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Steady State Distribution for
Stochastic Knapsack with Bursty Arrivals

Venkatesh Sarangan, Donna Ghosh, Natarajan Gautam, and Raj Acharya

Abstract— In this letter, we develop a methodology for ob-
taining an approximate steady state occupancy distribution for
a multi class stochastic knapsack with bursty call arrivals, and
exponential holding times. Preliminary results indicate that the
proposed technique is effective in studying the knapsack behavior.

Index Terms— Performance analysis.

I. INTRODUCTION

THE STOCHASTIC knapsack with Poisson call arrivals
is a well known model for analyzing telecommunication

systems [5]. With the evolution of the Internet and the World
Wide Web, researchers have shown that the actual call arrival
processes in the network are bursty in nature with long range
dependence. Hence more generic knapsack solutions for non-
Poisson call arrivals should be developed in order to study
the current networks. To the best of our knowledge, solving
for the Knapsack distribution for any non-Poisson arrival has
remained an open problem since 1981.

Stochastic processes that are bursty have long range de-
pendence, and are characterized by slowly decaying auto-
correlation function. We can also characterize such processes
through heavy tailed distributions, although the class of
processes so defined is more inclusive than the preceding
characterization [7]. Especially in the context of network
traffic, it is possible to generate an arrival process that is
asymptotically bursty, either at the packet or connection level,
by drawing the inter-arrival times that are independent and
identical from a heavy tailed distribution [7], [2]. Following
this, we characterize a bursty arrival process in this work as the
one whose inter-arrival times are independent and identically
distributed (i.i.d.) as per a heavy-tailed distribution.

II. STOCHASTIC KNAPSACK WITH BURSTY ARRIVALS

The stochastic knapsack consists of C resource units (e.g.,
bandwidth) to which objects of K mutually independent
classes arrive. Arrivals of class k, k = 1, · · ·K, are governed
by a bursty stochastic process with mean rate Λk. If an arriving
class − k object is admitted into the knapsack, it holds bk

resource units for an holding time drawn from an exponential
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distribution with mean 1/µk. We assume that the knapsack
follows the complete sharing policy for admitting the class
arrivals [5]. Let Xk(t) be the stochastic process denoting
the number of class − k objects in the knapsack at time
t. Let �X (t) = {X1(t), · · · XK(t)} be the stochastic process
representing the state of the knapsack at time t. The objective
of this letter is to find the steady state distribution of the
process �X (t).

A. Outline of the proposed solution

We first consider a knapsack with infinite capacity. Let
{Yk(t)}, ∀k be the stochastic process governing the number
of class− k objects in the infinite capacity knapsack, defined
over the state space S ′ = {�n ∈ IK : �b.�n ≤ ∞}; where
�b = (b1, b2, · · · bK) with bk denoting the bandwidth requested
by an arrival from class k, and �n = (n1, n2, · · ·nK) with
nk representing the number of class k objects present in
the knapsack. As the knapsack capacity is infinite, the K
processes {Y1(t)}, · · · {YK(t)} are all mutually independent.
For each {Yk(t)}, we construct an equivalent process {Y ′

k(t)}
which is Markovian and reversible, and defined over S ′.
Let {�Y (t)} and {�Y ′(t)} be two joint processes defined as
�Y (t) = (Y1(t), · · ·YK(t)), and �Y ′(t) = (Y ′

1(t), · · ·Y ′
K(t))

respectively. Since {Yk(t)} and {Y ′
k(t)} are equivalent for

all k, {�Y (t)} and {�Y ′(t)} are also equivalent. The original
finite capacity knapsack process { �X (t)} is nothing but {�Y (t)}
defined over the finite state space S = {�n ∈ IK : �b.�n ≤ C}.
Since {�Y (t)} and {�Y ′(t)} are equivalent, we approximate the
long run behavior of { �X (t)} with that of {�Y ′(t)} over the
finite state space S.

The processes {Y ′
k(t)}, ∀k are all G/M/∞ queuing pro-

cesses whose steady state distribution can be obtained using
the procedure outlined in [8]. As the processes {Y ′

k(t)}, ∀k
are all mutually independent, the steady state distribution of
the joint process {�Y ′(t)} is the product of the individual
G/M/∞ steady state solutions. The joint process {�Y ′(t)} is
also Markovian and reversible, since the constituent processes
{Y ′

k(t)},∀k are reversible, Markovian, and mutually indepen-
dent. By using Kelly’s theorem on solving for a truncated,
reversible, Markovian process [4], we obtain the steady state
distribution of {�Y ′(t)} over S from its distribution over S ′,
and hence the finite capacity knapsack solution.

B. Equivalent per class reversible queuing process

For each of the K queuing processes {Yk(t)}, k = 1, · · ·K,
we construct a process {Y ′

k(t)}, which is equivalent to {Yk(t)}
in the following sense:

1) Let ζk(t) and ζ ′k(t) be the arrival processes correspond-
ing to {Yk(t)} and {Y ′

k(t)} respectively. Let Ak(t)
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and A′
k(t) be the respective inter-arrival distributions of

ζk(t) and ζ ′k(t). Ak(t) and A′
k(t) are such that they have

the same mean and variance.
2) The service time distributions of {Yk(t)} and {Y ′

k(t)}
are exactly the same.

In the arrival process ζ ′k(t), calls are drawn from an infinite
population into an arrival holding station, where they are held
for some random time. They are then sent to an infinite server
system. The arrival holding station for class k is shown in
Fig. 1(a). It is a series-parallel combination of two mutually
independent holding boxes, named stage 1 and stage 2. At
any point in time, only one arrival is held in the station. The
parameters of class k’s holding station are:

• σk: Probability of an arrival being drawn into stage 1.
• 1/λ

(k)
i : Mean holding time in stage i ( i = 1, 2) of the

station; exponentially distributed.
• αk (βk): Probability that an arrival which is being held

in the station, toggles from stage 1 to 2 (1 to 2), when a
customer departs from the G/M/∞ system.

The above parameters of class-k arrival holding station are
chosen such that: (a) the mean and variance of A′

k(t) are
matched with those of Ak(t), and (b) the class-k G/M/∞
queuing process ({Y ′

k(t)}) is reversible.

C. Mean and Variance of A′
k(t)

Let T k
r be the time between the constructed class − k

arrivals rk and rk + 1, where rk = 1, 2, · · · . Let Ψk(s) =
E[e−sT k

r ]. The expression for Ψk(s) can then be written as:

Ψk(s) =
∞∑

nk=1

qnk−1

[
σkFXnk,1(s) + (1 − σk)FXnk,2(s)

]

(1)
where qnk

is the arrival time probability of seeing ’nk’
class− k customers of the actual arrival process ζk(t) in the
infinite server system, and can be obtained using the approach
described in [8]. FXnk,i

(s) is given by E[e−sXnk,i ], i = 1, 2,
where Xnk,i is the random variable denoting the time spent in
the arrival holding station by a class−k call drawn in to stage
i = 1, 2. The details of calculating FXnk,i

(s) can be found in
[6]. Once FXnk,i

(s) is known, the mean ηk and variance Ωk

of the inter-arrival times can be obtained from equation 1 as:
ηk = Ψ′

k(0) and Ωk = Ψ′′
k(0) − η2

k.

D. Reversibility of {Y ′
k(t)}

Theorem 1: If the parameters of the arrival holding station
are such that

αk + βk = 1, and, λ
(k)
1 σkαk = λ

(k)
2 (1 − σk)βk (2)

then, the Markov process {Y ′
k(t)} is reversible.

The proof of this theorem can be found in [6].

E. Steady State Occupancy Distribution of {�Y ′(t)} over S
Once {Y ′

k(t)} is constructed, we can obtain its steady state
distribution over S ′ using the technique suggested in [8]. From
the solution of K such processes, {Y ′

k(t)}, k = 1, · · ·K,
the distribution of the joint process {�Y ′(t)} over S ′ can be
obtained. Then as outlined in section II-A, we can obtain
the steady state solution for {�Y ′(t)} over S. We note that,

although the per-class queuing process shown in Fig. 1(b) is
reversible when equation 2 is satisfied, there will be additional
transitions between the boundary states of the knapsack with
a finite capacity C, which may make the process {�Y ′(t)}
irreversible. We neglect the effect of these transitions in our
approach, and hence obtain only an approximate steady state
occupancy distribution of {�Y ′(t)}.

We are currently working on obtaining bounds to quantify
the ’closeness’ of the process {�Y ′(t)} to the original knapsack
process { �X (t)}. In order to obtain a bound, one has to acquire
some handle on the process { �X (t)}. It is precisely because of
this lack of an elegant handle on { �X (t)}, we resort to an
approximation in the first place. This dependency makes the
goal of obtaining a bound challenging.

III. SIMULATION SET-UP AND RESULTS

A. Methods Compared and Performance measures used

We compare the following approaches of analyzing a knap-
sack with bursty call arrivals with the actual knapsack behavior
obtained through simulations.

1) Poisson Approach: Given a bursty arrival process,
we create an equivalent Poisson process with the same
mean. Then we use the approach outlined in [3] to obtain
the steady state occupancy distribution.

2) Heuristic Approach: In this method, given a bursty ar-
rival process, we assume that the corresponding original
queuing process is reversible. Then we use the approach
outlined in [3] to obtain the solution. We study this
approach to clearly understand the cost and benefits
of approximating the original queuing process by an
equivalent, reversible process.

3) Proposed Approach: Approach outlined in section II.

It is to be noted that the Poisson approach is a first order
approximation, whereas the proposed approach is a second
order approximation.

We use the following as the performance measures: (a) the
L1 norm between the actual knapsack distribution and the
distribution obtained through the above approaches, and (b)
the percentage errors in average number of calls (AvgCall)
and average knapsack utilization (AvgUtil). We simulated the
actual multi-class stochastic knapsack system, in OPNET [1],
a network simulation tool. For each class, we generate the
bursty call arrival process by drawing the call inter-arrival
times from an heavy tailed Weibull distribution. The results
reported here are from a knapsack with capacity C = 20 units,
and three classes with b1 = 1, b2 = 2, and b3 = 4.

B. Results

We studied the behavior of the three schemes under varying
loads and burstiness. Due to lack of space, we present only the
results we obtained under call arrivals with high burstiness,
and heavy knapsack loads. The performance of the three
schemes under bursty arrivals (when the call inter-arrival times
are heavy tailed) and heavy loads are shown in Figs. 2, and 3
respectively. The plots in these graphs are made with respect to
varying heavy tailedness and varying loads of class 3 arrivals.
We find that the gains achieved by our proposed scheme
is significant, either when the traffic is bursty or when the
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(b) State transitions of the constructed process.

Fig. 1. Equivalent class k queuing process with infinite servers.
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Fig. 2. Performance of the three schemes under high burstiness. Plotted against the slope parameter of class 3’s inter-arrival distribution.
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Fig. 3. Performance of the three schemes under heavy loads. Plotted against the load offered by class 3 arrivals.

knapsack is heavily loaded. Under other scenarios, the Poisson
approximation gives an adequate performance.

Experimentally, we were not able to discover any
monotonocity in any of the performance measures with respect
to burstiness or system load. Since the heuristic approach does
not perform as well as the proposed approach, we conclude
that the improvement obtained by the proposed approach (in
comparison to the Poisson approximation method), is not
merely due to matching an extra moment while constructing
the equivalent arrival process. We have also observed that
between the Poisson and the heuristic approaches, there is
no consistency in behavior.

IV. CONCLUSIONS

In this paper, we have proposed a method that analytically
solves for the approximate steady state occupancy distribution
of a stochastic knapsack with bursty call arrival processes,
and exponential call holding times. Based on our studies, we
conclude that whenever the arrivals are bursty or when the
knapsack is heavily loaded, the proposed method gives signif-
icantly more accurate results than the Poisson approximation.

We are currently investigating methods to obtain bounds on the
performance of the proposed scheme for various inter-arrival
distributions. We are also working on extending the proposed
approach to analyze knapsacks with call holding times other
than exponential.
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