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Recent literature has proposed multivariate capability indices, but does not
suggest a method for measuring quality characteristics in a way that links pro-
duction irregularities directly to their causes. Our objective is to present a new
approach to multivariate capability indices that uses process-oriented basis repre-
sentation (POBREP) which allows the computing of cause-related index values.
The proposed method focuses on independent process-oriented multivariate data
by employing regression coefficients as data. These coefficients measure the
amount of the characteristic patterns induced by particular problems or incidents
that can occur in the system. Two examples from the electronics industry (the chip
capacitor process and solder paste process) use simulated data and Monte Carlo
integration to demonstrate the new process-oriented capability method. A reduc-
tion of estimation error was realized when using process-oriented capability.
For the chip capacitor problem, capability error is 24–54% when using ordinary
multivariate data. However, when using process-oriented data the error is less
than 3%. Capability is difficult to compute from sample data in the solder paste
example without the process-oriented approach. Future research should propose
a multivariate capability measure for dependent process-oriented data.

Keywords: Capability; Process-oriented; Multivariate; Indices; Monte Carlo
simulation

1. Introduction

Multivariate capability methods usually produce one number jointly representing
capability for two or more quality attributes. Although a number of multivariate
indices exist, a process-oriented approach allows a new index to be constructed that
has a new interpretation. When process irregularities have known causes that
influence two or more quality variables, the process-oriented viewpoint seeks to
quantify those causes. In contrast, the ordinary capability viewpoint measures the
deviations from target of two or more quality variables while ignoring measures of
the causes; this is a data-oriented approach. Using a process-oriented multivariate
capability approach requires process-oriented data. The interpretation of the new
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index is that non-conformance to specifications (when represented by a multivariate
index) is thought of as resulting from the causes influencing the process. The actual
causes connect with their non-conformance measures for an intuitive multivariate
capability index that is useful for measuring a process-oriented performance.
In addition, the process-oriented approach can allow for data reduction in the
sense that the process variables identify the major sources of variation in a
system. Ordinary variables may be more numerous and therefore require a more
cumbersome and sometimes impractical multivariate capability computation. Some
situations will not yield a multivariate capability measure using ordinary variables.
Using process variables in many of these situations, however, would allow for
computing multivariate capability.

Juran et al. (1974) first introduced the idea of capability ratios (now called
indices). The first indices were univariate, measured process capability with regard
to a single quality measure X and focused on the percentage non-conforming (Kotz
and Lovelace 1998). Their purpose was simply to provide a ratio of the process
specifications over process spread. Univariate indices are useful for identifying
dimensional problems in parts. In recent years, multivariate capability indices
were developed as a natural extension to the univariate concept.

A question that naturally arises is ‘Why multivariate capability indices?’.
Consider a part with independent quality characteristics X and Y. The part is not
a good part if X or Y is beyond engineering specifications. If Cp¼ 1.0 (company
standards are that 99.73% of parts must be good) is the value representing process
potential for independent variables X or Y, then the parts are not capable when two
variables are considered jointly (99.46% good parts overall¼ 0.9973� 0.9973).
Multivariate capability is useful here to represent the two quality variables as one
number to reflect that the joint Cp (or multivariate Cp) of X and Y is less than 1.0.
The practice of reporting two acceptable Cp numbers for X and Y is potentially
misleading. Additionally, if there is correlation (when variables are not independent)
between X and Y, a definite affect on multivariate proportion conforming results
(in this example, the percentage conformance would be >99.46% and � 99.73%).
Quantifying these joint probabilities allows for multivariate interpretations
analogous to the univariate.

2. Literature

Multivariate capability indices appeared in the literature during the early 1990s.
Most of them assumed multivariate normal data, a stable process, and were
generalizations of their univariate counterparts. Wang et al. (2001) reviewed three
multivariate methods (Taam et al. 1993, Chen 1994, and Shahriari et al. 1995) in
detail and computed capability for four problems. In general, Taam et al. (1993)
presented both a multivariate Cp and Cpm (MCp and MCpm). Given the elliptical
equiprobability contours of the multivariate normal distribution, elliptical
specifications were assumed. They addressed a hole-diameter application that
required elliptical specifications. Shahriari et al. (1995) proposed a multivariate
capability index using hyper-rectangular process boxes rather than ellipses as the
specification area. Shahriari et al. (1995) recognized the need for multiple
measures of multivariate capability and proposed a three-component multivariate
capability vector. The first component of the vector is a multivariate capability
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measure of process potential (CpM) generalizing the univariate Cp. The second
component of the Shahriari et al. (1995) vector is the PV (P-value). It is essentially
the Hotelling T2 significance level. If PV is close to 0, the observed process is ‘not
close’ to centre. If PV is close to 1, the process is ‘very close’ to centre. The third
vector component is LI, the location index. If LI¼ 1, the sides of the process box fall
within the specification box. These three components capture multivariate process
knowledge and therefore require the interpretation of three separate quantities.
Chen (1994) proposed a general multivariate capability index for process potential
MCp. The strength of this approach was the defining of multivariate capability in a
general way that allows elliptical and rectangular specifications. Furthermore,
Chen’s approach does not require the multivariate normal assumption.

The purpose of a multivariate capability index is to summarize the multivariate
process performance as an aid to process improvement initiatives. The multivariate
methodologies should be analogous to univariate and provide a means to estimate
multivariate proportion non-conforming. Since the likelihood of someone using a
particular multivariate index decreases if it requires complex computations, we
recommend considering computational ease when evaluating indices. There is a
computational ease advantage using methodologies by Taam et al. (1993) and
Shahriari et al. (1995). Wierda (1992) proposed a multivariate capability index
analogous to Cpk that uses a p-dimensional rectangular specification area, and an
expected proportion of non-conformance items approach. The success of this
method depends on whether or not the data is normal. Let � equal the percentage
of good parts. The multivariate Cpk is defined as

MCpk ¼
1

3
��1

ð�Þ: ð1Þ

Also, �̂�(proportion conforming) is useful alone as a multivariate index. Since �̂� is
defined as proportion conforming, Wierda (1993) departed from the traditional
definition of Cpk and estimated a multivariate Cpk that reflected the actual yield.
Determine actual yield or the percentage conforming for the univariate case using:

� ¼ �
USL��

�

� �
��

LSL��

�

� �
:

Capability, if computed using Wierda’s (1992) approach, gives a more conservative
value than the originally defined Cpk.

Capability indices, both univariate and multivariate, do not identify the causes
associated with low (less than 99.73% conformance) index values. The difficult task
of discovering causes of production irregularities is often left to process engineers.
Identify the causes proactively before the capability study and link them to the
patterns representing quality problems inherent in the process, and a more efficient
method for using capability as statistical process control (SPC) tool results; this
describes a process-oriented capability study.

3. An overview of the process-oriented basis method

Multivariate quality databases provide large amounts of information, but they
present a challenge to the quality engineer who wants to use the data effectively.
Multivariate SPC tools typically identify when irregularities in system behaviour
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occur, and characterize, in a multivariate sense, the major components of this

variation. The major directions of variation of the multivariate process measurement

vector can be found by principal components analysis (PCA), which provides an

alternate basis for the vector space of multivariate process measurements

(Barton and Gonzalez-Barreto 1996).

A basis is a concept from linear algebra: a vector x can be expressed as a series of

numbers (x1, x2, . . . , xp). This representation uses the standard basis {e1, e2, . . . , ep},

which consists of the vectors e1¼ (1, 0, . . . , 0), e2¼ (0, 1, 0, . . . , 0), ep¼ (0, . . . , 0, 1).

A basis can be thought of as a set of patterns, and a representation of the quality

vector in that basis is a recipe, describing how much (either positive or negative) of

each element is needed to construct the observed quality vector. To represent x using

another basis, say using the pattern vectors (basis) {a1, a2, . . . , ap}, one must solve the

matrix equation

x ¼ Az,

where A is a matrix whose columns are a1, a2, aq, and q� p. The vector z is

the representation of x in the basis {a1|a2| � � � |aq}. The matrix-vector product Az

describes x as a linear combination of the columns in A, and z describes how much of

each column of A is needed to construct x. To find z given a full basis ( p columns) A

and a quality vector x, we find the inverse of the matrix A and compute

z ¼ A�1x:

Using an alternate basis can be a data reduction technique. If A has fewer than p

columns, say q, then z will have only q components ( p-q variables will have no z

components). In this case, the matrix A is not square and cannot be inverted.

However, z can be found by solving the least-squares equation

z ¼ ðA
0
AÞ

�1
A

0x:

Data reduction is possible without using the process-oriented approach, by

using only the first k principal components of variation for the basis of the

quality vector. The principal components basis is data-oriented rather than

process-oriented. Thus, the first basis element (pattern) will show the direction of

the largest amount of variation in the quality vector. Since this direction is

data-oriented, it may not provide a diagnosis of the causes of production irregula-

rities. Therefore, it is up to the quality engineer to work with process experts to

identify the cause or causes of these irregularities and to define the appropriate

action.

A process-oriented basis, on the other hand, consists of basis elements or char-

acteristic patterns induced by particular problems or incidents that can occur in the

system. Describing the quality vector in terms of the process-oriented basis tells how

much of each known problem type is present. The representation of the multivariate

quality vector (either mean or variance) using this basis will identify a small set of

potential causes, that is, those causes associated with basis elements which have

large average coefficients or large variation in the coefficients in the process-oriented

basis representation.
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4. Multivariate capability using POBREP

The specific contribution of this paper is that it uses the coefficients generated in the
process-oriented basis representation as data for computing a multivariate capability
measure. This process-oriented approach for computing capability is unique in the
literature; the literature uses product-oriented data to compute multivariate
capability. From another perspective, this paper extends the POBREP SPC
method of Barton and Gonzalez-Barreto (1996) by developing a multivariate
process-oriented capability measure.

The method for computing a multivariate POBREP capability uses coefficients as
data in an n� q Z matrix defined by Z¼ [z1| z2| � � � |zq] where, for example, the z1
through zq are vectors (100 rows� 1 column) of the respective z coefficients and q
is � p. That is, assume the capability study will consist of 100 collected parts
that individually generate q z coefficients for collection in matrix Z. Since the
columns of Z are regression coefficients, the data contained in these columns are
asymptotically normal. Therefore, assume the multivariate normal distribution
for matrix Z. The multivariate capability method using POBREP can potentially
compute indices for the following cases:

1. x¼Az or x¼Az þ ", z independent, A orthogonal, ẑz¼A�1x, ẑz¼ (A0
A)�1A

0x
2. x¼Az or x¼Az þ ", z independent, A not orthogonal, ẑz¼A�1x,

ẑz¼ (A0
A)�1A

0x

The focus of this paper is case 1, and the covariance matrix of Z is represented as
�Z with diagonal elements �2z1, �

2z2, . . . , �
2zq. Off-diagonal elements of �Z are set

to zero and imply independence of causes. Let �i (i¼ 1, . . . , q) represent the means of
the respective columns of Z. Represent a vector of the column means as �Z. Input
variables (�Z, �Z) and the z specifications are for computing MĈCpk analytically
using

MĈCpk ¼ 1=3��1
ð�
_

Þ: ð2Þ

Our approach to capability is to rely on the original definition that capability is a
measure to track the percentage of non-conformance. Wierda’s (1992) approach
directly incorporated this concept by using �̂�.

A major advantage of process-oriented multivariate capability is the direct link of
cause to capability. The zi’s represent the amount of pattern i (see figure 2) in the
collected samples. Smaller capability values indicate that one or more causes, iden-
tified in advance by process experts, need investigation for off-target means.
Multivariate capability indices should be used here as a diagnostic tool towards
process improvement. They link patterns of joint variation in quality variables to
their potential causes.

We can demonstrate computing multivariate capability using POBREP with
the multivariate chip capacitor problem (see Barton and Gonzalez-Barreto 1996).
Chip capacitors are manufactured by printing silver squares onto clay ‘flats’.
Figure 1 shows registration error measurements in both horizontal and vertical
directions for the four squares near the flat perimeter. One of the key quality
parameters is the offset of the printed silver square on the clay square.
Registration errors occur when the silver squares are not properly located on the
clay squares. The actual locations (solid-line squares) are shown in contrast to the
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target (dotted-line squares). These registration errors produce a quality vector in

eight-dimensional space.

Hypothesized causes of production irregularities are linked to patterns inherent

in the eight-component quality vector. Patterns in this example can be classified in

five groups: displacement, rotation, diagonal stretch/shrink, uniform stretch/shrink,

and differential stretch/shrink. These eight process-oriented basis elements are the

columns of the A matrix: A¼ [a1|a2| � � � |a8]. Figure 2 shows the full set of basis

elements in graphical form. They were chosen because they are independent, and

engineers could proactively link process irregularities to them.

Uniform errors Rotation Diagonal Uniform Differential
stretch/shrink stretch/shrink stretch/shrink
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Figure 2. Process-oriented basis elements.
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Figure 1. Registration error measurements for a multi-layer capacitor flat.
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The eight basis coefficients (zi) are computed by z¼A�1x in this full basis

example. Coefficients are non-zero in practice, and the coefficients with the largest

magnitudes are used for diagnosis.

For the chip capacitor problem, assume 100 capacitor flats are used for a

capability study, and assume specifications (� 2 units) are available for the quality

vector x. The Z matrix contains 100� 8 zi coefficients, and all zi are generated using

the orthogonal basis A. We compared capability results using Z as data (the process-

oriented capability method) to results using X (Wierda’s multivariate capability

method). When using Wierda’s (1992) capability method, computing capability for

X is difficult to perform accurately due to the requirement of multivariate integra-

tion. The covariance matrix �X may have significant correlations and thus create a

difficult multivariate normal integration problem. To compute POBREP and

ordinary multivariate indices for this example problem, random data sets are

computed. Let aij represent individual matrix elements of basis matrix A. Generate

random basis coefficients z, and let k represent sample number. Thus, a random

eight component quality vector x is computed from

xk1 ¼ �zk ja1j þ "k1

xk2 ¼ �zk ja2j þ "k2

..

.

xk8 ¼ �zk ja8j þ "k8

ð3Þ

where z are simulated data from a normal distribution with variances and means

according to table 1. Error " is random normal (0, 0.2). The variable j is incremented

from 1 to 8 corresponding to the number of columns of A. The first three cases in

table 1 consider at least a single active process cause (corresponding to basis element

No. 1). The next three consider at least three active process causes.

Since z¼A�1x gives eight estimated values for each sample, Z¼ [z1|z2|� � �|zm],

capability can be computed using Z and the specification limits. Rectangular x

specifications also apply to Az (since x¼Az). Since specifications for the xi’s are

assumed equal to � 2 units, the components of Az and x can be checked for

conformance to specifications using a simple Monte Carlo approach. Using the

Table 1. How sample z data is generated by modifying �Z and �Z (datasets 1–6).

Dataset cases for computing
Z matrix capability

Diagonal variances
for �Z

1. Base 1 (�Z¼ 0) (12, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052)
2. Base 1 with z1 mean shift¼ 0.5 (12, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052)
3. Base 1 with z1 variance

increase (�Z¼ 0)
(1.52, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052)

4. Base 2 (�Z¼ 0) (12, 12, 12, 0.052, 0.052, 0.052, 0.052, 0.052)
5. Base 2 with z1 mean shift¼ 0.5 (12, 12, 12, 0.052, 0.052, 0.052, 0.052, 0.052)
6. Base 2 with z1 variance

increase (�Z¼ 0)
(1.52, 12, 12, 0.052, 0.052, 0.052, 0.052, 0.052)
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data sets labelled 1–6, table 2 presents overall ‘percentage conforming’ capability
values for the X and Z matrices.

Estimated capability values (in table 2) can be obtained using the process-
oriented data or the ordinary data. Using a sample of 100 capacitor chip parts
that is collected for a process-oriented multivariate capability study, we wish to
generate multivariate normal random numbers having a means vector and var-
iance-covariance structure similar to that of the sample. This is accomplished
using the Cholesky decomposition method of multivariate number generation.
Estimated results in this paper rely on estimating parameters (variance–covariance
matrix and the means vector) from a sample of 100 to emulate an actual
capability study. Next, the parameters are used to generate 10 000 multivariate
random vectors that represent simulated parts that are compared to multivariate
specifications for computing the estimated capability. The data needed for the
estimated yield computations is computed using ẐZ ¼ (A0A)�1A

0x where a realistic
error " for each component of the x vector is included. Actual yield is computed if
the z’s are known, while error " is zero. In practice, however, the z’s are unknown
and therefore estimated. Estimated and actual results reported are average values
from 1000 simulations.

The bootstrap is a re-sampling method that can be used to obtain confidence
intervals for the estimated multivariate capability measure. The percentile method is
a particular bootstrap method used to obtain the results in the last column of tables 2
and 4. See Efron (1982) for more information on the bootstrap method. Precedents
for using bootstrap confidence intervals for multivariate capability include Littig
et al. (1992) and Polansky (2001). Using bias corrected bootstrap intervals (also
used in tables 2 and 4) is a method to fairly centre the bootstrap interval around
the average (Gunter 1992) if its initial values are biased.

Supposing that a POBREP capability was not available, multivariate capability
for X would be computed. Table 2 shows that estimated �̂� computed using Z is
almost identical to actual �̂� computed when using X. Furthermore, estimated yield
for X differs greatly from actual yield for X (0.26 is the largest difference). Given that
a capability study using 100 parts is assumed economically feasible, good estimates
of multivariate yield may be attainable from the estimated Z matrix results. When
using Monte Carlo estimation, estimated multivariate capability based on original
(X) measurements is inaccurate for these examples (24–54% error).

Thus, a potential advantage of POBREP capability is that it accurately
estimates capability using the same number of samples that would be used in an

Table 2. Wierda’s (1992) multivariate �̂� as a capability measure: A comparison using
capacitor chip simulated data. Bias corrected bootstrap confidence intervals are included for

the estimated yield using the Z matrix (�̂�¼ estimated multivariate yield).

Dataset from
table 1

Average actual yield �̂�
values for the X matrix

Average estimated yield
�̂� values for the X matrix

Average estimated
yield Z matrix values

1 0.92 0.69 0.92 (0.91, 0.93)
2 0.88 0.67 0.88 (0.87, 0.92)
3 0.76 0.50 0.76 (0.75, 0.78)
4 0.51 0.25 0.50 (0.45, 0.60)
5 0.48 0.25 0.47 (0.42, 0.56)
6 0.39 0.18 0.39 (0.35, 0.49)
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ordinary capability study. Further, for many electronics industry parts, POBREP

capability is feasible because the process-oriented causes can be assumed to operate

independently. This results in a diagonal covariance matrix for the z’s, further redu-

cing the number of parameters that must be estimated.

Capability can also be computed using less than a full basis. In the chip

capacitor example, we can assume only two process-oriented variables. The intention

is to show that capability continues to be effectively computed due to the assumption

that the remaining basis elements capture the structure of the data while leaving

no patterns in the data (Gonzalez-Barreto 1996). Before applying the capability

method when the basis is less than full, we propose a few guidelines. Check the

required condition of ‘no patterns’ left in the quality vectors statistically by plotting

control charts for all the possible patterns (Barton and Gonzalez-Barreto 1996).

When the plotted coefficients associated with potentially significant patterns

show little variation or no trends relative to the control charts’ centrelines,

the pattern is not included since it does not account for much variability in the

quality vectors. Additionally, as proposed by Barton and Gonzalez-Barreto

(1996), use graphical displays such as the position dimension diagram (Seder 1950)

to identify the significant POBREP patterns using. Finally, use process experts’

input for deciding what basis elements would capture the significant variation in

the data structure.

Tables 3 and 4 show how data was generated and the resulting multivariate

capability if only two process-oriented variables capture variation in the quality

Table 4. Wierda’s (1992) multivariate �̂� as a capability measure: a comparison using
simulated capacitor chip data and two basis elements (a1 and a8), (�̂�¼ estimated

multivariate yield).

Dataset from
table 3

Average actual
yield values

for the X matrix

Average estimated
yield values for
the X matrix

Average estimated yield Z matrix
values (bias corrected bootstrap
confidence intervals constructed
from 1000 bootstraps using

the percentile method)

1 0.95 0.69 0.95 (0.93, 0.96)
2 0.92 0.67 0.92 (0.88, 0.95)
3 0.81 0.50 0.82 (0.75, 0.85)
4 0.89 0.48 0.91 (0.87, 0.95)
5 0.86 0.47 0.88 (0.84, 0.93)
6 0.76 0.34 0.78 (0.72, 0.84)

Table 3. Chip capacitor problem: using two basis elements (a1 and a8). How sample z data is
generated by modifying �Z and �Z (datasets 1–6).

Dataset cases for computing Z matrix capability Diagonal variances for �Z

1. (�Z¼ 0) (12, 0.052)
2. z1 mean shift¼ 0.5 (12, 0.052)
3. z1 variance increase (�Z¼ 0) (1.52, 0.052)
4. (�Z¼ 0) (12, 12)
5. z1 mean shift¼ 0.5 (12, 12)
6. z1 variance increase (�Z¼ 0) (1.52, 12)
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vectors. Here, estimated capability using the process-oriented approach continues
to yield values that are close to actual.

5. The solder paste POBREP problem

We further demonstrate the POBREP method for capability using the solder paste
problem (see Gonzalez-Barreto and Barton 1995) from the electronics industry.
Square fine pitch components have 208 leads total (52 per side) with corresponding
solder paste deposit volumes. The multivariate measurement vector x contains the
errors from nominal for 208 deposit volumes measured by a vision system. Here, we
also assume specifications are � 2 units. Basis elements can be constructed that
represent process failures (irregularities in volume deposits), and patterns can be
drawn to visually represent the basis elements. Table 5 (Gonzalez-Barreto and
Barton 1995) represents four basis elements, and figure 3 represents their basis
element patterns. In figure 3 the dotted lines represent the desired level for all
solder paste volumes, and the solid lines represent the actual levels of solder paste
being below or above the desired levels for the 208 leads. Causes are proactively
linked to each pattern allowing diagnosis of the root causes of irregular solder
paste volumes.

The four basis elements in table 5 represent process variables that are monitored
(rather than naively monitoring 208 leads individually).

To compute multivariate capability, we first simulate data using equation 5.1,
where j¼ 1 to 4 patterns, and k is 1 to 100 samples. The error " is simulated normal
(0, 0.22), and the a1j to a208j represent locations within the A matrix.

xk1 ¼ �zk ja1j þ "k1

xk2 ¼ �zk ja2j þ "k2

..

.

xk208 ¼ �zk ja208j þ "k208

ð4Þ

Table 6 shows how the z data are simulated from a multivariate normal distribution.
Cases 1 and 2 consider a variance increase for z1, and the cases 3 and 4 consider
variance increases for z1 and z2, and a mean shift of the z1 variable is considered.

Using the datasets labelled 1 to 6 from table 6, table 7 presents overall capability
values (estimated from a study of 100 parts) for the X matrix using 208 ordinary

Table 5. Vector representation of basis elements.

Position (lead)

Basis element

a1 a2 a3 a4

(1–52) þ 1 þ 1 0 � 1
(53–104) þ 1 � 1 þ 1 0
(105–156) þ 1 þ 1 0 þ 1
(157–208) þ 1 � 1 � 1 0
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variables and the Z matrix using four process-oriented variables (z1, z2, z3, and z4).
It shows that Monte Carlo simulation cannot estimate capability using ordinary
variables. In contrast, using the four process-oriented variables allows for estimating
capability values that are close to actual capability.

We can repeat the capability study for the solder paste problem using only two
process variables (3rd and 4th basis element in table 5) rather than four. Table 9
shows that the actual capability, when using table 8 datasets, is also close to the
estimated capability when only two process variables are used.

Basis element 1 Basis element 2

Basis element 3 Basis element 4

Desired solder paste volumes
Actual solder paste volumes

Figure 3. Four basis elements for fine pitch component.

Table 6. Solder paste example: How sample z data are generated.

Dataset cases for computing Z matrix capability Variances for �Z

1. z1 mean shift¼ 1 (0.92, 0.32, 0.32, 0.32)
2. (�Z¼ 0) (0.92, 0.32, 0.32, 0.32)
3. z1 mean shift¼ 1 (0.92, 0.92, 0.32, 0.32)
4. (�Z¼ 0) (0.92, 0.92, 0.32, 0.32)
5. z1 mean shift¼ 1 (0.32, 0.32, 0.32, 0.32)
6. (�Z¼ 0) (0.32, 0.32, 0.32, 0.32)
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Using the ordinary variables to determine capability using Wierda’s (1992)
percentage conforming approach is not feasible due to the ‘curse of dimensionality’.
To obtain accurate estimates for higher dimensional multivariate problems, a larger
sample size is required that increases exponentially with the number of variables.
However, using the smaller process variable set rather than ordinary variables allows
an accurate POBREP capability estimation.

Meeting the assumption of multivariate normal distribution is even more
important for the multivariate indices relative to univariate indices. The z coefficients

Table 7. Capability for the solder paste example (�̂�¼ estimated multivariate yield).

Dataset from
table 6

Average actual
yield �̂� values for
the X matrix

Average estimated
yield �̂� values for
the X matrix

Average estimated yield Z

matrix values (bootstrap
confidence intervals constructed
from 1000 bootstraps using

the percentile method)

1 0.70 — 0.70 (0.62, 0.74)
2 0.89 — 0.89 (0.85, 0.93)
3 0.50 — 0.50 (0.42, 0.56)
4 0.69 — 0.69 (0.61, 0.74)
5 0.90 — 0.90 (0.84, 0.93)
6 1.00 — 1.00 (1.00,1.00)

Table 9. Capability for the solder paste example with two process variables (a3 and a4):
(�̂�¼ estimated multivariate yield).

Dataset from
table 8

Average actual
yield �̂� values

for the X matrix

Average estimated
yield �̂� values for
the X matrix

Average estimated
yield Z matrix �̂� values

(bootstrap confidence intervals
constructed from 1000 bootstraps

using the percentile method)

1 0.87 — 0.87 (081, 0.92)
2 0.97 — 0.97 (0.94, 0.99)
3 0.84 — 0.84 (0.80, 0.90)
4 0.95 — 0.95 (0.91, 0.97)
5 1.00 — 1.00 (1.00, 1.00)

Table 8. Solder paste example datasets using basis elements 3 and 4.

Dataset cases for computing Z matrix capability Variances for �Z

1. z1 mean shift¼ 1 (0.92, 0.32)
2. (�Z¼ 0) (0.92, 0.32)
3. z1 mean shift¼ 1 (0.92, 0.92)
4. (�Z¼ 0) (0.92, 0.92)
5. z1 mean shift¼ 1 (0.32, 0.32)
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will tend to collectively form normal distributions due to the central limit theorem
(CLT) effect under certain circumstances. That is, when the columns of the basis
matrix have four or more non-zero numbers, the z coefficients, which would then be
linear combinations of four numbers, are approximately normal. This principle is
based on studies done for X-bar charts (Rigdon et al. 1994) that showed that X-bar
charts require normal distributions for the proper percentage of parts to fall
outside of their control limits. An even stronger CLT effect results when greater
numbers of non-zero elements are in the basis matrix (solder paste example).
There is, however, no CLT effect for non-POBREP multivariate or univariate
capability. Many POBREP applications will fit the orthogonal (or independent)
case because deliberate steps are taken to construct an orthogonal basis
matrix, and we recommend the use of process-oriented multivariate capability for
these cases.

When a POBREP application does not fit the orthogonal case, POBREEP coef-
ficients could be unstable, have the wrong size, or even the wrong sign. This would
create an inaccurate multivariate process-oriented capability measure. Hoerl and
Kennard (1970) proposed a remedy termed ridge regression for when the prediction
vectors (equivalent to the a1, a2, . . . , an vectors) are not orthogonal. The method adds
small positive quantities to the diagonal of A0

A, and the ridge trace (a two-dimen-
sional plot) would show the resulting effects on non-orthogonality. Let zh� equal the
ridge regression estimated z parameters. Then

zh� ¼ ½A0Aþ cI ��1A0x:

When c¼ 0, the component values of the vector zh� are equal to the ordinary least
squares regression z coefficients. The issue of what c to choose is a judgmental one
(Neter et al. 1996) and could be based on when the variance inflation factor (VIF), a
measure of the dependence of the columns, first becomes acceptable. The
VIFn¼ (1�R2

n)
�1 where n¼ 1, 2, . . . , p, and R2

n is the coefficient of multiple determi-
nation when an is regressed on the other p� 1 a variables. VIF values over 5 indicate
a situation of moderate to extreme nonorthogonality.

6. Conclusions

Multivariate capability using process-oriented basis representations is a new
method for measuring process performance. For many POBREP applications, we
can assume independent data by using the process-oriented variables’ coefficients
when the original data exhibits dependence. The current multivariate capability
methods do not provide a direct link to the causes of poor process
performance and are not always practical for processes that collect large
amounts of multivariate data. More research is needed to determine POPREP
capability when non-orthogonal basis elements yield significantly correlated basis
coefficients.
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