are a little more noticeable when one observes the
percentage of packets (messages) that incur jitters in Figure
4 for the same experiment (results are shown for each of the
classes). QoSVIA has fewer packets incurring jitters, espe-
cially at higher loads suggesting that it is more conducive to
meeting the QoS requirements of channels.

We would like to point out that this experiment has not
really been able to stress the system enough to bring out
differences more prominently. As was mentioned, the VIA
implementations (all three, including the one in the public
domain [4] that is used here), do not have flow control capa-
bilities. Consequently, we are not able to pump in messages
at a faster rate (as this experiment suggests, the differences
are likely to be felt at higher loads, or else just the raw band-
width availability is enough to meet the QoS demands by
any implementation). This is also the reason why the ab-
solute values of � in Figure 3 are very low. Even at these
relatively small loads, some differences between the LCP
implementations can be felt. Higher level messaging layers
built on top of these LCPs may, on the other hand, be able to
subject the system to higher loads to experience the differ-
ences. The differences between the schemes at higher loads
are evaluated next using a simulator.

4.2. Simulation Results

With the experimental set up discussed above, we are
somewhat limited by how much we can stress the system,
and by the accuracy of the workload generator in send-
ing/receiving packets at the exact times (due to the vagaries
of the system). This is where simulation comes in useful,
and we have developed a detailed simulator modeling the
different hardware components and the three firmware de-
signs, using the breakup of time spent in the different stages
from the measurement on the platform given earlier. The
simulation results not only augment the experimental ob-
servations, but also serve to explore alternate hardware de-
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signs/enhancements (such as hardware queuing for the NS-
DMA) which is not possible on the current experimental
platform. It should be noted that the simulator uses infinite
sized buffers/queues, and thus gives an indication of what is
possible with each scheme, since our goal is to see how the
schemes compare at high loads.

Results for Higher Loads The first set of simulation re-
sults shown in Figure 5 (a) shows the observed � for three
classes of QoS CBR channels (2, 8 and 32 MBytes/sec) on a
1-sender 4-receiver system as a function of the injected load
for the three firmware designs. The injected load is varied
by increasing the number of QoS channels, with the band-
width on any channel remaining the same. In addition to
QoS channels, there is also one BE channel that injects mes-
sages with a mean rate of 33 MBytes/sec. All QoS channels
obey the negotiated bandwidth allocation, and inject mes-
sages (all of size 4 KB) as per this rate. All the graphs are
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Figure 4. the percentage of packets experi-
encing jitters for PVIA and QoSVIA.

plotted as a function of total injected load and not as a func-
tion of load on that channel class.
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Figure 5. Simulation results for a 1-sender 4-
receivers configuration with 3 QoS classes
(2, 8 and 32 MBytes/s) and 1 BE channel (33
MBytes/s).

The first point to note is that the simulation results con-
firm the earlier experimental observation that at lower loads
(less than 60 MBytes/sec), there is little difference between
the schemes (the scale of the � graph in the experimental
results is much more amplified that what is shown here).
However, at higher loads (after 62 MBytes/sec), we find that
SVIA is not able to meet the demands of the QoS channels.
On the other hand, PVIA is able to handle their demands
until the load exceeds 100 MBytes/sec, and QoSVIA can go
even as high as 130 MByte/sec injected load before result-
ing in any meaningful jitter. These results confirm the im-
portance of a pipelined firmware such as PVIA for higher
bandwidth, together with a QoS conscious service disci-

pline. QoSVIA is able to reduce the jitter on each of the
traffic classes compared to SVIA or PVIA.

Figure 5 (b) shows the latency of messages on the BE
channel as a function of the total system load for the same
experiment. It should be noted that the load in the BE
channel itself remains the same (only the number of QoS
channels is increased). This is one way of examining how
the load on one class affects the performance of the other.
We find that SVIA performance is much worse than the
other two, saturating when the load exceeds 60 MBytes/sec.
Between PVIA and QoSVIA, we find the former giving
slightly lower latency than the latter. This is because PVIA
does not differentiate between the traffic classes. On the
other hand, QoSVIA gives higher priority to QoS channels,
and thereby penalizing BE performance a little. Still, the
differences between QoSVIA and PVIA for BE traffic are
not that significant, and the benefits of QoSVIA for QoS
classes can offset this slight deficiency.

VBR QoS Channels In addition to the experiments using
CBR channels, we have also considered VBR traffic in our
experiments. Specifically, we have used the MPEG-1 trace
files from [16] to generate the workload. This experiment
uses 1 sender and 4 receivers, with three classes of QoS
channels (0.95, 1.9 and 3.8 MBytes/sec) and one BE chan-
nel (16.7 MBytes/s). Within each channel, we inject 20,
40 and 80 MPEG-1 streams (adhering to the specified data
rates), and the jitter fraction for QoS channels and latency
for BE channel are shown in Figure 6. As with CBR traf-
fic, we find that PVIA and QoSVIA, are much better than
SVIA, with QoSVIA able to sustain the highest load.
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Figure 6. Simulation results with MPEG-1
traces for the 1 sender 4 receivers configu-
ration with 3 QoS classes (0.95, 1.9 and 3.8
MBytes/s) and 1 BE channel (16.7 MBytes/s)



5. Concluding Remarks and Future Work

The primary contribution of this paper is in the design
and implementation of firmware for the Myrinet NIC to pro-
vide both high bandwidth and QoS-aware communication.
Most prior research in this area has looked at optimizing the
latency and/or bandwidth of messages on a single commu-
nication channel. On the other hand, with the anticipated
cluster usage, it is also important to explore the scalabil-
ity question (how does performance scale as the number
of channels is increased?). We have proposed and imple-
mented an alternative structure for the firmware on the NIC
(PVIA) that uses an event-driven mechanism to improve the
degree of parallelism of activities on the NIC. PVIA has
been shown to give better performance from the scalability
viewpoint compared to a typical implementation optimized
for a single channel (taken from the public domain [4]) ex-
perimentally.

This study has also extended PVIA (called QoSVIA)
with a well-known rate-based service discipline [20] to han-
dle several bandwidth sensitive channels. Incoming packets
are time-stamped using this algorithm, and the requests are
inserted into the queues maintained by PVIA for state main-
tenance in priority order. Both PVIA and QoSVIA have
been implemented on an experimental platform, and evalu-
ated using channels requiring periodic deadlines to be met.

It should be noted that one could very well use other
scheduling strategies, including hierarchical scheduling
mechanisms, within QoSVIA for time-stamping packets.
Such techniques can limit the detriments to BE perfor-
mance. Another important issue is on admission control
mechanisms during channel setup which involves negotia-
tion not only with the local NIC, but also across the net-
work. In addition to this, we are also trying to implement
higher level messaging layers (incorporating flow control)
on top of our platform. This will be integrated with our
other cluster efforts on host CPU scheduling and network
improvements for QoS-aware features. Finally, we are try-
ing to develop and port applications that can benefit from
QoS features on a cluster for a complete system evaluation.
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