'ka Electronic Commerce Research, 2: 233-253 (2002)
‘ © 2002 Kluwer Academic Publishers. Manufactured in the Netherlands.

Performance Analysis for E-Business:
Impact of Long Range Dependence

NATARAJAN GAUTAM ngautam @psu.edu
Department of Industrial Engineering, The Pennsylvania State University, 310 Leonhard Building,
University Park, PA 16802

SRIDHAR SESHADRI sseshadr @stern.nyu.edu
Operations Management Department, Leonard N. Stern School of Business, New York University, NY 10012

Abstract

We consider an e-business web-server system where the network traffic exhibits self-similarity. We demonstrate
that traditional techniques are unsuitable for predicting the network performance under such traffic conditions.
Instead, we propose and demonstrate a novel decomposition approximation technique that helps predict delays
more accurately and thus is better suited for capacity planning and network design when compared to traditional
queueing network analyzers. We also consider several strategies for mitigating the effect of self-similarity, and
conclude that admission control holds the greatest potential for improving service. We provide an approximation
technique for computing the admission control parameter values. Numerical results and suggestions for future
work are discussed.

Keywords: system performance, e-business, self-similar traffic, queueing approximations

1. Self-similarity in telecommunication network traffic
1.1. Introduction

Both data sources as well as real-time applications generate traffic patterns that exhibit
certain degrees of correlation between arrivals, and show long-range dependence (LRD)
in time as explained in [Sahinoglu and Tekinay, 29]. One of the first researchers to have
spotted self-similar behavior (or LRD) in networks are [Leland et al., 17] in ethernet LAN
traffic. Ever since, several experiments and measurements have shown that other traffic
types such as WWW traffic [Crovella and Bestavros, 9], Wide Area Network traffic [Lucas
et al., 18], TCP and UDP traffic [Kushida, 16], all exhibit LRD as well. Recently Menasce
et al. [21] reported that the arrival process of requests to e-business servers exhibit LRD,
thereby creating a need to study web server performance under self-similar request arrival.

Two of the greatest concerns due to LRD is how to model the traffic and how to obtain
system performance measures. Researchers have illustrated the failure of Poisson models
(which arguably is the most widely used model for traffic) and the need for more appropri-
ate models. In particular, Willinger and Paxson [37] clearly illustrate the differences be-
tween the Internet traffic model against a Poisson model, also see [Stallings, 32]. The main

234 GAUTAM AND SESHADRI

feature of traffic that exhibits LRD is that correlation dies down very slowly. The question
for designers of queueing systems is what impact if any does such correlation have on net-
work performance? How to mathematically understand the impact of LRD on queueing
performance? Does the effect propagate through the network or is it only to be found at
the gateways to the network? How if required can the effect of LRD be reduced? etc.

For the remainder of this Section 1 we briefly describe the literature on various aspects
of self-similar models and analysis. In Section 2 we detail some e-business system analy-
sis tools and techniques that are used for performance analysis. In Section 3 we illustrate
the e-business network scenario that we consider in this paper. We illustrate the shortcom-
ings of the traditional queueing analysis techniques and demonstrate our new algorithm in
Section 4. Then we formulate and test various performance enhancement strategies in Sec-
tion 5. Finally we present our concluding remarks and ideas for future work in Section 6.

1.2. Impact of self-similarity on network performance

Sahinoglu and Tekinay [29] cite several studies that indicate the importance of self-
similarity to network performance (such as [Park et al., 26]). They also mention that some
researchers such as [Heyman and Lakshman, 15] have reservations about the the need for
capturing self-similarity (also see [Grossglauser and Bolot, 14] with regard to the debate
on modeling self-similar traffic). Sahinoglu and Tekinay [29] add that one of the effects
of self-similarity is that the buffers needed at switches and multiplexers must be bigger
than those predicted by traditional queueing analysis and simulations. They stress that
these large buffers create greater delay in individual streams than were originally antici-
pated. They conclude that self-similarity introduces new complexities into optimization
of network performance and makes the task of providing QoS together with achieving
high-utilization difficult. The reader is also referred to [Willinger et al., 38] for up-to-
date developments and advances in using self-similar traffic for performance modeling of
high-speed telecommunication networks. In Section 4.1, we demonstrate that not only are
the effects of LRD considerable but that the large delays can render traditional network
analyzers useless. Thus, setting the stage for a different approach to predicting delays.

1.3. Queueing analysis under LRD

Several researchers have attempted to analytically predict the performance under self-
similar traffic in a queueing network setting. Shi and Zhu [31] explain that the super-
position of self-similar (i.e., LRD) traffic results in self-similar traffic (i.e., multiplexing
does not smooth traffic, also observed by Leland et al. [17]); on the same token, Bernoulli
splitting of self-similar traffic results in self-similar traffic streams; also, output from a con-
stant service time queue with self-similar input is self-similar. All these results hold under
specific set of conditions described in the referenced paper. Christensen and Ballingam [7]
demonstrate the reduction of self-similarity by application-level traffic shaping, but we
show that from a business viewpoint such traffic shaping of incoming traffic does not miti-
gate the impact of LRD within the network.

PERFORMANCE ANALYSIS FOR E-BUSINESS 235

Chan and Li [33] argue that self-similar input traffic (say fractional Brownian motion)
to a single queue can be analyzed to obtain standard queue performance metrics. If some
conjectures hold and if each stage is modeled as a G/D/1 queue, the results can be ex-
tended to network of queues where Jackson-network-type properties can be derived. The
main concern apart from the validity of their conjectures is the mathematical intractabil-
ity of their technique which would render the method impractical for design and capacity
planning.

In contrast to the above studies, we take an engineering view to the problem and study
how the effect of LRD can be reduced. We use the insights obtained from simulation
experiments to propose a decomposition technique that we believe addresses the long range
dependence phenomenon directly.

1.4. Modeling self-similar traffic

The most common modeling methodology for self-similar behavior is the use of heavy-
tailed distributions such as the Pareto distribution (see [Addie et al., 1]) and the deployment
of the Hurst parameter. Following the mathematics in [Willinger and Paxson, 37], some
notations and descriptions are presented below.

Experimental traces of traffic processes exhibit high spatial variability and long-range
dependence (autocorrelations with a power law decay). Heavy-tailed distributions (such as
Pareto distributions) with infinite variance are used to model the extreme spatial variability.
Typical probability distributions [F(-)] are of the form

1— F(x) =kix P,

where k1 is a positive (finite) constant independent of x and the tail index 8 is such that 0 <
B < 2. A fractional Gaussian noise is used to model the fractal or long-range dependent
or self-similar behavior. A covariance-stationary Gaussian process X = (Xy: k > 1) is
called a fractional Gaussian noise with Hurst parameter H € [0.5, 1) if the autocorrelation
between X,, and X+, kK > 0, is given by

cor(Xn, Xntx) = 0.5{(k + D> —2()*" + (k — D).

The Hurst parameter H quantifies the strength of the fractal scaling.

A discrete-time, covariance-stationary, zero-mean stochastic process X = (Xy: k > 1)
is called exactly self-similar or fractal with scaling parameter H € [0.5, 1) if for all levels
of aggregation (or resolution), m > 1,

X(m) — mH_IX,
where the aggregated processes X are defined by

Xm—k+1+ -+ Xim
m 9

X™ (k) = k> 1.

For an exactly self-similar process with scaling parameter H,

Var X™ = cym*H1-2,

236 GAUTAM AND SESHADRI

2. Performance analysis methods

In the light of the discussions in the previous sections and the experimental results pre-
sented in Section 4.1, it appears that conventional methods for analyzing network perfor-
mance need a drastic change in orientation to be successful. On the other hand, it also
seems to be rather a waste to ignore the vast accumulation of knowledge about queueing
system performance. Amongst methods that are used to evaluate and/or compute perfor-
mance measures of e-commerce systems three techniques dominate, see [Menasce and
Almeida, 19, 20]. These are: Using Standard Industry Benchmarks, Queueing Network
Analysis, and Simulation.

The first method uses workload generators to test the performance of the system. Exam-
ples include, Mindcraft’s Webstone, SPEC’s SPECWeb96 and SPECWeb99, and SURGE
(see [Barford and Crovella, 2]). The Transaction Processing Council released benchmark
for e-commerce sites undertaking B2C activity, see [35]. This method can be used to com-
pare the performance of different systems. Menasce and Almeida state that, “Analytic
models, even approximate ones, are, in general, the technique of choice for scalability
analysis and for capacity planning.” [20, p. 321]. They propose the use of queueing net-
work analysis with two important modifications: (i) the network is modeled as multi-class
network to account for the vastly different types and nature of workloads that have to be
accommodated, and (ii) the degradation in service due to bursty arrival patterns be modeled
using an operational approach, see [Buzen, 5]. In case of software contention they suggest
the method of Layered Queueing Networks (LQN), see, for example, [Franks et al., 11;
Rolia and Sevcik, 28; Neilson et al., 24; Woodside et al., 39]. Commercial and re-
search software is available to carry out detailed simulation of systems, for example,
COMNET [8] and ns [25]. We restrict our attention to the second class of models de-
scribed above. We also focus on single-class queueing networks with First Come First
Served (FCFS) discipline.

3. E-business network scenario

A typical web-server for an e-business application can be modeled as a multi-stage multi-
class queueing network. The ensuing model is not only hard to tackle analytically but
also difficult to simulate. The aim of the analysis is to obtain understanding of the im-
pact of self-similar traffic on a queueing network performance rather than a single stage
queue. This in itself is different from previous research that has concentrated upon sin-
gle stage systems. In particular, we address three questions: (i) Does the location of the
bottleneck station within the network affect the performance of the network and/or the
quality of approximations? Naively speaking we expect self-similarity to get filtered out
by being passed through successive stages of lightly to moderately loaded stations. This
phenomenon is known to occur when the inter-arrival times are extremely volatile, see,
for example, [Buzacott and Shanthikumar, 3]. In that case passing the arrivals through a
stage that has deterministic service time reduces the volatility of the inter-arrival times.
(ii) It is well known that “the superposition of many independent streams is approximately

PERFORMANCE ANALYSIS FOR E-BUSINESS 237

Request

Stage 1 Stage 2 Stage 3 Stage M

Arrivals

,,,

Figure 1. Multi-stage queueing network model of web-server.

Poisson” (see [Daley and Vere-Jones, 10, Section 9.2] and [Gnedenko and Kovalenko, 13,
Section 2.8]). Thus, we might expect that if we replace a single server with several servers
at a stage without changing that stage’s capacity, the downstream stages will be benefited.
That is we expect the departures from the multiple servers to act like independent streams
whose composition then is Poisson. We test out this hypothesis. (iii) Finally, it is possible
to selectively turn away customers when there is high congestion. This might also break
up the long-range dependence if the rejection coincides with bursts in traffic. Thus, we ask
whether selectively turning away customers reduces the long-range dependence?

To answer these questions we analyze a reasonably complex system. We assume that
requests arrive externally and they get processed in M stages, at the end of which they
exit the system, i.e., the server sends a response to the request. In this section we assume
that there is a single server at each stage that is dedicated to process all the requests in a
first-come-first-served fashion. This is relaxed later. See Figure 1 for an illustration of the
scenario.

We restrict the study to single class tandem queueing networks. This may not be the
most acceptable for a web-server. However, unless scheduling priorities are introduced,
when the scheduling rule is FCFS no significant loss of detail ensues by lumping all the
classes into one for analysis. In future we will address multi-class networks with priorities.
It should be mentioned at this point that texts on web server planning advocate the use
of product form approximation for multiple class networks. Unfortunately, the suggested
technique is useful only when either special scheduling rules are used or when the mean
service times are the same for all classes. The reader should note that the tandem system
studied by us is adequate for changing the position of the bottleneck stage, changing from
single to multiple servers and also for studying the effect of admission control on self-
similarity of traffic within the network. Moreover, the queueing approximations should
work well for tandem systems in the first place. If they do so, then we can apply them with
greater confidence to more complex ones. Finally, if some devices are more successful at
reducing long-range dependence then these should also prove to be useful in more complex
settings.

The request arrival process, is modeled as an autocorrelated process, specifically a frac-
tional brownian motion with a given Hurst parameter. This is in line with the observations
made by Menasce et al. [21] where request arrival processes for e-business sites are self-
similar in nature. The mean request arrival rate is denoted by A. The successive inter-arrival

238 GAUTAM AND SESHADRI

times are not only correlated, but also their coefficient of variation (i.e., the ratio of standard
deviation to mean) is high (0.64 in all experiments). Let w1, 2, ..., uy be the service
rates at stages 1,2, ..., M, respectively. The processing time distribution is exponential
at all stages. This is reasonable based on the findings in [Menasce et al., 21] where the
session duration (for e-business sites whose requests: (i) are not generated by robots, and
(ii) have time outs) is observed to be approximately exponential.

There are two key research issues addressed in the following sections which would be
very valuable to e-business network administrators and managers:

1. Can queueing analysis and approximations be used to predict the queue lengths? Note
that Sahinoglu and Tekinay [29] report that one of the effects of self-similarity in the
arrivals is that the queues observed are much bigger than those predicted by traditional
queueing analysis. We illustrate this phenomenon and then present an innovative tech-
nique that combines traditional queueing analysis with newly developed approxima-
tions to predict the queue sizes accurately (see Section 4).

2. Can the system be modified suitably in order to reduce the queue sizes? From a
customer-satisfaction standpoint, it is very important for the e-business that the queues
be kept small. In Section 5, we consider suitable enhancements to the current de-
sign/architecture and demonstrate their benefits.

We performed several experiments to answer these questions. All experiments assume that
the number of stages M = 8. The analytical approximations based on queueing networks
are carried out using the software packages in [Moses et al., 22, 23].

4. System performance analysis and experimental results

We demonstrate via experiments the failure of traditional queueing analyses in the context
of self-similar traffic (see Section 4.1). In Section 4.2 we develop a novel approximation
technique called the burst correction algorithm to predict the system behavior. Finally in
Section 4.3 we show how well the burst correction algorithm performs using experimental
results.

4.1. Traditional queueing analysis

In this section, we show using experimental results how traditional queueing analysis is
unsuitable when the traffic is self-similar. A summary of the input parameters for all ex-
periments and analytical models in this section are described in Table 1. The values are
chosen in these experiments because we are doing a set of experiments that changes the
place of the bottleneck. For example, the bottleneck station is the fourth, first and second,
first (with a near bottleneck at station four), first and third, and first and third but separated
by a fast station respectively in the five experiments. For all the simulations in this pa-
per the 99% confidence intervals were in the region of 5-7% of the average queue length
values observed.

PERFORMANCE ANALYSIS FOR E-BUSINESS 239

Table 1. Input values for the experiments.

Hurst Arrival Service rate
Index parameter rate (1) w=(ty...H18)
1 0.7 0.976 (1.3013 1.3013 1.3013 1.02 1.05 1.09 1.03 1.4)
2 0.7 0.976 (1.0167 1.00167 1.3013 1.02 1.05 1.09 1.03 1.4)
3 0.7 0.976 (1.0167 1.3013 1.3013 1.02 1.05 1.09 1.03 1.4)
4 0.7 0.976 (1.0167 1.3013 1.00167 1.02 1.05 1.09 1.03 1.4)
5 0.7 0.976 (1.0167 1.0813 1.00167 1.02 1.05 1.09 1.03 1.4)

Table 2. Experimentally observed queue lengths.

Observed Observed Observed Observed Observed Observed Observed Observed

#in #in #in #in #in #in #in #in
Index queue 1 queue 2 queue 3 queue 4 queue 5 queue 6 queue 7 queue 8
1 3.2916 3.0468 2.8272 106.801 19.8556 9.2647 31.2899 1.6426
2 95.8414 203.548 2.32794 30.2297 14.4896 8.3715 23.2449 1.6377
3 143.779 2.3538 2.3441 38.4842 16.0804 8.9138 28.7454 1.6256
4 123.305 2.3751 225.3633 29.5028 14.7981 8.5044 25.4596 1.6138
5 114.4848 10.5677 186.352 31.04 14.5781 8.597 23.5157 1.6057

500

450

O Queue 8
B Queue 7
B Queue &
B Queue 5
0O Queue 4
O Queue 3
B Queue 2
Queue 1

Number in queue (simulation)

Figure 2. Experimentally observed queue lengths at the nodes.

We use [Paxson, 27], in particular we used FFT-FGN, the S version for Hurst parameter
values of 0.7 for simulating 1 million self-similar arrivals into the system for each exper-
iment. In Table 2 and Figure 2 the average number of requests pending at each of the
stations are illustrated. Notice the large sizes of the queues.

240 GAUTAM AND SESHADRI

Table 3. Experimental results and traditional queue-
ing estimates.

Total # waiting in Total # waiting in
Index queue (observed) queue (traditional)
1 178.02 66.63
2 379.69 122.2
3 242.33 87.4
4 430.92 122.2
5 390.74 128.3

Table 4. Experimentally observed number
in system for different Hurst parameters.

H # waiting in queue
0.5 107.762

0.7 390.74

0.9 6656.225

We now use traditional queueing approximation techniques and obtain the total number
of requests waiting in the queues of the web servers. The results are described in Table 3.

From the results shown in Table 3 it is abundantly clear that traditional approximation
methods to analyze performance of queueing networks such as Whitt [36] and Buzacott
and Shanthikumar [3] severely underestimate the queue sizes. A brief description of the
traditional approximation method is summarized in the Appendix. The only available up-
per bounds for tandem and other queueing systems (as against bounds for single stage
systems) that are developed in [Seshadri and Pinedo, 30] are also inadequate. However,
textbooks on web server planning continue to use similar or even Markovian models to
analyze the performance. The key question is what aspect of the variability induced by
long-range dependence affects the queueing phenomenon the greatest? The surprising an-
swer is that it is not the request-to-request inter-arrival time variability but variability on a
larger time scale—namely the traffic burstiness. We shall show this in various stages in this
paper. We also observe that the position of the bottleneck does not affect the performance
significantly.

Next we also tried different Hurst parameter values besides H = 0.7, namely H = 0.5
and H = 0.9 and performed experiments. The case H = 0.5 corresponds to renewal
arrivals with no dependence between inter-arrival times. For the input parameters defined
in index value 5 of Table 1, the total number in the system is experimentally obtained and
illustrated in Table 4. Notice that the case H = 0.5 which corresponds to the i.i.d renewal
case has a queue length of 107.762 which is reasonably close to the value of 128.3 (see
Table 3) predicted using the traditional queueing analysis.

4.2. New approximation technique

In this paper we only sketch the burst corrected algorithm. The key idea in making this
approximation is to decompose the queueing behavior into two parts: one due to the bursti-

PERFORMANCE ANALYSIS FOR E-BUSINESS 241

ness of traffic and the other due to an arrival process that is of the renewal type. The bursty
part of traffic is estimated by feeding the arrival process to a single stage system with deter-
ministic processing time. This approach is motivated by our experiments on traffic shaping
described in Section 5.2. The rest of the approximation proceeds by using a queueing net-
work analyzer (see [Whitt, 36]). The correction due to the burstiness of traffic obtained
by analyzing the single stage system is then added to the estimates of queues produced by
the network analyzer. For now we observe that the queueing phenomenon due to “bursti-
ness” seems to be almost orthogonal to the phenomenon due to “variability of inter-arrival”
times. This is a new finding by itself.

Burst Correction Algorithm

1. Determine the bottleneck station in the network.

2. For each node that experiences arrivals from external sources: simulate a single stage
deterministic service time queue with arrival pattern and service rate = 0.99 or 0.995 of
the bottleneck rate.

3. Record the squared coefficient of variation (SCV) of the departure process as well as any
desired queueing characteristics of the single stage systems’ buffers’. In this example,
let O be the average queue length in the shaper.

4. Use the SCV of the departure process as the SCV of the inputs to the network. Ap-
proximate the queue lengths. Call this total Qn. The combined approximation is

QZQS"‘QN'

For other performance measures such as probability of delay greater that ¢, we can decom-
pose and use convolution to estimate the combined delay. This will be done in forthcoming
work.

4.3. Results

The total number of customers waiting in the 8 queues (L) are obtained by adding the
correction term for traffic burstiness and analytical approximations to obtain the results
in this section. For the input values described in Table 1, a comparison is made between
the experimental results, the traditional queueing approximation and the newly developed
burst correction approximation. These results are tabulated in Table 5 and illustrated in
Figure 3.

As proof of viability, the results show that when the calculations are appropriately fine
tuned to handle the bursts of arrivals as done in this paper, good approximations can be
obtained. The reader will note that the approximations are much more accurate compared
to traditional queueing approximations. These results are not very accurate, but for the
purpose of capacity planning and analysis they are quite reasonable. Moreover the aim of
this research work is to show a better way to approximate queueing behavior and to provide
an understanding of what causes excessive congestion.

The results using Hurst parameter values of 0.5, 0.7 and 0.9 are illustrated in Figure 4.
In the figure, the y-axis is in the logarithm (to the base 10) scale. Notice how well the burst

242 GAUTAM AND SESHADRI

Table 5. Experimental results and predicted estimates.

Total # waiting in Total # waiting in
Total # waiting in queue (traditional queue (approximation Error (%)
Index queue (observed) queueing network) with correction) (approx. — obs.) /obs.
1 178.02 66.63 203.7 14.44
2 379.69 122.2 458.8 20.83
3 242.33 87.4 251.0 3.58
4 430.92 122.2 458.8 6.47
5 390.74 128.3 464.9 18.99

Simulation B Traditional OB.C. Approx

@
S
]

Total number waiting In queue
o o
=1 @
3 S

@
<3

=4
=3

o
<]

=]

Figure 3. Predicting the total number in the system.

correction technique predicts the size of the queues especially for H = 0.7 and 0.9 values.
The case H = 0.5 being i.i.d. arrivals, the traditional approximations perform very well,
in fact better than the burst correction algorithm which is too conservative in this case.

5. Improving the system performance

From a customer satisfaction point of view, it is very important for e-businesses to reduce
the large number of customer requests piled up in the system. Therefore we consider three
schemes (described in Sections 5.1-5.3) and test them to see how much of a performance
enhancement each of the schemes can produce.

PERFORMANCE ANALYSIS FOR E-BUSINESS 243

4.5

Bl Experiment
ETraditional
OB.C. Approx.

Log[number in system]

Figure 4. Comparing queue lengths at the nodes for H = 0.5, 0.7 and 0.9.

Table 6. Results for the multi-server case.

Observed Predicted

of servers Service rate #in #in Error
N = (Njy...Ng) nw=(y...1ng) queues queues (%)
(55555555) (0.2033 0.2163 0.2003 0.204 0.21 0.218 0.206 0.28) 387.01 455.9 17.79

(57321353) (0.2033 0.1545 0.3339 0.510 1.05 0.3633 0.206 0.4667) 393.61 458.6.9 16.51

5.1. Enhancement: multi-server system

In this section we investigate a methodology to reduce the number of customers in the
system. Clearly, the main reason for the long queues is the highly correlated arrivals.
Because the arrivals are split into multiple number of parallel servers, it is conjectured
that the queue lengths would reduce since for each server, the arrival process is now less
correlated.

An experiment similar to that in Section 4 is performed with the only exception being the
enhancement of multiple servers in each stage. In order to keep the comparisons meaning-
ful, we assume that the service rate of each server is now reduced by dividing the original
service rate by the number of servers in that stage. The rest of the experiment is identical in-
cluding the 1 million arrivals using the self-similar arrival process detailed in Section 4. For
all experiments, the Hurst parameter is 0.7 and the arrival rate is 0.976 arrivals per unit time.

Note that in terms of mean utilizations, the parameters in Table 6 are similar to those
in the last row (index 5) of Table 1. The number in the queue has remained practically

244 GAUTAM AND SESHADRI
Table 7. Results for large number of servers.
of servers Service rate
Index N = (Ny...Ng) w= (U1 ... 18)
1 (11111111 (1.0167 1.0813 1.00167 1.02 1.05 1.09 1.03 1.4)
2 (57321353) (0.2033 0.1545 0.3339 0.510 1.05 0.3633 0.206 0.4667)
3 (1007321353) (0.010167 0.1545 0.3339 0.510 1.05 0.3633 0.206 0.4667)
Observed Observed Observed Observed Observed Observed Observed Observed
#in #in #in #in #in #in #in #in
Index queue 1 queue 2 queue 3 queue 4 queue 5 queue 6 queue 7 queue 8
1 114.4848 10.5677 186.352 31.04 14.5781 8.597 23.5157 1.6057
2 111.7459 8.60714 203.4265 29.7812 13.505 7.3411 18.0585 1.1409
3 104.1756 8.4747 185.9625 36.3992 13.9563 7.5888 179111 1.1523

250

Elndex 1
Elndex 2
Olndex 3

Observed number In queue

Queue Queue Queue Queue Queue

ueue Queue Queue
8 7 8

Figure 5. Experimentally observed number in each node with many servers.

unchanged. Also note that the predictions based on the new approximation proposed by us
match the experimental findings reasonably accurately.

Even with 100 servers, the total number of requests in the queue can be brought down
to only about 375. Moreover, even having 100 servers in the first stage does not affect
subsequent queue lengths (see Table 7). The results in Table 7 are depicted in Figure 5. In
conclusion, we expected that by adding multiple servers, the self-similar pattern could be
broken. However that did not happen, which demonstrates that long-range dependence can
not be significantly reduced through splitting, filtering, and then recombining the arrival

stream.

PERFORMANCE ANALYSIS FOR E-BUSINESS 245

5.2. Enhancement: shaping arrivals

In this section we investigate another methodology to reduce the number of customers
in the system besides increasing the number of parallel servers. It is conjectured that by
shaping the traffic before entering the server, the queues would reduce. This is because
shaping smoothes the traffic and gets rid of the peaks, thus lowers the variance of the inter-
departure events. In other words after the shaper the inter-message time’s coefficient of
variation (ratio of standard deviation to mean) is significantly reduced. This phenomenon
definitely occurs even in the presence of long-range dependence (see Table 8).

The question is whether cutting down the variability reduces the queues downstream of
the shaper? An experiment which is an enhancement to that in Section 5.1 is performed
with an additional deterministic server before the first set of parallel queues to evaluate
the effect of traffic smoothing. The remainder of the experiment is identical including
the 1 million arrivals using the self-similar arrival process detailed in Section 4. For all
experiments, the Hurst parameter is 0.7 and the arrival rate is 0.976 arrivals per unit time.
Also, the number of servers N = (N;...Ng) is (57 32 1 3 5 3), and the service rate
w= (1 ...png)is (0.2033 0.1545 0.3339 0.510 1.05 0.3633 0.206 0.4667).

In fact we assume that the shaper takes away the self-similarity and the output traffic
from the shaper is deterministic. Thus the shaper queue can be estimated and the rest
of the network queues can also be estimated. Notice that because we have introduced
an additional processing step, if each estimate is an upper bound then their sum gives an
upper bound to the delay. Once again, from Table 9 note that in terms of mean utiliza-
tions, the above two results are similar to the last row of results in Table 1. The number
in the system has again reduced but not enough. In fact the total backlog including the
messages in the shaper buffer actually increases due to the shaper speed reducing. This is
also a learning point not found in the literature. Note that the new approximation results
match the experimental findings reasonably accurately. Before we discuss the approxi-
mation, it is important to understand and appreciate why traffic shaping need not reduce
delays.

Table 8. Traffic characteristics before and
after the shaper.

Mean Variance
Before shaper 1.0356 0.4356
After shaper 1.0356 0.0911

Table 9. Results when system uses a shaper.

Service #in Observed total Estimated total

rate of shaper number in all number in all Error
shaper queue stages incl shaper stages incl shaper (%)
1.00167 251.9716 425.3383 455.6 7.12
1.0167 102.8485 334.4206 4523 35.26

1.167 5.3541 402.0668 447.9 7.12

246 GAUTAM AND SESHADRI

3.5 -

I
0 3]

N

Inter arrival times

1.5

Ie) |
(0] 1 2 3 4 5 6 7 8 9 10
Request number arriving into shaper x 10%

Figure 6. Traffic before shaper.

The relatively small improvement due to traffic shaping can be explained as follows. The
output from the shaper would contain very long bursts such that the traffic generated into
a downstream buffer may be much larger than the service rate of the downstream buffer.
By burst we mean the length of the total number of back-to-back messages which also
correspond to the busy period of the server. In fact the bursts have a squared coefficient of
variation of zero. In summary, although the time between messages has become less variant
(i.e. variance lowers), the string of back-to-back messages (i.e. bursts) have increased.
This leads to extremely large queues in the downstream buffer if this traffic arrives faster
than what the stage can process. Figure 6 represents the inter arrival times of the traffic
before the shaper and Figure 7 represents the inter departure times after the shaper. Note
the large bursts (corresponding to the troughs) in Figure 7. The low points in the graphs
suggest extremely high arrival rates. Therefore though we reduce the traffic variance, we
have introduced on—off behavior with very long on times. If we slow down the shaper, the
queues at the shaper itself build up. Thus, the total queues increase whether we pass on the
burst or contain it. The phenomenon can be understood also as follows, adding a shaper
will only increase delay thus the queue lengths. Thus, what use is it?

There are however several benefits due to a shaper: (1) It motivates the idea of approx-
imating and eliminating the effect of bursts. We noticed that if the shaper’s service rate is
slightly lower than that of the slowest stage in the rest of the system then the queue lengths
in the rest of the system can be predicted quite accurately. Thus, we can decompose the
traffic into a bursty and a non-bursty part and evaluate each separately. The queue at the
shaper can be predicted accurately using simulation (as it is a single stage and simple sys-
tem). Thus, we arrive at our key approximation idea. Simulate just the shaper with its

PERFORMANCE ANALYSIS FOR E-BUSINESS 247

I
0

N

Inter departure times

1.5

0.5 L L L L L L L
o 1 2 3 4 5 6 7 8 9 10

Request number departing from shaper x 10%

Figure 7. Traffic after shaper.

speed slightly below the bottleneck station’s queue. Add this estimate to the traditional
approximation. This should be higher than the actual queues observed if the traditional
approximation gives an upper bound. See the Burst Correction Algorithm in Section 4.2.
(2) The shaper can be potentially useful if containing the traffic within the shaper will save
valuable buffer space and control cost within the system because most of the bursts stay
outside the system. (3) The shaper makes the work in the rest of the system predictable.
(4) Also, the shaper leads to lower loss when admission is restricted, see next section.

5.3. Enhancement: Enforcing admission control

None of the enhancements in the above sections were able to reduce the number in the sys-
tem significantly. One of the main contributions of this research is an innovative technique
which can dramatically reduce the number of requests at the price of rejecting some re-
quests when queues build up. Results are described below based on the admission control
policy: when the number of requests waiting exceeds a value K, reject arriving requests.
The table below represents different thresholds K for the cases of (i) single servers at all
stages without shaper, (ii) multiple servers at all stages without shaper, and (iii) multiple
servers at all stages with shaper in front of the first stage.

Experiments are performed for the above cases by simulating 1 million arrivals using the
self-similar arrival process detailed in Section 4. For all experiments, the Hurst parameter
is 0.7 and the arrival rate is 0.976 arrivals per unit time. For the single server cases, the
service rate ;t = (pg ... ug) is (1.0167 1.0813 1.00167 1.02 1.05 1.09 1.03 1.4).

248 GAUTAM AND SESHADRI

Table 10. Results with admission control.

of Shaper K loss Observed Estimated Error

Index servers present? value rate #in queue # in queue (%)
1 Single No 150 0.00771 202.5728 159.0 —21.51
Single No 85 0.0148 147.1979 121.7 —17.29
Single No 15 0.0603 51.02436 52.8 3.45
2 Multiple No 150 0.00801 204.6737 151.8 —25.82
Multiple No 85 0.0150 133.8948 114.7 —14.33

Multiple No 15 0.0562 48.5925 494 1.7
3 Multiple Yes 150 0.0101 173.663 154.0 —11.31
Multiple Yes 85 0.0153 138.45 119.7 —13.57
Multiple Yes 15 0.0455 62.8229 58.7 —6.56

For the multiple server cases the number of servers N = (N7 ...Ng)is (57321353),
and the service rate & = (@1 ...ug) is (0.2033 0.1545 0.3339 0.510 1.05 0.3633 0.206
0.4667). When there is a shaper, its service rate is 1.00167 units.

Once again, note that in terms of mean utilizations, the above two results are similar to
the last row (index 5) of parameters in Table 1. The number in the system has significantly
reduced. Note that the approximations match the experimental findings very accurately.
In summary, it may be worth it in terms of customer satisfaction for an e-commerce site
to perform admission control by rejecting few customers in order to provide far superior
service to others. Notice that by rejecting only about 5% of the customers, the queue
lengths reduce by 90%. By rejecting only 1% the queues reduce by 50%. This is a sur-
prising finding and is quite fascinating. Notice that such dramatic reduction in congestion
is not normally expected. For example, the initial bottleneck utilization levels (with zero-
rejection) are around 0.967/1.00167 or 96.53%. Thus, 1/(1 — p) = 28.8. When 1% is
rejected, 1/(1 — p) = 22.4. When 5% is rejected it evaluates to 11.8. Therefore, the actual
reductions seen are indeed dramatic. They underscore the fact that when overflows occur
they occur in a correlated fashion. Thus, remove some of the long-range dependence from
the process.

We now briefly address how should a manager go about choosing the right rejection
level? We adopt a simulation-cum-optimization approach used in [Glassey et al., 12]. In
this approach the queue lengths are determined for a few select values via simulation. The
rest interpolated using a quadratic approximation. Notice that we only need to simulate the
shaper with the rejection control in place. For example, for the last experiment (index 3 in
Table 10) we obtain expected queue length, Q = 41.53 4+ 1.48K — 0.004K 2. Thus, if the
manager wanted an average total delay of 100 units of time when the arrival rate is 0.976
per unit time then s/he solves for (100)(0.976)(1 — 0.025) = 41.53 + 1.48K — 0.004KZ;
obtaining K = 40 with 0.025 being the estimated fraction of rejected arrivals. If we
simulate using this value of K we obtain a queue length equal to 97.596, a loss fraction of
0.0257 and a delay of 102.63 units of time, thus confirming the usefulness of the approach.

Plots for simulated values versus fitted values using Table 10 are depicted in Fig-
ures 8—10. Figures 8, 9 and 10 correspond to the index values of 1, 2 and 3 in Table 10.
For all three indices a quadratic fit is obtained to approximate the relationship between K

PERFORMANCE ANALYSIS FOR E-BUSINESS 249

220 T T

200~

Fitted values

©
S
T

*

@
o
T

Simulated values

N N
=] o
T T

Average waiting times
2
(=]
T

80

80~

20 1 L
0 50 100 150
K values

Figure 8. Fitted versus simulated values for index value 1.

220

200 FRRS

180

o
=]
T

N
o
T

Simulated values

Average waiting times
3 R
(=] o
T T

s Fitted values
80 .

60

20 L L
0 50 100 150
K values

Figure 9. Fitted versus simulated values for index value 2.

and the delay. Notice from Figures 8-10 that the fitted values match the simulated re-
sults extremely well. This simplistic engineering approximation technique can be used
very effectively in choosing the appropriate K value if the desired performance level is
known.

250 GAUTAM AND SESHADRI

200

180 Simulated values L%
160 e 1
Fitted values
140+ b
@
@
£
120 b
=
s
;-} 100} 1
@
g
z
80+ b
60 b
40t 1
20 . ‘
o 50 100 150

K values

Figure 10. Fitted versus simulated values for index value 3.
6. Conclusions

We have demonstrated the potentially high impact of self-similar traffic on performance
degradation in e-commerce systems. Such traffic can not be easily managed by resort-
ing to the use of parallel servers or traffic shaping. However, if a small fraction of the
traffic, during bursty periods, is turned away then the performance improvement is quite
significant. We have also shown that by decomposing traffic into bursty and non-bursty
components it is possible to obtain a reasonable approximation to waiting times in the sys-
tem. Our proposed method overestimates the queue lengths when there is no admission
control and underestimates them when there is admission control. The phenomenon is
almost symmetric such that the average error over all experiments shown in this paper is
2.48% (the average absolute error is 14.1%) compared to the average error of 65.2% for
traditional methods.

In future work we aim to develop these ideas in two ways: (i) Test them in the context of
queueing networks with random routing, multiple classes of arrivals and with synthetic as
well as actual traffic arrival patterns. (ii) Develop a theoretical framework for decomposing
the traffic and produce bounds for the expected queue lengths using the decomposition
approach.

Acknowledgments
The authors thank the associate editor and the anonymous reviewers for their comments

and suggestions that led to considerable improvements in the content and presentation of
this paper.

PERFORMANCE ANALYSIS FOR E-BUSINESS 251

Appendix

We are given that the arrival process of requests is of the renewal type with mean inter-
arrival time equal to 1/X and squared coefficient of variation (scv) of the inter-arrival time
equal to C2. The service times at each resource as well as the inter-arrival times to each
resource can not be approximated by exponential distributions. The requests arriving to
a resource are processed according to the first come first served (FCES) service protocol.
There are m resources where resource i has ¢; identical facilities or parallel servers. The
service times at resource i are i.i.d., with mean service time equal to 1/u; and scv equal
to Cgi. The utilization of each resource is less than one. The other parameters that are
specified are: (i) the expected number of visits that a typical request requires at resource i,
which is denoted as v;, (ii) the fraction of requests that arrive to the network that first visit
resource i, denoted as y;, where Z;": 1 ¥i = 1, and (iii) the probabilities that a request
upon completion of service at resource j requires resource i (denoted as pj;). The pj;’s
are called the switching probabilities.

Approximation procedure We first define the traffic equations and then outline the ap-
proximation steps for determining the expected number of requests at each resource. The
reader is referred to [Buzacott and Shanthikumar, 3] for further details.

Traffic equations Let the external arrival rate of requests to resource of type i be denoted
as A;. We are given that the expected number of visits to center i to complete the processing
of a request is v;. Therefore,

v = ey

Equating the expected number of visits into and out of resource i, we get the traffic equa-
tions

m
Ui:Vi+ZUjpji, fori =1,...,m.)
j=1

Let the utilization of resource i be denoted as p;. Then

A .
pi = , fori=1,...,m. 3)
CilLi

Approximation for the expected number of requests in the system Following Buzacott
and Shanthikumar [4], the arrival process to resource i is assumed to be of the renewal type
with scv equal to Cazl_. Let Ci_ be the scv of the departure process from resource i. Then

Ci_ is approximated by

1 & AYi

€2 == Y hipilpiC3 + (1 = pjp)] + k—?’[yicg + (-] 4)

1 .) 1
j=1

252 GAUTAM AND SESHADRI

The following approximation for Ci is based on approximation number two given on
page 75 of [Buzacott and Shanthikumar, 3].

2 (1 =2 = pi) + piCZ (1 — pp)?
Ch =1+ -+ -n—————
! Ci ! 2—/0i+/0iCSi

The squared coefficients of variation of the arrival processes are computed by solving this
system of linear equations. Let E[W (A, t)1p/m/c be the expected waiting time of a cus-
tomer in an M /M /c queue with arrival rate A and service rate u. Let the expected number
of requests at resource i be E[N;] and in the entire system be E[N]. Then we may approx-
imate

E[W i, i) Imymye; Picl+ ng») pi(2 = pi)C;, + pizcg,-

E[N;] ~ +poi ()
l EIW (A, cipi)Im/mn 2 — pi + picgi 20 (1 — p;) !
and
m
E[N]=) E[Ni]. (©)
i=1
References

[1] Addie, R.G., M. Zukerman, and T.D. Neame. (1998). “Broadband Traffic Modeling: Simple Solutions to
Hard Problems.” IEEE Communications Magazine 88-95, August.

[2] Barford, P. and M. Crovella. (1998). “Generating Representative Web Workloads.” In Proc. of 1998 ACM
Sigmetrics Conference on Measurement and Modeling of Computer Systems, Madison, WI, June 22-26,
pp. 151-160.

[3] Buzacott, J.A. and J.G. Shanthikumar. (1992). Stochastic Models of Manufacturing Systems. New York:
Prentice-Hall.

[4] Buzacott, J.A. and J.G. Shanthikumar. (1992). “Design of Manufacturing Systems Using Queueing Mod-
els.” Queueing Systems 12, 135-214.

[5] Buzen, J.P. (1978). “Operational Analysis: An Alternative to Stochastic Modeling.” In Performance of
Computer Installations, North-Holland, pp. 175-194.

[6] Chao, X., M. Miyazawa, and M. Pinedo. (1999). Queueing Networks: Customers, Signals and Product
Form Solutions, New York: John Wiley & Sons.

[7] Christensen, K.J. and V. Ballingam. (1997). “Reduction of Self-Similarity by Application-Level Traffic
Shaping.” In Proc. of 22nd Annual Conf. on Local Computer Networks, pp. 511-518.

[8] COMNET. http://www.compuware.com/products/ecosystems/comnet.htm.

[9] Crovella, M.E. and A. Bestavros. (1997). “Self-Similarity in World Wide Web Traffic: Evidence and Possi-
ble Causes.” IEEE/ACM Transactions on Networking 5(6), 835-846.

[10] Daley, D.J. and D. Vere-Jones. (1988). An Introduction to the Theory of Point Processes. New York:
Springer.

[11] Franks, G., A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and C.M. Woodside. (1996). “A Toolset for
Performance Engineering and Software Design of Client-Server Systems.” Performance Evaluation Journal
24(1-2), 117-135.

[12] Glassey, C.R., S. Seshadri, and J.G. Shanthikumar. (1996). “Linear Control Rules for Production Control
of Semiconductor Fabs.” IEEE Transactions on Semiconductor Manufacturing 9(4), 536-549.

[13] Gnedenko, B.V. and 1.V. Kovalenko. (1989). Introduction to Queueing Theory. Boston, MA: Birkhduser.

[14] Grossglauser, M. and J.-C. Bolot. (1999). “On the Relevance of Long-Range Dependence in Network Traf-
fic.” IEEE/ACM Transactions on Networking 7(5), 629-640.

PERFORMANCE ANALYSIS FOR E-BUSINESS 253

[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

Heyman, D.P. and T.V. Lakshman. (1996). “What Are the Implications of Long-Range Dependence for
VBR-Video Traffic Engineering?” IEEE/ACM Transactions on Networking 4(3).

Kushida, T. (1998). “The Traffic Measurement and the Empirical Studies for the Internet.” In GLOBECOM-
98, Vol. 2, pp. 1142-1147.

Leland, W.E., M.S. Taqqu, W. Willinger, and D.V. Wilson. (1994). “On the Self-Similar Nature of Ethernet
Traffic (Extended Version).” IEEE/ACM Transactions on Networking 2(1), 1-15.

Lucas, M.T., D.E. Wrege, B.J. Dempsey, and A.C. Weaver. (1997). “Statistical Characterization of Wide-
Area IP Traffic.” In Proc. of Sixth International Conference on Computer Communications and Networks,
pp. 442-447.

Menasce, D.A. and V.AF. Almeida. (1998). Capacity Planning for Web Performance. Prentice-Hall.
Menasce, D.A. and V.A.F. Almeida. (2000). Scaling for E-Business. Prentice-Hall.

Menasce, D.A., F. Ribeiro, V.A.F. Almeida, R. Fonseca, R. Riedi, and W. Meira Jr. (2000). “In Search of
Invariants for E-Business Workloads.” In Proceedings of EC’00, Inst. Math. Appl., October, Minneapolis,
MN.

Moses, M. and S. Seshadri. (2000). “Using Modeling Software to Improve Operations.” International Jour-
nal of Operations and Quantitative Management 6(3), 1-25 (available at http://www.stern.nyu.
edu/HOM).

Moses, M., S. Seshadri, and M. Yakirevich. (1999). Gaining Competitive Advantage through Business
Process Improvement using the HOM Software System. Irwin-McGraw-Hill (software available for down-
load at http://www.stern.nyu.edu/HOM).

Neilson, J.E., C.M. Woodside, D.C. Petriu, and S. Majumdar. (1995). “Software Bottlenecking in Client—
Server Systems and Rendezvous Networks.” IEEE Transactions on Software Engineering 21(9), 776-782.
ns. http://www-mash.ca.berkeley.edu/ns/.

Park, K., G. Kim, and M.E. Crovella. (1996). “On the Relationship between File Sizes, Transport Protocols,
and Self-Similar Network Traffic.” In Proc. of Intl. Conf. on Network Protocols, pp. 171-180.

Paxson, V. (1995). “Fast Approximation of Self-Similar Network Traffic.” Technical report LBL-36750/UC-
405, April.

Rolia, J.A. and K.C. Sevcik. (1995). “The Method of Layers.” IEEE Transactions on Software Engineering
21(8), 689-700.

Sahinoglu, Z. and S. Tekinay. (1999). “On Multimedia Networks: Self-Similar Traffic and Network Perfor-
mance.” I[EEE Communications Magazine 37(1), 48-52.

Seshadri, S. and M. Pinedo. (1998). “Bounds for the Delay in Multiclass Open Queueing Networks under
Shortfall Based Priority Rules.” Probability in the Information and Engineering Sciences 12(3), 329-350.
Shi, J. and H. Zhu. (1999). “Merging and Splitting Self-Similar Traffic.” In Proc. of Fifth Asia-Pacific
Conference on Communications, APCC/OECC-99, Vol. 1, pp. 110-114.

Stallings, W. (1998). High-Speed Networks TCP/IP and ATM Design Principles. Upper Saddle River, NJ:
Prentice-Hall.

Chan, Tat-Keung and V.O.K. Li. (1998). “Decomposition of Network of Queues with Self-Similar Traffic.”
In GLOBECOM-98, Vol. 5, pp. 3001-3006.

Toyoizumi, H., J.G. Shanthikumar, and R.W. Wolff. (1997). “Two Extremal Autocorrelated Arrival
Processes.” Probability in the Engineering and Informational Sciences 11, 441-450.

Transaction Processing Council. TPC-W. http://www. tpc.org.

Whitt, W. (1983). “The Queueing Network Analyzer.” The Bell System Technical Journal 62(9), 2779-2815.
Willinger, W. and V. Paxson. (1998). “Where Mathematics Meets the Internet.” Notices of the American
Mathematical Society 45(8), 961-970.

Willinger, W., M.S. Taqqu, and A. Erramilli. (1996). “A Bibliographical Guide to Self-Similar Traffic and
Performance Modeling for Modern Figh-Speed Networks.” In E.P. Kelly, S. Zachary, and 1. Ziedins (eds.),
Stochastic Networks: Theory and Applications, Royal Statistical Lecture Note Series, Vol. 4, pp. 339-366,
Oxford, UK: Clarendon Press.

Woodside, C.M., J.E. Neilson, D.C. Petriu, and S. Majumdar. (1995). “The Stochastic Rendez-Vous Net-
work Model for Performance of Synchronous Client—Server-Like Distributed Software.” IEEE Transactions
on Computers 44(1).

