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Abstract

In this paper, web proxy servers and mirror sites that cache either partial or complete information of their parent

web servers are considered. These proxy servers are usually located strategically, for example near high-user-demand

locations. Using proxy servers would significantly reduce latency for the users in retrieving information as well as al-

leviate congestion in the network. The main problem addressed in this paper is determining the optimal number and

locations of proxy servers in a network to minimize costs subject to delay, throughput and demand constraints. For a

given set of proxy server locations, it is assumed that client or user requests at a location will always be sent to the

nearest server. Thereby each client–server system can be modeled as an independent queueing network for which

performance measures such as delay distribution and throughput are obtained. These performance measures are used in

an optimization problem that is formulated to determine the optimal number and optimal location of proxy servers. A

heuristic called the DEJAVU algorithm is developed to solve the optimization problem. Based on a comparison with a

genetic algorithm, it can be concluded that the DEJAVU algorithm produces near-optimal to optimal results in a very

short time.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The proliferation of the Internet has resulted in a rapid increase in the number of Internet users and
applications. This exponential growth (see [18]) has led to a large amount of congestion in the network. The
World Wide Web (WWW) takes a lion’s share of the Internet traffic. One way to alleviate the congestion
due to WWW traffic, and also to reduce the latency in retrieving information from centralized web servers,
is to use proxy servers or mirror sites for popular sites (see [6]). A proxy server stores some information
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contained in its parent web server using caching strategies. A mirror server (also called replicated server) is
a special type of proxy server that stores all the information of the parent web server. We shall refer to both
servers generically as web servers.

These web servers need to be at strategic locations, based on user demand forecast. For example, there
are 101 different replicated servers to access Netscape Browser, 15 servers for Yahoo in the US, 12 for
Lycos, 8 for America Online, 7 for Alta Vista, 3 for Infoseek, etc. (see [19]). The users accessing information
from a parent server can obtain that information from a nearby web server. For example, consider an
electronic commerce application. Say a user sitting in London would like to shop by accessing a parent
server in New York. If the New York web server used a web server near London then it would increase the
speed of service which could potentially result in a higher probability of the user making a purchase! In fact,
locating web servers strategically throughout the Internet can greatly improve customer service.

Li et al. [14] considered a fixed number of proxy servers (M) that need to be placed at M locations out of
a given set of N locations. Using a dynamic programming approach, Li et al. [14] obtain an optimal
OðN 3M2Þ algorithm for a tree topology of locations. In this paper, we consider not only obtaining the
optimal location of proxy servers but also the optimal number of proxy servers. The objective function of
the optimization problem is to minimize the cost of installation, operation and maintenance of proxy
servers subject to satisfying constraints on demand as well as on performance measures such as throughput
and delay. The problem is solved by first considering a single web server and modeling the client–server
system (web server and browsers) as a queueing network to obtain required performance measures. Then
the single-web-server model results are used in an optimization problem. The mathematical programming
formulation is similar to the well-studied operations research problem of facility layout and location (see
[4]).

In a recent paper, Wang et al. [24] addressed the facility layout problem with stochastic customer de-
mand and immobile servers where customers travel to the closest server location (such as an automatic
teller machine). Wang et al. [24] state that although there is related work in the facility location and al-
location area (see [1,2,8,20]), they do not address the problem of locating servers in a service system in
which the service locations are not pre-defined, servers cannot move or customers travel to the closest
available server rather than along a pre-defined path. The authors look at Poisson arrivals with single visit
to servers, the constraint is on expected waiting times, a Euclidean distance matrix is used, customers
cannot be located at the facility node, and, there are m customer nodes and n candidate facility nodes. In
this paper we consider a finite customer model with repeated visits to servers, the constraints are on delay
distribution and throughput, a non-Euclidean distance matrix is used, customers and facilities can be on the
same node, and there is an equal number of customer nodes and candidate facility nodes.

There is a vast amount of literature on queueing network models in computer and communication
networks including [3,11–13,22,23,25]. However, one typically runs into a couple of difficulties while
modeling systems as queueing networks: extremely large (multidimensional) state vectors and the inability
to arrive at closed-form solutions for easy performance evaluation. In this paper the queueing networks are
modeled as suitable continuous time Markov chains (CTMCs) such that the state vectors are relatively
small and the results obtained are in terms of closed-form algebraic expressions.

In Section 2, web servers and browsers are modeled as simple client–server systems and CTMC analysis
is used to obtain the required steady state probabilities. In Section 3, performance parameters such as
throughput per client, probability distribution of delay between a client request and a server response, and
server utilization are obtained. In Section 4 an optimization problem is formulated to determine the optimal
number and location of web servers subject to satisfying demand, delay and throughput constraints. A
heuristic called the DEJAVU algorithm is developed in Section 5. In Section 6, the DEJAVU algorithm is
illustrated using an example. Then several experiments are conducted to compare the DEJAVU algorithm
against a genetic algorithm. In Section 7 some generalizations to the client–server model developed in
Section 2 are discussed. In Section 8 the conclusions are stated and directions for future work are examined.
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2. Modeling web servers and browsers as client–server systems

The interaction between a client (more specifically, a browser) and a web server follows a request–
response procedure where the client associates itself with a web server, makes periodic requests to the web
server, and receives responses from the web server. There are several such clients or browsers associated
with a web server at a given time. Each organization or company, owns or leases many web servers across
the network. Fig. 1 illustrates an example of three web servers S1, S2 and S3 to which respectively four, five
and three clients are associated.

Consider an organization that is interested in setting up a few web servers at M potential locations across
the Internet. This paper addresses the following question:

• Given the demand forecast for the number of simultaneous clients at each of M locations, what is the
optimal number of web servers to use and where should they be installed?

There is a trade off in that installing more web servers would increase the cost whereas reducing the number
of servers would worsen the Quality of Service (QoS) experienced by the browsers or clients. Also, with
respect to the location, the cost is not necessarily uniform throughout the M locations, and the performance
measures also vary depending on the location of the web servers. Two main QoS measures considered in
this paper are: throughput and request–response delay for the clients or browsers. Therefore an optimal
design should be a combination such that the cost of installation, operation and maintenance are minimized
while requiring that each client or browser faces low request–response delay and high throughput.

For a given set of web server locations it is assumed that client requests will always be routed to the
nearest web server. Thereby we can model each client–server sub-system independently and derive per-
formance measures such as throughput, delay and server utilization. They will be used in Section 4 where
we formulate and solve an optimization problem to address the main question of this paper.

2.1. A simplified representation of a single web server

Consider a single web server that processes requests from R browsers or clients. Each client sends a
request to the web server and the web server queues up the client requests in a single queue and processes
them according to a first come first served (FCFS) discipline. Assume that this web server has only a single

Fig. 1. Three identical web servers.
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processor, therefore multitasking is not considered. Also assume that there are no losses due to buffer
overflows.

Once the web server completes processing a client’s request, it responds to the client by sending the
processed information back to the client and then it starts processing the next request (if any). The client
processes the piece of information that it received from the web server and when the processing is complete
(this includes possibly some idle time at the client end), the client makes the next request to the web server
(see Fig. 2). This is the finite population queue model [7]. Based on the current implementation of the HTTP
protocol, we assume that all clients send only one request at a time and wait for a response (and processes
the response) before sending out the next request (see [16,17]). Assume that the service times at the web
server are i.i.d. exponential random variables with mean 1=k. The service times at the clients are assumed to
be i.i.d. exponential random variables with mean 1=l. Note that network delay times, propagation delay
times, idle times before making requests (if any), etc. are also included in the client processing time.

2.2. Analysis

The system is analyzed by tagging a single client’s requests and responses. This technique will prove to be
useful while extending the model (see Section 7). Let X ðtÞ be the position of the tagged customer (corre-
sponding to the request or response of the tagged client) in the web server queue at time t. Thereby,
X ðtÞ ¼ 0 implies that the customer is at the browser or client queue, X ðtÞ ¼ 1 implies that the customer is
being served by the web server and X ðtÞ ¼ i for i > 1 implies that the customer is i� 1st in the waiting line
to be served by the web server. Let Y ðtÞ be the total number of customers (including the one in service) in
the web server queue at time t. Therefore X ðtÞ6 Y ðtÞ for all t. The stochastic process fðX ðtÞ; Y ðtÞÞ; tP 0g is
a Continuous Time Markov Chain (CTMC) with infinitesimal generator

qð0;jÞ;ð0;j�1Þ ¼ k 80 < j < R;

qði;jÞ;ði�1;j�1Þ ¼ k 80 < i6 j6R;

qð0;jÞ;ðjþ1;jþ1Þ ¼ l 806 j < R;

qð0;jÞ;ð0;jþ1Þ ¼ ðR� j� 1Þl 806 j < R� 1;

qði;jÞ;ði;jþ1Þ ¼ ðR� jÞl 80 < i6 j < R;

qði;jÞ;ðk;lÞ ¼ 0 otherwise:

ð1Þ

Fig. 2. R clients using a single server.
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Using (1),

qði;jÞ;ði;jÞ ¼ �
X

ðk;lÞ6¼ði;jÞ
qði;jÞ;ðk;lÞ ¼ �ðminðj; 1Þkþ ðR� jÞlÞ: ð2Þ

Let the long-run probability that the CTMC is in state ði; jÞ be pði;jÞ. Then solving the balance equations we
have

pð0;jÞ ¼
R
j

� �
j!kR�jlj

h i
ððR� jÞ=RÞPR

k¼0
R
k

� �
k!kR�klk

806 j < R;

pði;jÞ ¼
R
j

� �
j!kR�jlj

h i
ð1=RÞPR

k¼0
R
k

� �
k!kR�klk

80 < i6 j6R:

ð3Þ

3. Performance criteria and scalability for a single web server

In this section, the system modeled in Section 2 is considered. The system is scaled up (by adding more
clients) and the performance measures are evaluated.

3.1. Throughput per client

One of the performance criteria that a client application looks for is the number of requests it can send to
the web server per unit time. Define the throughput per client, s, as the expected number of responses the
client processes per unit time. By conditioning on whether the customer is at the client queue or the web
server queue, it can be shown that

s ¼ lPfThe customer is at the client queueg ¼ l
XR�1

j¼0

pð0;jÞ; ð4Þ

where pð0;jÞ is from Eq. (3).
Note that s is also the expected number of service completions by the web server per unit time for a given

client. Essentially if the cycle time is defined as the amount of time it takes for a customer to complete a
client service and a web server service cycle, then s is the inverse of the expected cycle time. In other words it
is the expected number of times the given customer would cross a point in the network per unit time.

Intuitively, one would expect that the throughput per client, s, to be a decreasing function of R, the
number of clients. Fig. 3 shows the scalability of the system with respect to throughput per client via the
plot of s as a function of R, with k ¼ 10 and l ¼ 1. The decreasing curve confirms with intuition.

3.2. Probability of delay

Another performance criterion of interest is the delay in receiving a response from the web server to a
request made by the client. Essentially this is the waiting time in the web server queue for a given client
request. Since the throughput per client is the inverse of the expected cycle time, the expected waiting time
in the web server queue is the expected cycle time less the expected service time at the client and can be
written as 1=s� 1=l. The expected delay does not provide any new information beyond that of the
throughput per client, and hence a better performance measure is considered.
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Let pd be the probability that there is a larger-than-d delay in receiving a response from the web server
for a client request. In other words, this is the probability that an arriving client request spends more than d
amount of time at the web server queue (including the service). To calculate pd, we use Arrivals See Time
Averages [26] or the Arrival Theorem [22] to obtain

Pfthe arriving customer to the web server queue will see j customers in the queueg ¼ pð0;jÞ

for j ¼ 0; . . . ;R� 1. Let ZðkÞ be an Erlangðk; kÞ random variable with mean k=k and variance k=k2. Let W
be the waiting time of the arriving customer at the web server queue in the long run. Let J be the number of
customers at the web server when the tagged customer arrives. Then

pd ¼ PfW > dg ¼
XR�1

j¼0

PfW > d jJ ¼ jgPfJ ¼ jg ¼
XR�1

j¼0

PfZðjþ 1Þ > dg pð0;jÞPR�1
i¼0 pð0;iÞ

¼
XR�1

j¼0

pð0;jÞPR�1
i¼0 pð0;iÞ

Xj

r¼0

e�kd ðkdÞr

r!
; ð5Þ

where pð0;jÞ’s are from Eq. (3).
Since the delay would increase with the number of clients, one can expect pd to be an increasing function

of R. See Fig. 4 for the scalability of the system with respect to the probability of delay for a given d on the
graph of pd versus R. The graph is consistent with the expectations.

Fig. 3. Throughput per client.
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3.3. Server utilization

While selecting an optimal number and optimal location of web servers, one of the criteria for cost
optimization is server utilization. For the single web server system described in Section 2, define m as the
web server utilization, which is the long-run probability that the web server is busy. Therefore

m ¼ 1� pð0;0Þ; ð6Þ

where pð0;0Þ is from Eq. (3).
From a scalability point of view, the web server utilization should increase with the number of browser

or clients. This intuition can be verified in Fig. 5.

4. Optimization problem

Consider an organization or company that would like to guarantee QoS in terms of throughput and
delay for all its users accessing the company website. In order to do so, this organization would have to set
up (based on the demand forecast) several web servers across the Internet. The optimization problem that
we consider essentially determines whether or not to install a web server at each of the potential locations.
We first explain the problem setting and then follow up with some useful notation before stating the op-
timization problem.

Fig. 4. Probability of delay.
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Problem setting:

1. There are M candidate locations where the web servers can be installed. Let the M locations be on an
A� B rectangular grid such that M ¼ AB. Based on the user demand forecast, the number of simulta-
neous browser requests from each cell in the grid can be obtained. Notice that there could be zero re-
quests from a cell.

2. Due to the routing protocols, the requests from a browser/client is routed to its nearest server. If there is
a tie for the closest server, the clients are distributed equally (rounding up if necessary) among the closest
servers. Since usually the organizations interested in installing the web servers do not own the underlying
network, other routing strategies besides the nearest server routing cannot be implemented.

3. The distance (not Euclidean) between locations ði; jÞ and ðk; lÞ is defined as

dði; j; k; lÞ ¼ ji� kj þ jj� lj þ 1: ð7Þ
This distance metric is used to identify nearest web servers.

4. There can be at most one web server in each cell. Also, if all the cells have one web server, that config-
uration is guaranteed to be feasible with respect to the demand and QoS constraints. This can be
achieved by making the cell size suitably small (thereby more cells in total).

4.1. Notation

Consider the location set M formed by 2-tuples, M ¼ fði; jÞ : i 2 1; . . . ;A; j 2 1; . . . ;Bg. Let N be the
demand forecast matrix of the number of simultaneous clients at the M locations. Therefore Nij, an element

Fig. 5. Server utilization.
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of the A� B matrix N, is the forecast for the number of simultaneous clients at location ði; jÞ 2M. Note
that the notation defined in Section 3, such as s, m and pd, will use the subscript ‘‘i; j’’ (sij, mij and pd;ðijÞ) in
this section to denote location ði; jÞ. Define the decision variable xij as a binary variable denoting the
presence or absence of a web server at location ði; jÞ as

xij ¼
1 if a web server is located at ði; jÞ;
0 otherwise:

	
The total number of web servers used will be

PA
i¼1

PB
j¼1 xij and the location of the web servers can be

obtained from the A� B matrix X ¼ ½xij�. Define matrix LðN ;X Þ ¼ ½LijðN ;X Þ� as a function of the demand
distribution N and the web server locations X such that

LijðN ;X Þ ¼ ‘ if xij ¼ 1 and ‘ ð> 0Þ clients are associated with the server at ði; jÞ;
0 if xij ¼ 0:

	
Thus, if a server is located at ði; jÞ, LijðN ;X Þ represents the total number of clients (from location ði; jÞ and
its neighborhood) associated with this server. Also define the matrix SðN ;X Þ ¼ ½SijðN ;X Þ� as a function of
the demand distribution N and the web server locations X that denotes the distances (as defined in Eq. (7))
from web servers to their respective farthest clients. Therefore

SijðN ;X Þ ¼ s if xij ¼ 1 and the distance of the farthest client from server at j is s;
0 if xij ¼ 0:

	
To illustrate the notation, consider the following example. There are six locations (M ¼ 6) on a 2� 3

grid (A ¼ 2 and B ¼ 3) with the following demand forecast matrix:

N ¼ 15 6 10
10 5 6


 �
:

Suppose a potential web server location matrix X is

X ¼ 1 1 1
1 0 0


 �
:

Then

LðN ;X Þ ¼ 15 9 16
13 0 0


 �
and SðN ;X Þ ¼ 1 2 2

2 0 0


 �
:

The above example is illustrated in Fig. 6.

Fig. 6. Illustration of N, X, LðN ;X Þ and SðN ;X Þ for the 2� 3 grid.
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4.2. Mathematical programming model

Here, the mathematical programming formulation for the optimization problem is developed. Let cij and
bij be respectively the set-up/maintenance cost per unit time and the operating cost per unit time for a web
server at location ði; jÞ. Then the average cost per unit time, Z, is given by

Z ¼
XA
i¼1

XB
j¼1

cijxij þ bijmijðN ;X Þ;

where mijðN ;X Þ is the average utilization (as a function of N and X) of the web server at location ði; jÞ. The
key idea is to decide at each location ði; jÞ 2M, whether or not to install a web server, so that the average
cost per unit time (Z) is minimized and the demand and QoS requirements (throughput and delay) are met.
The QoS constraints for each client at ði; jÞ 2M are described as follows:

• the throughput as a function of N and X, sijðN ;X Þ, must be at least as large as h (this is the minimum
throughput per client the web server would like to offer the clients),

• the probability that the client will face a delay larger than d from the server (denoted by pd;ðijÞðN ;X Þ)
must be smaller than � for each client (this is the maximum probability of a larger-than-d delay the
web server would like to offer the clients).

This can be stated as an optimization problem as

Minimize Z ¼
XA
i¼1

XB
j¼1

cijxij þ bijmijðN ;X Þ

subject to: sijðN ;X ÞP h 8ði; jÞ 2M;

pd;ðijÞðN ;X Þ6 � 8ði; jÞ 2M;

xij ¼ 0 or 1 8ði; jÞ 2M:

Note that some of the equality constraints defining mijðN ;X Þ, sijðN ;X Þ, and, pd;ðijÞðN ;X Þ in terms of X and N
have been left out of the formulation.

Next we formulate the optimization problem as a standard mathematical programming problem. It
requires some pre-processing so that while solving the mathematical program, one can quickly check if the
QoS constraints will be satisfied or not. In particular, we transform the QoS constraints so that they are in
terms of LðN ;X Þ and SðN ;X Þ.

4.2.1. Transforming the QoS constraints
See Section 2.1 for the definition of k (the service rate or processing speed of the web server) and l (the

client processing rate that includes the network delay times, propagation delay times, processing times and
idle times at the client). Now define 1=kij as the mean processing time at web server in location ði; jÞ and
1=lkl;ij as the mean processing time at client in location ðk; lÞ that is attached to a server in location ði; jÞ.
Since the client processing time includes the network delay it is important to write it as a function of the
distance from the web server. Hence define a function f ð�Þ such that

1

lkl;ij
¼ f ðdði; j; k; lÞÞ: ð8Þ

If all the clients attached to a web server at location ði; jÞ are equidistant (where distance is defined as per
Eq. (7)), then the client–server system at location ði; jÞ can be modeled as in Section 2.2 to obtain sij and
pd;ðijÞ. However as a conservative approximation, for a server at location ði; jÞ calculate sij assuming all
clients are at the farthest location and pd;ðijÞ assuming all clients are at the nearest location (which will be at
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distance 1 unless there is no demand at location ði; jÞ). This is based on the fact that s and pd are decreasing
functions of 1=l. Refer back to Figs. 3 and 4 where k ¼ 10 and l ¼ 1. If h ¼ 0:6 and � ¼ 0:2, then a
maximum of about 13 clients and a maximum of about 12 clients can be accepted using the throughput and
delay criteria respectively. Considering both criteria, a maximum of 12 clients can be accepted. In a similar
manner it is possible to pre-compute for every location ði; jÞ a vector Wij ¼ ½wijðDÞ� such that if D is the
distance of the farthest client from the web server at location ði; jÞ then wijðDÞ is the maximum number of
clients that will be allowed to be attached to the web server such that the constraints on the throughput and
delay can be satisfied. Note that there cannot be any client at a distance of Aþ B or more from any web
server. Therefore Wij is a vector of dimension Aþ B� 1. An algorithm to obtain Wij is described below. It is
called RHS since Wij forms the right-hand side term in the mathematical programming formulation in
Section 4.2.2.

Given that it is possible pre-compute and store the Wij vector for each location ði; jÞ, the following
mathematical programming problem is formulated and algorithms to solve it are suggested where we as-
sume that Wij is given for all ði; jÞ 2M.

4.2.2. Mathematical programming formulation
Using the definitions from Section 4.1 for LijðN ;X Þ (i.e. the maximum number of clients associated with

server in location ði; jÞ for a demand forecast N and a location matrix X) and SijðN ;X Þ (i.e. the distance of
the farthest client from the server in location ði; jÞ for a demand forecast N and a location matrix X), the
mathematical programming problem can be written as

Minimize
X

Z ¼
XA
i¼1

XB
j¼1

cijxij þ bijmijðN ;X Þ

subject to: LijðN ;X Þ6wijðSijðN ;X ÞÞ 8ði; jÞ 2M;XA
i¼1

XB
j¼1

xij P 1;

xij ¼ 0 or 1 8ði; jÞ 2M:

Note that the constraint
PP

xij P 1 is used to avoid the trivial solution xij ¼ 0 8i; j 2M. Another way to
avoid the trivial solution is to define LijðN ;X Þ ¼ 1 if xij ¼ 0.

4.2.3. Example
To illustrate the constraint LijðN ;X Þ6wijðSijðN ;X ÞÞ, consider the example in Section 4.1 where

N ¼ 15 6 10
10 5 6


 �
:

Algorithm RHS.
Input: A, B, k, f ð�Þ
Output: Wij ¼ ½wijð�Þ� for all ði; jÞ 2M
Method: For every ði; jÞ 2M,
1. d  1
2. While d 6Aþ B� 1

1
l f ðdÞ
Return wijðdÞ  maxfn : sij < h and pd;ðijÞ < �g.
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Take location ði; jÞ ¼ ð1; 3Þ where the demand forecast for the number of simultaneous connections
N13 ¼ 10. For the location ð1; 3Þ, let k13 ¼ 20, h ¼ 0:6, � ¼ 0:5 and d ¼ 0:6. Also for all ði; jÞ, let

1

lkl;ij
¼ f ðdði; j; k; lÞÞ ¼ aij;kl þ dði; j; k; lÞbðij; klÞ:

In particular, a13;ij ¼ 0:8 and b13;ij ¼ 0:2. Calculating the value of W13 using algorithm RHS (Section 4.2.1),
we get W13 ¼ ½16 15 12 0�, where w13ð3Þ ¼ 12 implies that no more than 12 clients can be associated with
the web server in location ð1; 3Þ if the farthest of the 12 (or fewer) clients is at a distance 3 from the web
server.

A potential web server location matrix

X ¼ 1 1 1
1 0 0


 �

will yield

LðN ;X Þ ¼ 15 9 16
13 0 0


 �
and SðN ;X Þ ¼ 1 2 2

2 0 0


 �
:

In that case, the location matrix X will be infeasible because the web server at location ð1; 3Þ can accept at
most 15 clients ðw13ð2Þ ¼ 15Þ when the farthest client is at a distance 2 from the web server, whereas
L13ðN ;X Þ ¼ 16 and S13ðN ;X Þ ¼ 2.

However, the location matrix

Y ¼ 1 1 1
1 0 1


 �

will yield

LðN ; Y Þ ¼ 15 8 10
12 0 8


 �
and SðN ; Y Þ ¼ 1 2 1

2 0 2


 �
:

This location matrix Y will result in a feasible constraint L13ðN ; Y Þ6w13ðS13ðN ; Y ÞÞ since L13ðN ; Y Þ ¼ 10,
S13ðN ; Y Þ ¼ 1 and w13ð1Þ ¼ 16. However, LijðN ; Y Þ6wijðSijðN ; Y ÞÞ needs to be checked for all locations ði; jÞ
to determine if the location matrix Y is feasible.

5. The DEJAVU algorithm

Having formulated the optimization problem as a mathematical program in Section 4.2.2, we now
describe an algorithm to solve it. We first make an assumption that for larger values of A and B, the set up/
maintenance cost dominates the operating cost (i.e. mini;j cij P

P
k;l bkl). This permits us to drop the

bijmijðN ;X Þ term from the objective function, as shown in Appendix A. Even for small problems the explicit
formulation in Section 4.2.2 as an Integer Program (IP) requires a large number of variables and con-
straints. For example, in order to state the objective function and constraints in a linear form for a small
2� 3 grid problem, we require 158 variables and 547 constraints (not including the 158 integer/binary
constraints). The IP formulation of that example is shown in [5]. Even extremely powerful commercial
integer programming software packages cannot solve this simple problem to optimality in a reasonable
time. Thus it is out of the question to solve larger problems by modeling them as IPs. We hence resort to
heuristics.
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We develop a heuristic DEJAVU (Decompose Evaluate Join Append Verify and Unplug) that takes
advantage of the relative ease of verifying if a candidate solution is feasible or not. This methodology to solve
the optimization problem is analogous to the ‘‘min-cut clustering’’ approach [9] to the Traveling Salesperson
Problem. In the min-cut clustering approach, a large number of cities are decomposed into smaller clusters
and the smaller problems are solved within a cluster before regrouping. Similarly, in DEJAVU, we decom-
pose a large A� B grid into smaller partitions and then regroup the partitions to solve the large grid.

For the optimization problem, we are given the demand forecast matrix N, cost matrix C ¼ ½cij�, server
processing speeds k ¼ ½kij�, client processing time functions f ð�Þ defined in Eq. (8), minimum throughput for
each client h, and, the maximum probability � that the delay for a response is larger than d. Using that we
obtain the web server configuration via the DEJAVU algorithm as follows:

5.1. Algorithm DECOMPOSE

We develop an algorithm to decompose an A� B matrix into K partitions of sizes 3� 3, 2� 3, 2� 4,
3� 2 and 2� 2. Note that K is unknown and is an output of the algorithm. It is required that B > 5. Let
CðkÞ be the kth partition (where k 2 ½1;K�) denoted by the 4-tuple ½fr; tr; fc; tc� such that CðkÞ is from row fr

to row tr, and from column fc to column tc of the original matrix.

The DEJAVU algorithm.
1. Decompose the A� B matrix into K partitions [Cð1Þ;Cð2Þ; . . . ;CðKÞ] of sizes 3� 3, 2� 3, 2� 4,

3� 2 and 2� 2 using algorithm DECOMPOSE (Section 5.1).
2. Evaluate the optimal server configuration within each of the K partitions by complete enumeration

via algorithm EVALUATE (Section 5.2).
3. Join the partitions to form the server configuration X and determine if X is feasible for the large

regrouped grid using algorithm FEASIBLE (Section 5.3).
4. Append the configuration with more servers by adding one server at each of the infeasible cells using

algorithm APPEND (Section 5.4).
5. Verify if the new configuration is feasible using algorithm FEASIBLE (Section 5.3). If it is feasible

go to step 6 (with the new configuration X ), otherwise go to step 4.
6. Unplug unnecessary servers from the system (with the new configuration X ) using algorithm

GREEDY (Section 5.5) to obtain the final configuration ~XX . The resulting objective function isP
Cij

~XXij.

Algorithm DECOMPOSE.
Input: A, B
Output: K and CðkÞ for k ¼ 1; . . . ;K
Method:
1. a A mod 3 and b B mod 3. A2  0, B4  0 and k  0.

If a ¼ 0, A3  a=3.
If a ¼ 1, A3  ba=3c � 1, A2  2.
If a ¼ 2, A3  ba=3c, A2  1.
If b ¼ 0, B3  b=3.
If b ¼ 1, B3  bb=3c � 1, B4  1.
If b ¼ 2, B3  bb=3c � 2, B4  2.

408 N. Gautam / European Journal of Operational Research 142 (2002) 396–418



As an illustrative example, we decompose a 10� 13 matrix into K ¼ 18 partitions (Fig. 7).

5.2. Algorithm EVALUATE

One way of solving the optimization problem is to enumerate all possible combinations for X and pick
the best solution among all the feasible ones. For each of the k partitions, the optimal allocation problem is
solved by complete enumeration using the following algorithm:

Now we present an example where the optimal number and location of servers are obtained by enu-
merating all possible values of X. Consider the example in Section 4.1 where

N ¼ 15 6 10
10 5 6


 �
:

2. u 1 and v 1. While u6A3

While v6B3

k  k þ 1, CðkÞ  ½3ðu� 1Þ þ 1; 3u; 3ðv� 1Þ þ 1; 3v� and v vþ 1.
u uþ 1.

3. If A2 > 0 u 1 and v 1. While u6A2

While v6B3

k  k þ 1, CðkÞ  ½3A3 þ 2ðu� 1Þ þ 1; 3A3 þ 2u; 3ðv� 1Þ þ 1; 3v� and v vþ 1.
u uþ 1.

4. If B4 > 0 u 1 and v 1. While u6A3

While v6 2B4

k  k þ 1, CðkÞ  ½3ðu� 1Þ þ 1; 3u; 3B3 þ 2ðv� 1Þ þ 1; 3B3 þ 2v� and v vþ 1.
u uþ 1.

5. If A2 > 0 and B4 > 0 u 1 and v 1. While u6A2

While v6B4

k  k þ 1, CðkÞ  ½3A3 þ 2ðu� 1Þ þ 1; 3A3 þ 2u; 3B3 þ 4ðv� 1Þ þ 1; 3B3 þ 4v� and
v vþ 1.

u uþ 1.
6. Return K  k and CðkÞ for k ¼ 1; . . . ;K

Algorithm EVALUATE.
Input: C, N, CðkÞ, Wij for all ði; jÞ 2M
Output: X � and Z�

Method:
1. ½fr; tr; fc; tc�  CðkÞ, C  Cðfr : tr; fc : tcÞ, N  Nðfr : tr; fc : tcÞ, Z�  

P
Cij.

2. U fU : Uði; jÞ ¼ 0 or 1 8i 2 ½1; tr � fr þ 1�; j 2 ½1; tc � fc þ 1�g, the universal set of all possi-
ble web server combinations

3. For every X 2 U
If X is feasible using algorithm FEASIBLE

If
P

CijXij 6Z�, Z�  
P

CijXij and X �  X .
4. Return X � and Z�
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For the optimization problem, the following numerical values are used: kij ¼ 20 for all locations ði; jÞ,
h ¼ 0:6, � ¼ 0:5, and d ¼ 0:6. To calculate l, let f ð�Þ defined in Eq. (8) be f ðdði; j; k; lÞÞ ¼ aij;kl þ
dði; j; k; lÞbij;kl (where dði; j; k; lÞ is defined in Eq. (7)) such that for all ðk; lÞ,

akl ¼ ½aij;kl� ¼
0:8 0:9 0:7
0:9 0:7 0:8


 �
and bkl ¼ ½bij;kl� ¼

0:2 0:1 0:2
0:3 0:1 0:3


 �
:

Also the costs are given as

C ¼ ½cij� ¼
4 5 3
2 3 6


 �
:

The optimal solution via algorithm EVALUATE is

X � ¼ 0 0 1
1 1 0


 �
with a total optimal cost Z� ¼ 8.

5.3. Algorithm FEASIBLE

Not all web server configurations are feasible, where by feasibility we mean the ability to satisfy QoS
constraints for the users. In fact there may be locations ði; jÞ where LijðN ;X Þ > wijðSijðN ;X ÞÞ. Therefore it is
important to verify if a candidate configuration X is feasible or not. We use the variable feas such that if
feas ¼ 1, the configuration is feasible, and if feas ¼ 0, the configuration is infeasible.

Algorithm FEASIBLE.
Input: X, N, A, B, Wij 8ði; jÞ
Output: feas
Method:
1. feas 1, i 1, j 1.
2. While i6A

While j6B
If Xij ¼ 0

If LijðN ;X Þ > wijðSðN ;X ÞÞ, feas 0.
j jþ 1

i iþ 1
3. Return feas.

Fig. 7. Decomposing the 10� 13 matrix into K ¼ 18 partitions.
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5.4. Algorithm APPEND

This algorithm is used to determine which location without a web server needs to be appended with a
web server. Here we consider each of the infeasible locations ði; jÞ and if there is a location in its neigh-
borhood without a server but a high demand, then introduce a server there. In this manner, we add more
web servers until a feasible solution is obtained.

5.5. Algorithm GREEDY

After appending the configuration with several servers, although the resulting system would be feasible,
it may result in a system with too many servers. Therefore we develop a greedy algorithm to unplug some of
the servers in such a manner that right through the unplugging phase, the resulting configuration is always
feasible.

Algorithm APPEND.
Input: X, N, A, B, Wij 8ði; jÞ
Output: ðk; lÞ, the location where a server needs to be appended
Method:
1. i 1, j 1.
2. While i6A

While j6B
If Xij ¼ 1 and LijðN ;X Þ > wijðSðN ;X ÞÞ,
ðk; lÞ  arg max

ðm;nÞ
fNmn : dði; j;m; nÞ ¼ SijðN ;X Þ and Xmn ¼ 0g

j jþ 1
i iþ 1

3. Return ðk; lÞ.

Algorithm GREEDY.
Input: X, C, N, A, B, Wij 8ði; jÞ
Output: ~XX , the configuration after unplugging servers
Method:
1. rij  rank of cell ði; jÞ when Nkl=Ckl is sorted in an ascending order over all ðk; lÞ.
2. i 1, j 1, q 1, ~XX  X .
3. While q6AB

While i6A
While j6B

If Xij ¼ 1 and rij ¼ q, ~XXij  0
If X is not feasible using algorithm FEASIBLE, ~XXij  1.

j jþ 1
i iþ 1

q qþ 1
4. Return ~XX
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6. Results

We first illustrate the steps of the DEJAVU algorithm by creating a randomized example. Later we
compare the DEJAVU algorithm with a genetic algorithm to test the performance of the DEJAVU al-
gorithm.

6.1. Algorithm illustration

In this section, a numerical problem is solved using algorithm DEJAVU to illustrate the steps of the
algorithm. The demand forecast matrix N and the cost matrix C ¼ ½cij� as well as their sizes A and B are
chosen randomly from discrete uniform distributions. The rationale for choosing the parameters of the
uniform distribution is ease of presentation and ease of verification. However there are no computational
constraints on the choice of numerical values unless the numbers are exponentially large. Using the same
rationale, for all ði; jÞ and ðk; lÞ, (ði; jÞ 2M and ðk; lÞ 2M), let kij ¼ 50, 1=lkl;ij ¼ f ðdði; j; k; lÞÞ ¼ aij;klþ
dði; j; k; lÞbij;kl such that aij;kl ¼ 0:48, and, bij;kl ¼ 0:02. Also, h ¼ 1:7, � ¼ 0:1 and d ¼ 0:16. Therefore for all
ði; jÞ, Wij can be pre-computed using algorithm RHS (Section 4.2.1) as Wij ¼ ½23 23 19 9 0 0 � � � 0�.

The randomly generated values for A, B, C, and, N were obtained as: A ¼ 11, B ¼ 22,

C ¼

1 3 3 2 1 2 3 1 1 3 1 1 3 3 2 1 1 2 2 2 1 3
2 1 1 2 3 3 1 3 1 1 1 3 2 2 3 1 1 1 1 1 1 3
1 1 1 2 3 2 3 2 3 3 3 1 2 3 1 2 1 3 2 1 3 3
3 1 2 3 2 2 3 3 3 1 3 3 3 1 3 3 2 2 3 2 3 1
1 2 1 2 1 1 1 2 1 3 3 1 3 2 3 3 3 1 2 2 2 1
1 2 2 2 3 1 3 1 1 3 2 3 1 1 1 1 1 2 1 1 1 2
3 1 3 1 1 3 3 1 2 1 3 2 3 2 3 3 1 3 2 3 3 3
3 2 2 3 3 3 3 2 1 1 2 2 3 3 2 1 1 3 3 1 3 3
2 2 3 1 1 3 2 2 1 2 3 1 3 3 3 2 1 2 1 1 3 1
1 2 2 1 3 2 2 1 1 1 1 3 3 2 1 1 1 2 2 1 3 2
1 3 2 1 3 2 3 2 1 1 1 1 1 3 2 1 3 3 2 3 1 3

2
66666666666666664

3
77777777777777775

and

N ¼

1 8 7 14 14 2 4 10 5 4 12 11 2 8 15 10 3 3 11 6 1 1
13 9 2 10 10 5 15 2 6 15 15 12 12 11 8 5 10 15 15 14 9 9
9 5 15 5 15 4 10 13 14 9 2 13 4 4 2 6 15 14 3 6 14 4
14 11 14 11 11 2 7 2 6 7 1 11 9 10 1 12 1 3 13 1 2 11
7 10 7 12 5 5 4 3 5 5 11 2 7 2 7 13 6 4 8 1 11 1
9 14 12 8 7 8 14 1 14 15 2 6 13 13 1 12 5 7 15 1 3 4
8 5 12 1 15 13 12 8 11 12 2 5 14 15 13 4 13 1 7 4 4 6
15 2 9 9 2 5 8 7 9 11 3 13 6 8 13 7 1 8 6 6 1 13
14 1 14 15 1 12 9 14 14 14 10 11 15 11 1 9 8 2 11 7 4 1
7 15 14 8 6 4 4 12 6 15 3 3 4 5 6 10 4 7 14 4 1 8
11 6 2 14 6 15 13 11 11 7 10 11 2 14 10 9 13 5 1 7 4 14

2
66666666666666664

3
77777777777777775

:

Now we go over the six steps of the DEJAVU algorithm to solve the optimization problem:
Step 1: The (11� 22) N matrix is broken into (K ¼ 31) smaller partitions as shown in Fig. 8 using al-

gorithm DECOMPOSE.
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Step 2: By complete enumeration using algorithm EVALUATE, the optimal server location sub-
problem in each partition is solved.
Step 3: The partitions are joined and the resulting X is

X ¼

1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0
0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0
0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1
1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0
0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0
0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1
1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1
1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0

2
66666666666666664

3
77777777777777775

:

Using algorithm FEASIBLE we determine if X is feasible. It turns out that the above solution X is not
feasible.
Steps 4 and 5: The following is the feasible solution X after incorporating additional web servers iter-

atively using algorithm APPEND and verifying if feasible using algorithm FEASIBLE (the additional web
servers are indicated as b11)

X ¼

1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 b11 0 0 1 0 1 0

0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0

0 1 1 0 0 1 1 b11 0 0 1 0 0 0 1 0 b11 1 0 0 0 1

0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1

1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 b11 0 0 0

1 0 0 1 0 0 0 1 b11 1 0 0 1 1 1 1 1 0 1 1 1 0

0 1 0 1 1 b11 0 1 0 1 0 0 1 1 0 0 1 0 b11 0 0 b11
0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0

0 1 0 b11 1 0 0 1 1 1 0 1 1 b11 0 0 1 0 1 1 0 1

1 0 0 1 0 0 1 0 1 b11 0 0 0 0 1 0 1 1 1 0 0 1

1 0 1 1 0 1 b11 0 1 1 1 1 1 0 0 1 b11 0 0 0 1 0

2
666666666666666664

3
777777777777777775

:

Step 6: Finally we run through algorithm GREEDY to unplug some of the web servers and result in the
final solution ~XX as (the unplugged web server locations are indicated as e00)

Fig. 8. Breaking down the given matrix N into cells.
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~XX ¼

1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0
0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 e00 e00 1 1 1 1 0
0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1
1 0 1 1 1 1 0 e00 1 0 0 1 0 0 0 0 0 1 e00 0 0 0
1 0 0 e00 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 e00 1 0
0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 e00 0 1 0 0 1
0 1 1 0 0 1 1 0 1 e00 0 1 0 1 e00 0 1 0 0 1 e00 0
0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 e00
1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 e00 1 0 0 1
1 0 1 1 0 1 1 0 1 e00 e00 1 1 0 0 1 1 0 0 0 1 0

2
66666666666666664

3
77777777777777775

:

6.2. Comparisons

In this section we compare the performance of the DEJAVU algorithm against a genetic algorithm.
These comparisons are made using 25 experiments with widely varying input parameters. In particular, we
vary (i) the size of the location matrices from small to medium to large, (ii) the A : B ratio from square to
rectangular, (iii) the QoS constraints (�, d, h), (iv) the web server and client processing parameters ðkÞ and
ðlÞ from small to big, (v) the random variables for the cost matrix as discrete and continuous, (vi) the
coefficient of variation of the random variables ranging from very small to very large for both C and N,
and, (vii) the demand matrix N generated independently as well as inducing clusters of high/low values.
Although we did not perform a full factor design of experiments study, we randomly selected 25 different
combinations and ran experiments to demonstrate the performance of the DEJAVU algorithm.

A genetic algorithm was developed (details in [21]) to compare against the DEJAVU algorithm. The
genetic algorithm code is derived from [10]. For each of the 25 experiments, we ran the genetic algorithm for
several days under different initial conditions such as population size, number of generations, mutation
probability, crossover probability and random seeds. Thereby we were able to obtain rigorously the op-
timal solution using the genetic algorithm. Note that the genetic algorithm must be solved over several
days, while it takes only a few seconds to a minute using the DEJAVU algorithm. In Table 1 we dem-
onstrate the quality of the DEJAVU algorithm solution by using the genetic algorithm as a benchmark. We
report the percentage gap between the DEJAVU and the genetic algorithm solutions as

%gap ¼ DEJAVU� genetic

genetic
� 100:

The average gap is 3.68% over the 25 experiments. For 20 out of the 25 experiments, the gap is less than 5%.
Also, for only 3 out of the 25 experiments, the gap exceeded 10%. Upon investigating the input parameters
(defined in the early part of Section 6.2), it was found that there was no correlation between the algorithm
performance and the input parameters. The main reason the DEJAVU heuristic performs poorly in some
cases is because both the DECOMPOSE algorithm as well as the GREEDY algorithm result in making
poor decisions. One way to improve the performance is to re-run the DEJAVU algorithm using the
transpose matrices and take the better solution.

7. Generalizations

Emerging technologies geared toward improving the performance of web servers, clients and high-
speed networks create the need for taking into account some generalizations to the model in Section 2.
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Three potential generalizations are considered. In all three cases the system will be modeled as CTMCs.
Once the CTMC modeling is complete it is a relatively straightforward exercise to write down the bal-
ance equations to obtain the steady-state probabilities. Using the steady-state probabilities, perfor-
mance measures such as throughput, probability of delay and utilization can be obtained. These can be
used in an optimization problem to obtain the optimal number and location of web servers. Therefore
the CTMC models in the following generalizations are explained only briefly and the analysis, per-
formance, optimization, etc. are left out as they can be done using the analysis followed in Sections
2–4.

7.1. Multi-processor server

Enhancement in the web server technologies could potentially result in multi-processor servers. In
queueing theory terminology, at each web server, instead of using a single server queue as in Section 2, one
could use a single queue with multiple servers (called multi-processors in this paper). If all the multiple
processors are identical with mean processing time 1=k, then one could define a CTMC fðX ðtÞ; Y ðtÞÞ; tP 0g,
where X ðtÞ is the position of the given customer in the server queue and Y ðtÞ is the number of customers in
the server queue at time t. If there are s processors, then X ðtÞ ¼ 0 implies the customer is at the client,
X ðtÞ ¼ 1; . . . ; s implies the customer is being processed, and X ðtÞ > s implies that the customer is the
X ðtÞ � sth customer waiting to be processed. The infinitesimal generator ðQÞ can be constructed and hence
the performance parameters can be obtained.

Table 1

Comparing the DEJAVU solution against genetic algorithm

Index DEJAVU solution Genetic solution % Gap

1 331.00 331.00 0.0000

2 32.00 32.00 0.0000

3 88.00 88.00 0.0000

4 50.38 49.65 1.4845

5 38.83 37.29 4.1324

6 83.20 78.65 5.7969

7 102.00 96.00 6.2500

8 69.55 69.55 0.0000

9 107.21 106.84 0.3547

10 376.92 376.93 0.0000

11 86.99 86.99 0.0069

12 357.63 357.45 0.0515

13 136.72 133.65 2.2970

14 62.55 61.18 2.2405

15 72.77 69.58 4.5798

16 48.27 43.27 11.5630

17 17.65 12.60 40.1127

18 34.00 34.00 0.0000

19 53.00 53.00 0.0000

20 64.00 64.00 0.0000

21 28.00 25.00 12.0000

22 103.00 103.00 0.0000

23 108.00 108.00 0.0000

24 161.00 159.00 1.2579

25 54.00 54.00 0.0000
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7.2. Multi-class clients

The advent of differentiated services in the Internet, where the applications are differentiated into dif-
ferent classes of services, the performance measures will be based on the type of traffic. Also, in Section 4 a
worst-case analysis is used to handle clients located at different distances from the server. It is hence
possible to aggregate all similar clients (either based on the class of service or the distance from the server)
and call them a single class of clients. Hence the network will have multiple classes of clients interacting
with the server.

Assume that there are c classes of clients and a single processor server. For j ¼ 1; . . . ;R, let XjðtÞ rep-
resent the class of the customer at the jth position in the server queue at time t, and, XjðtÞ ¼ 0 implies that
there is no one at the jth position at time t. Clearly, fðX1ðtÞ;X2ðtÞ; . . . ;XRðtÞÞ; tP 0g is a CTMC. The
evolution of the CTMC fðX1ðtÞ;X2ðtÞ; . . . ;XRðtÞÞ; tP 0g depends on the mechanism used to serve the
different classes such as a priority mechanism. Based on the service mechanism, an appropriate generator
matrix (Q) can be generated to obtain the required performance measures. However, the method scales very
poorly with R. An alternative approach to obtaining the performance measures is through simulations.

7.3. Multi-request clients

The current protocol used at the browsers or clients allow only a single client request before a response is
obtained from the server. This may soon be replaced by protocols that permit multiple client requests (see
[15–17]). To model the scenario, assume that all the clients are identical and the server uses a single pro-
cessor. Each client can send up to a maximum of m requests without waiting for a response from the server.
Essentially this is similar to the model in Section 2 except instead of having one customer per client, there
are m. Also two client buffers are needed in tandem, one for the replies to requests to be processed and the
other to wait until a request needs to be sent.

The system is modeled using m tokens that circulate between each client and the server. Consider a single
token of a single client. Let XsðtÞ be the position of the token in the server queue at time t, X 1

c ðtÞ be the
position of the token in the first client queue at time t and X 2

c ðtÞ be the position of the token in the second
client queue at time t. Let YsðtÞ, Y 1

c ðtÞ and Y 2
c ðtÞ be the number of tokens in the server queue, the first client

queue and the second client queue respectively at time t. Then fðXsðtÞ;X 1
c ðtÞ;X 2

c ðtÞ; YsðtÞ; Y 1
c ðtÞ; Y 2

c ðtÞÞ;
tP 0g is a CTMC. Using the generator matrix Q, the performance measures can be obtained for this
system.

8. Conclusions and future work

In this paper we considered the problem of optimally allocating web servers on a rectangular grid. The
problem is formulated as a mathematical program with the objective of minimizing the cost of setting up
and maintaining the web servers subject to satisfying demand and QoS constraints (in terms of throughput
and probability of delay). We developed an algorithm called DEJAVU to solve the optimization problem.
We compared the DEJAVU algorithm against a genetic algorithm. We showed that for 80% pf the problem
instances, the gap between the DEJAVU and genetic algorithm was less than 5% and the average gap over
all the problem instances was only 3.68%. Since the DEJAVU algorithm takes less than a minute to solve
(as opposed to several days for the genetic algorithm), it would be a suitable option to solve the optimi-
zation problem.

This research paper provides a method for commercial organizations to decide the number and location
of their proxy servers or mirror sites across the Internet to give its users high QoS. This paper also in-
troduces to the operations research community a new and exciting problem to tackle.
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In the future, improvising the DEJAVU algorithm and also obtaining other algorithms for optimality
will be considered. In this paper a conservative maximum demand forecast for the clients is used and in
future a demand distribution will be used. Also, the grid structure with physical distances would be replaced
by the number of hops between the clients and server. Other objective functions as well as constraints will
also be considered in the future. There is tremendous scope to improve upon this preliminary model.
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Appendix A

Consider the optimization problem in Section 4.2.2. The following theorem states that if the set up/
maintenance cost dominates the optimality cost (i.e. mini;j cij P

P
k;l bkl), the bijmijðN ;X Þ term can be

dropped from the objective function.

Theorem A.1. If mini;j cij P
P

k;l bkl, then it is never better to add a new web server and reduce the utilization
of one or more of the existing web servers.

Proof. Clearly for all ða; bÞ, 06 mabðN ;X Þ6 1. Consider the case for every ði; jÞ such that if xij ¼ 1,
mijðN ;X Þ ¼ cij, (where 0 < cij 6 1). Also, consider a location ðk; lÞ such that xkl ¼ mklðN ;X Þ ¼ 0. Therefore
one can write the objective function as

Z1 ¼
X

ði;jÞ:xij¼1

cijxij þ bijmijðN ;X Þ ¼ ckl � 0þ bkl � 0þ
X

ði;jÞ:xij¼1

½cijxij þ bijcij�:

Now consider the case xkl ¼ 1 and mklðN ;X Þ > 0 such that mijðN ;X Þ6 cij for every ði; jÞ such that xij ¼ 1 and
ði; jÞ 6¼ ðk; lÞ. Therefore one can write

Z2 ¼
X

ði;jÞ:xij¼1

cijxij þ bijmijðN ;X Þ

¼ Z1 þ cklxkl þ
X

ði;jÞ:xij¼1

bijðmijðN ;X Þ � cijÞ

P Z1 þ cklxkl þ
X

ði;jÞ:xij¼1

bijð0� cijÞ

P Z1 þ ckl � 1þ
X

ði;jÞ:xij¼1

bijð0� 1Þ

P Z1 þ ckl �
X

ði;jÞ:xij¼1

bij

P Z1:
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Thus by increasing the number of web servers, the objective function increases (although the utilization
decreases). Therefore to decide the optimal number of web servers it is enough if

P
cijxij is used in the

objective function by itself. To decide the location of the optimal number of web servers ties can be broken
using the criterion to minimize

P
bijmijðN ;X Þ. �
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