
Pricing-Based Strategies for Autonomic Control of Web Servers for

Time-Varying Request Arrivals

Yiyu Chen, Amitayu Das, Natarajan Gautam∗, Qian Wang and Anand Sivasubramaniam.

The Pennsylvania State University
University Park, PA 16801

yzc107@psu.edu, adas@cse.psu.edu, ngautam@psu.edu, quw6@psu.edu, anand@cse.psu.edu

Abstract

This paper considers a web service that receives requests from customers at various rates at
different times. The objective is to build an autonomic system that is tuned to different settings
based on the varying conditions, both internally and externally. It has developed revenue-based
pricing as well as admission control strategies, taking into account Quality of Service issues
such as slow down and fairness aspects. Three heuristics are developed in this paper to address
the pricing and admission control problem. The three heuristics are: 1) static pricing com-
bined with queue-length-threshold-based admission control, 2) dynamic optimal pricing with
no admission control, and 3) static pricing with nonnegative-profit-based admission control.
These three strategies are benchmarked against a fourth strategy (called - do nothing) with
no pricing and no admission control. The paper evaluates and compares their performance,
implementability and computational complexity. The conclusion is that the web server revenue
can be significantly increased by appropriately turning away customers via pricing or admission
control mechanisms, and this can be done autonomically in the web server.

Keywords - Pricing, slowdown, admission control, revenue, web-server.

∗Corresponding author; Address: 349 Leonhard Building, University Park, PA 16801; Phone: 814-865-1239;
Fax: 814-863-4745.

1

1 Introduction

The motivation for this paper stems from two important emerging trends: (i) the growth of com-
mercial services on the Internet, and (ii) the need for deploying systems that can automatically
tune themselves. As business enterprises and individual users become increasingly dependent on
the Internet (the world wide web in particular), there is a growing need for the deployment of
commercial (web) services that can be relied upon to provide a certain Quality of Service (QoS).
Even if best-effort service can be an option for certain kinds of services or at certain points in time,
users may be willing to pay (even if it is only a small amount), to attain better QoS especially
when there is a fear of getting badly degraded service (during periods of high load). At the same
time, the service provider should be very careful in pricing the QoS so as to not only maximize
the revenue earned but also to not price the service exorbitantly high that many clients get turned
away [1, 2, 3]. Such pricing needs to be determined dynamically, while still making the contract
between QoS and price available to the client upon request arrival, since there can be widespread
fluctuations on imposed load. The need for autonomic tuning becomes particularly acute not only
because of the high costs of involving humans in system operation (the Total Cost of Ownership -
TCO - that several commercial organizations have recently pointed out [12, 16]) but also because
such tuning should be nimble enough to adapt to workload changes. This paper explores solutions
for this largely uninvestigated problem, introducing not just a pricing structure that can be dy-
namic and fair to both clients and servers, but also examines techniques for adaptively setting this
price.

For the purposes of the evaluations in this study, this paper specifically focuses on a web service
on the Internet that needs to cater to the HTTP file requests of a large number of clients on a
continuous basis. It is to be noted that the main ideas presented here are applicable to many
other kinds of commercial services as well. As pointed out by several other studies analyzing web
server requests [4, 15], the load can be widely varying over the duration of the day. If the server
charges a fixed price regardless of load, it can result in either being unfair to the clients or a loss in
revenue earned. For instance, if the price is fixed (to a very high value) based on peak/high load
conditions, then the clients may end up paying such a high price at even low load situations. Such
a high price can also make this server less competitive, potentially making clients turn to alternate
sources. At the same time, fixing the price to a low value can decrease the revenue that a server
could potentially make. These arguments make it important to come up with a pricing strategy
that is adaptive to varying loads, is fair to the clients, and at the same time does not significantly
compromise on the server’s revenue. This can be done by either adaptively varying the price or
rejecting requests (and keeping price static).

The first contribution of this paper is a combination of pricing and admission control strategy
for such commercial services that take the above-mentioned factors into consideration. This is
essentially a 2-step process in this proposal. In the first step, the customer/client is offered a price
package, which in turn has three main components: (a) a part that can be adaptively determined
and is charged to each request regardless of the request’s parameters, (b) a part that is a function
of its service time requests (is essentially proportional to file size requested in this scenario), and (c)
a part that is returned back to the consumer based on the degradation in QoS that is experienced
(a penalty proportional to the slowdown that the request actually experiences compared to serving
the request in isolation). In (b) and (c), this paper is trying to provide a (fixed) fair price for the
desired QoS to each request. It uses (a) as a means to control the revenue earned by the server
as a function of the system load. At the same time, the customer can choose to ask for service or
leave based on the attractiveness of this part of the price. This part could be set to a high value
during periods of high load to deter customers from joining (when the server is already earning

1

enough revenue), and to a lower value during low load periods (to encourage clients to join). The
second step of the mechanism enforces a level of admission control imposed by the server. It can
so happen that a client despite the high price, chooses to get service at a time of high load. The
server can use the second step as a way of rejecting this client if it feels that the revenue it would
make from this client can be offset by the lower revenue due to degradation in QoS for others. To
authors’ knowledge, this is the first paper to offer such a 2-level integrated pricing and admission
control strategy that takes the different desirable aspects of fairness, profit and modulation to load
dynamics into account.

The second set of contributions in this paper is in developing and evaluating three heuristics for
adaptively modulating the above pricing/admission-control strategy to maximize revenue. Some of
the factors that need to be taken into consideration when designing techniques for modulating the
parameters are revenue enhancement (for the server), implementability (whether all the parameters
and performance characteristics are available at the point of decision making) and computational
complexity (to ensure that the decision-making/optimization is itself not very time consuming to
become a deterrent to server performance). Taking these factors into account, this paper presents
three heuristics for decision making at various points/granularities in time and compare them with
a fourth strategy, the “do nothing” policy of admitting all customers and charging them a price
that is only based on (b) and (c) mentioned above.

The rest of this paper is organized as follows. The next section gives a quick review of some
related topics. Section 3 gives a more formal description of the system model. The adaptive
decision-making techniques are described in section 4. Results from detailed simulations using real
HTTP traces are given in section 5. Finally, section 6 summarizes the results.

2 Related Work

Usage of shared data centers are becoming very common nowadays. Web-applications are hosted on
such data centers, where the application owner pays for the server resources and server provides the
application guarantees on resource availability and performance. Depending on the web-application,
web workload vary dynamically with time. Given this fact, online techniques are necessary to adapt
to changing workloads fairly and efficiently, especially under transient overload conditions. Shenoy
et al [9] proposes an online optimization-based technique for adaptive resource allocation in servers
at the shared data centers. They show that their technique reacts to changing workloads by
adaptively varying the resource shares of applications. They also show that such online adaptive
technique is capable of reallocating resources in a better manner than static approaches. Similar
problems of dynamic allocation for storage bandwidth to application classes has been addressed in
[19]. It proposes a reinforcement-based learning approach to solve that. This approach is supposed
to react to dynamically changing workloads and is stable under such workloads. This approach has
been shown to be superior than a simple learning-based technique for storage bandwidth allocation.
Likewise, on-line management of storage systems is addressed in [5].

In a constantly changing environment, a mechanism for optimizing server’s operation has been
proposed in [22]. There is an adaptive admission control method for offering service differentiation
among various client classes. Each class is characterized by QoS performance guarantee, expressed
by its service level agreement (SLA). The success of the mechanism depends on its ability to mini-
mize the revenue loss. Resource overbooking is done after detailed application profiling for shared
hosting platforms in [20]. It shows that these techniques can be combined with commonly used
QoS resource allocation mechanisms to provide application isolation and performance guarantees

2

at run-time. It shows that the efficiency benefits from controlled overbooking of resources can be
dramatic. Similar ideas for an integrated resource management framework have been proposed in
[17]. It introduces the metric quality-aware service yield to combine the overall system efficiency
and individual service response time in one flexible model.

Abdelzaher et al [13] presents the design and implementation of an adaptive architecture to
provide relative delay guarantees for different service classes on web servers. This feedback control
approach guarantees relative delays in web servers. The control-theoretic approach shows that this
adaptive server achieves robust relative delay guarantees even when workload varies significantly.

Wierman and Harchol-Balter [21] define the fairness of scheduling policies in M/G/1 queues
by the expected slow down value with respect to any job size, X, should be less than 1/(1 − ρ),
where ρ = λE(X). A scheduling policy is fair if it treats every job size fairly. They categorized
three types of unfairness, always fair, sometimes unfair, and always unfair. All non-sized based,
non-preemptive policies are always unfair, such as first-come-first-served (FCFS) policy. Based on
that, in this paper, compensations for users are made by offering a price discount proportional to
slowdown.

Chun and Culler [10] assume customer evaluation of system performance linearly decays with
slowdown. Market-based cluster batch scheduler incorporate user evaluation as user-centric per-
formance metrics as opposed to system-centric metrics which do not take customer utility into
account and thus are not good measures of resource allocations. They demonstrated experiments
in market-based FCFS and shortest job first, and concluded that market-based resource manage-
ment results in significantly more value delivered to users under a variety of workloads compared
to traditional approaches.

There are several studies that focus on pricing issues in networking. In particular, Paschalidis
and Liu [14] consider a pricing scheme that is based on the congestion level of the network. However,
they show that static pricing is (asymptotically) optimal. Further, they add that an optimal
adaptive pricing policy may not be able to outperform (in terms of revenue) an appropriately
chosen static price that does not depend on congestion levels. This insight is used in two of the
strategies where a static price and only incorporate admission control have been considered.

3 System Model and Assumptions

Since the main objective of this paper is to illustrate the adaptive pricing and admission control
schemes, a simple web service scenario with a single web server is considered in this paper. The
goal of the web service is to maximize the revenue, and at the same time, to be fair to the users in
terms of what they pay for their request service size and quality of service they get.

A combination of pricing and admission control strategy is proposed in this paper. The 2-level
architecture is illustrated in Figure 1. The server dynamically (or statically) determines the price
to charge each request. The clients will be informed the current price when they arrive. The clients
can choose to accept the price and enter the system or choose to leave the system if the price is too
high for them. After the clients enter the system, the server can impose a second-level admission
control and reject requests to improve system performance and service profit. For example, this
second-level admission control can be based on the state of the system such as the queue length
(the request will be rejected if the queue length exceeds a threshold value) or based on certain
profit constraints (e.g. the request will be rejected if profit becomes negative).

3

Figure 1: System Architecture for 2-level Control

The price charged on each request will affect a client to enter or leave the system and thus affect
the arrival rate that really enters the system. That is, if the price is too high, there will be less
clients entering the system, and if the price is too low, the server cannot make a good revenue even
though they have served more clients. This pricing scheme reflects the supply/demand interaction
in an economic market by incorporating the effect of price on consumers’ behavior.

In this paper, a representative demand curve has been considered characterizing the relation of
price (p) versus the probability (q) that an arriving customer would accept the price and enter the
system. In particular, it considers a decreasing, differentiable and invertible function f(·) such that

q = f(p). (1)

This control design and optimization schemes do not depend on the choice of f(·). However for
numerical results, the following function is chosen f(p) = 1 − p2/G2 (where G is a constant).

Let λ be the customer arrival rate, then the expected number of customers that accept the price
in a unit of time is λ = qλ = f(p)λ. Note that λ is the effective arrival rate that actually enters
the system.

The web server serves the requests that enter the system in an FCFS manner. For each request,
the server (i) charges a fixed price p as described as above, (ii) charges a rate a per unit time of
service that the user requests (i.e. the charge of a request is proportional to the byte size of the
requested file), and (iii) pays a penalty with a rate c per unit of slowdown experienced by an arrival
into the system, which is defined (as in [21]) as the ratio of response time and service time. Let S
be the service time requirement of a request and W be the response time experienced by the user.
Then, the expected revenue gained by server from a single request is p+aE[S]− cE[W

S]. Assuming
that the service time requirement is independent and identically distributed (iid), since λ is the
number of customers that accept price p per unit time, the expected revenue per unit time (R) for
the server is:

R = λ

(
p + aE[S] − cE

[
W

S

])
, (2)

Notice that the arrival and service distribution are required to compute R in closed form. This
paper fixes the parameters a and c as constant, and run numerical examples based on several set
of values of them (see section 5). The server dynamically determines the price p to maximize the
revenue and then informs clients the price p along with the parameters (a, c) on the fly.

4

4 Admission Control Strategies

Figure 2: One day’s arrival rates

Figure 3: One week’s arrival rates

Requests, in terms of volume, to web servers vary drastically through the day (see Figure 2
plotted from [8]) and through the week (see Figure 3 plotted from [7]). In order to efficiently
operate web servers it is important to control traffic appropriately at different times of the day.
Firstly it is required to determine how often to evaluate and change the price p. The obvious
answer “whenever the arrival rates change significantly” is not easily implementable as the traffic
is extremely stochastic. Therefore it is not clear if the traffic rate changes are purely statistical.
In order to appropriately breakdown the data sets into intervals of time, this paper starts with
24 hours as the initial interval and reduce it until it is observed that the inter arrival times are
iid. Although for extremely self-similar traffic such an interval may be hard to find, for the traces
used here (specifically [8, 6, 7]) it was found that within a 1-hour interval all traces exhibited iid
inter-arrival times.

The main criterion for deciding pricing and control strategy is revenue obtained by the web

5

service provider. Note that customer QoS (in terms of slowdown) is taken into account by charging
a penalty. By autonomically setting price as well as admitting arriving requests, the revenue gained
by the web server is maximized. The question to ask is what price in each period (of one hour) and
control strategies to use. In order to determine this, at first the system workload has been studied,
both in terms of arrival patterns and service requirements.

This paper assumes that workload information in terms of arrival rates are not available. It uses
models based on time-series analysis to predict the mean arrival rates based on recent history as well
as time-of-day (or seasonality effects). These time-series models are trained using historical data.
Various models to predict workload have been considered (based on [18]) and the auto-regressive
AR(1) model with seasonality SAR(2) is the final choice. Actual arrival rates versus predicted
arrival rates for the three traces [8, 6, 7] are illustrated in Figure 4.

Figure 4: Actual versus predicted arrival rates

The time to serve (or process) a request is directly proportional to the size of the document
requested. Using historical data the mean and variance of service times are obtained which are
used in the analysis. For the analysis it is assumed that service times are independent and are
sampled from an appropriate distribution (such as Pareto) whose parameters are obtained from
the estimates of mean and variance of service times. However for the numerical calculations, real
traces are used which include size of the document requested.

The optimal solution to the combined problem of pricing and admission control is intractable
[23]. The paper develops three heuristics and compare them with a base line “do nothing” strategy.
The next four subsections describe the following four strategies respectively: 1. Do nothing; 2.
Static pricing and queue-length-threshold-based admission control; 3. Dynamic optimal pricing
under no admission control; 4. Static pricing and nonnegative-profit-based admission control.

6

4.1 Strategy 1: Do nothing

This strategy is called “do nothing” because nothing is done to control admission of a request to the
server. All requests are assigned price p = 0 in every interval. In addition, all arriving requests are
admitted into the server. Therefore this strategy serves as a benchmark as it most closely represents
the current web server implementation. By comparing other policies with this one, the improve-
ment in revenue that one can expect by appropriately tuning the knobs, can be determined . Notice
that users are still charged a price a per unit time served and a discount of c per unit of slowdown.
This strategy clearly forms a lower bound on the revenue. For the fifth day of [7] the arrival rates
are plotted along with the price and the admission policy (1 implies admit and 0 reject) in Figure 5.

Figure 5: Arrival rates, price and admission policy for Strategy 1

4.2 Strategy 2: Queue length threshold and static price

Gautam and Seshadri [11] suggest that in web servers with self-similar arrivals, by selectively turn-
ing away requests in periods of high demand, the system performance improves dramatically. They
show that by turning away about 5% of the requests at appropriate times, the queue lengths can
be reduced by half. This paper takes advantage of this finding for the strategy described below. All
users are charged a static price p, and customers are rejected whenever the number in the system
exceeds L. Obtaining optimal values of p and L are intractable. It uses a trial-and-error technique
to obtain the p and L values. For the fifth day of [7] the arrival rates have been plotted along with
the price p and the admission policy under L (1 implies admit and 0 reject) in Figure 6. Although
for Figure 6 and other numerical results, this paper obtains p and L by trying various values off-line
by dumping the trace, while implementing, various p and L values should be tried on different days
before settling on one.

7

Figure 6: Arrival rates, price and admission policy for Strategy 2

4.3 Strategy 3: Optimal price under no drop

This strategy solves the optimal price p to charge in each interval (in this case, of 1 hour length)
to maximize R in Equation (2), however no requests are rejected at the admission control stage.
Notice that this scheme requires lesser information than Strategy 2 as it does not need to maintain
any real-time system state information. In a given interval let λ be the estimated potential request
arrival rate. The actual request arrival-rate λ is calculated, such that q = λ/λ is the fraction
of traffic that accepts price p and enters the system. Based on the user-defined function f(p) in
Equation (1) between price p and acceptance probability q, it is known that given a p, λ = f(p)λ.
In order to keep the analysis tractable, it is assumed that in a period, the request arrivals are
according to a Poisson process with mean rate λ requests per unit time. For an arbitrary arrival
into the system, let Wq be the waiting time experienced in the queue (not including service) for this
request. Although the response time W and the service time S are correlated, since Wq = W − S
is independent of S, the expected slowdown can be written as

E
[W

S

]
= E

[
1 +

Wq

S

]
= 1 + E[Wq]E

[1
S

]
. (3)

Inserting the inverse function of p in terms of λ, i.e., p = f−1(λ/λ) in Equation (2) and using the
Pollaczek-Khintchine formula (assuming steady state is reached in the 1 hour interval) for Wq,

R = λ

(
f−1(

λ

λ
)aE[S] − c(1 + E[Wq]E[1/S])

)

= λ

(
f−1(

λ

λ
) + aE[S] − c(1 +

0.5λE[S2]
1 − λE[S]

E[
1
S

])

)
. (4)

In order to obtain E[1/S] in the above equation, the distribution of the service times needs to be
known. If the service times are according to a Pareto random variable with cumulative distribution

8

function {1 − (K/x)β}, the revenue per unit time in terms of λ can be computed as

R = λ

(
f−1(λ/λ) + a

βK

β − 1
− c

− λcKβ2(β − 1)
2(β − 2)(β + 1)(β − 1 − Kβλ)

)
. (5)

Taking the derivative of R w.r.t. λ in Equation (5) and setting it to zero, the optimal λ∗ in the
interval [0,min(λ, 1/E[S])] is obtained. Thereby the optimal price p∗ can be calculated in terms of
λ∗ by p∗ = f−1(λ∗/λ). Notice that p∗ is a function of λ and each 1-hour interval has a different
potential arrival rate λ, the price p∗ is different. For the fifth day of [7] the arrival rates have been
plotted along with the optimal price p∗ and the admission policy (1 implies admit and 0 reject) in
Figure 7.

Figure 7: Arrival rates, price and admission policy for Strategy 3

4.4 Strategy 4: Non-negative profit and static price

This strategy drops requests whenever the revenue from that customer is negative. In achieving
this, the server needs to maintain a lot of information such as total service time requirements of
all requests ahead and including the new arrival. In addition, all users are charged a fixed and
static price p. Obtaining optimal values of p in closed form is analytically intractable. However a
trial-and-error technique has been used to obtain p.

For the fifth day of [7] the arrival rates have been plotted along with the price p and the above
admission policy (1 implies admit i.e. when revenue is positive and 0 reject otherwise) in Figure
8. Similar to Strategy 2, for the results in Figure 8 and others in this paper, p has been obtained
by trying various values on the same trace, however while implementing, various p values should
be tried on different days before settling on one.

9

Figure 8: Arrival rates, price and admission policy for Strategy 4

5 Evaluation Results

The four strategies described in subsections 4.1 – 4.4 are recapitulated first. Consider a potential
customer that arrives at time t. Upon knowing the price p at time t, the customer joins the sys-
tem with probability f(p) and leaves with probability 1 − f(p). If the customer were to enter the
system at time t, the total number of customers in the system would be X(t) and the total work
remaining for the server to complete (i.e. response time of this customer) is W (t). Thereby the
revenue gained R(t) upon accepting this customer (with service-time requirement S(t)) for service
is R(t) = p + aS(t) − cW (t)/S(t). The server needs to make 2 decisions: the price p and admis-
sion control (whether or not to admit the request after it enters the system). Table 1 summarizes
he four strategies for these two decisions where information on implementability and computation
complexity for each strategy is listed as well.

In order to compare the four strategies, numerical experiments have been performed and eval-
uation for the revenue obtained under the four strategies has been done. Eight experiments have
been performed with different numerical values illustrated in Table 2. In that table, λtr denotes
the mean arrival rate over an entire 7 day period. For all the experiments the pricing function is
f(p) = 1 − p2/G2. For tests 1 to 4, trace [7] was used and for tests 5 to 8, trace [6] was used.

Upon running multiple replications of simulations on the real traces of the eight test problems,
grand average revenue per second for the four strategies was obtained. The results are illustrated
in Figure 9. It is clear from Figure 9 that the do nothing strategy performs very poorly. Hence
it can be concluded that by rejecting some customers (either via a pricing scheme or admission
control) it is possible to make the system extremely profitable. In addition, it must be noted that
in all cases strategy 3 which uses very minimal information performs reasonably well. In fact to
obtain p for strategies 2 and 4 is extremely time-consuming and has to be done by trial and error.
In addition, strategy 3 is fair to customers of various sizes in terms of dropping customers. In order
to avoid negative revenue, strategy 4 will reject small file size requests. Strategy 2 is not as bad as
strategy 4 but it serves much fewer smaller sized files than strategy 3.

10

p Admission policy

1 p = 0 always; Always admit;
Easy to implement; Easy to implement;
Computation easy. Computation easy.

2 Computed by search; Admit if X(t) < L
Does not vary from where L is found
interval to interval; by trial and error;
Easy to implement; need X(t) to implement;
Computation hard. Computation hard.

3 p = argmax{R} Always admit
using formula; need

arrival rate and service
time moments; p varies from

interval to interval;
Update p to implement; Easy to implement;

Computation easy. Computation easy.
4 Computed by search; Admit if R(t) > 0

Does not vary from
interval to interval;
Easy to implement; need R(t) to implement;
Computation hard. Computation easy.

Table 1: Comparing the 4 strategies

In terms of comparing revenues for the different strategies, see Figures 10, 11 and 12. There
are no graphs for strategy 1 as it does not incur any positive revenue. There are three sources of
revenue, the fixed revenue (p term), the revenue based on file sizes (a term) and the cost for reim-
bursing customers experiencing huge slowdowns (c term). For most strategies, when the revenue
is low, medium and high, the c terms, p term and a term dominate the revenue respectively. Also
notice that only a negligible fraction of requests have very high revenue or negative revenue (as
compared to strategy 1). This indicates that all strategies in some sense perform very well and the
spread of revenue is fairly homogeneous.

6 Concluding Remarks

This paper considers a web hosting service that charges users for the files they request. In return
the web service provides QoS by offering discounts on the price if they experience slowdowns. Re-
quest arrival rates to web servers vary greatly during the course of a day (and a week). The web
servers have two parameters they control - (1) the price a customer is charged which is based on
arrival rates and the customer has the option of accepting or rejecting the service upon seeing the
price; (2) if a customer accepts a price, the web server can accept or deny the request which is
based on the state of the server in terms of number of jobs and amount of service remaining.

In order to make the two decisions (price and admission control) autonomically, this paper
develops and evaluates 3 heuristics (with varying degrees of performance, implementability and
computational complexity) to solve the optimization problem at different points in time. This is

11

Test a c G λtr E(S)
√

V ar(S)
1 40 0.04 20 2.49 0.251 0.987
2 40 0.04 15 2.49 0.251 0.987
3 4 0.04 20 2.49 0.251 0.987
4 4 0.04 15 2.49 0.251 0.987
5 4 0.07 20 2.42 0.166 0.62
6 4 0.07 15 2.42 0.166 0.62
7 40 0.07 20 2.42 0.166 0.62
8 40 0.07 15 2.42 0.166 0.62

Table 2: Numerical values for experiments

Figure 9: Revenue per second using the 4 strategies

with the understanding that it is intractable to make both decisions in an optimal and dynamic
manner. The three heuristics are compared against a 4th strategy “do nothing” policy that accepts
all customers and charges them with p = 0 . It is observed that the “do nothing” policy performs
very poorly. However the policy where only the price is controlled but all entering customers are
accepted, performs reasonably well. This policy also uses very little information about the state
and the environment, and is fair. Other policies such as the static threshold policy (strategy 2) and,
non-negative profit and static price policy (strategy 4) are also evaluated. They perform extremely
well, indicating that an appropriately chosen static price with admission control can perform similar
or better than an adaptive price scheme with no admission control.

Using the results of this initial study, the authors intend to extend the analytical model (strat-
egy 3) to incorporate admission control as it promises to improve the performance. In addition
they will investigate other models for obtaining the price, although they must say that the Poisson
approximation for traffic did perform reasonably well. In future the authors would like to extend
the analysis to other scheduling policies besides FCFS. The user behavior with respect to other
price parameters such as a and c has also been considered . Other extensions include multiple
classes of traffic, power issues, etc.

12

Figure 10: Revenue distribution for strategy 2

Figure 11: Revenue distribution for strategy 3

Acknowledgements

This research is partially supported by NSF grant ACI-0325056 “Data-driven Autonomic Perfor-
mance Modulation for Servers”.

13

Figure 12: Revenue distribution for strategy 4

References

[1] S. H. Clearwater, 1996. Market-based control. A paradigm for distributed resource allocation.
World Scientific, Singapore.

[2] B. A. Huberman, 1988. The Ecology of Computation. North-Holland, Amsterdam.

[3] Buyya. R, 2002. Economic-based Distributed Resource Management and Scheduling for Grid
Computing. Monash University, Melbourne, Australia.

[4] T. F. Abdelzaher and C. Lu, 2000. Modeling and performance control of Internet servers. In
39th IEEE Conference on Decision and Control, Sydney, Australia, pages 2234–2239.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch, 2002. Hippodrome:
running circles around administration. In FAST ’02, Monterey, CA, pages 175–188.

[6] S. Balbach, 1995. Clarknet-http server logs, August 28, 1995 - September 03, 1995. In
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html.

[7] S. Balbach, 1995. Clarknet-http server logs, September 04, 1995 - September 10, 1995. In
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html.

[8] L. Bottomley, 1995. Epa-http server logs. In http://ita.ee.lbl.gov/html/contrib/EPA-
HTTP.html.

[9] A. Chandra, W. Gong, and P. Shenoy, 2003. Dynamic resource allocation for shared data
centers using online measurements. In ACM/IEEE International Workshop on Quality of
Service (IWQoS), Monterey, CA, pages 381–400.

[10] B. Chun and D. Culler, 2002. User-centric performance analysis of market-based cluster batch
schedulers. In 2nd IEEE Intl. Symp. on Cluster Computing and the Grid, Berlin, Germany,
pages 22–30.

14

[11] N. Gautam and S. Seshadri, 2002. Performance analysis for e-business: Impact of long range
dependence. Electronic Commerce Research, 2(3):233–253.

[12] IBM. Total cost of ownership, 2003. In http://www-
1.ibm.com/servers/solutions/serverconsolidation/tco/.

[13] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son, 2001. A feedback control approach for
guaranteeing relative delays in web servers. In IEEE Real-Time Technology and Applications
Symposium, Taipei, Taiwan, pages 51–62.

[14] I. Paschalidis and Y. Liu, 2002. Pricing in multiservice loss networks: Static pricing, asymp-
totic optimality, and demand substitution effects. IEEE/ACM Transactions on Networking,
10(3):425–438.

[15] B. Schroeder and M. Harchol-Balter, 2003. Web servers under overload: How scheduling can
help. To appear in 18th International Teletraffic Congress, Berlin, Germany.

[16] H. P. Services, 2003. Getting serious about tco. In
http://www.hp.com/hps/spotlight/index tco.html.

[17] K. Shen, H. Tang, T. Yang, and L. Chu, 2002. Integrated resource management for cluster-
based Internet services. In Fifth USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), Boston, MA, pages 225–238.

[18] R. Shumway and S. Stoffer, 2000. Time Series Analysis and its Applications. Springer, New
York, NY.

[19] V. Sundaram and P. Shenoy, 2003. A practical learning-based approach for dynamic storage
allocation. In ACM/IEEE International Workshop on Quality of Service (IWQoS), Monterey,
CA, pages 479–497.

[20] B. Urgaonkar, P. Shenoy, and T. Roscoe, 2002. Resource overbooking and application pro-
filing in shared hosting platforms. In Fifth Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, pages 239–254.

[21] A. Wierman and M. Harchol-Balter, 2003. Classifying scheduling policies with respect to
unfairness in an m/g/1 queue. In ACM SIGMETRICS, San diego, CA, pages 238–249.

[22] Q. Zhang, E. Smirni, and G. Ciardo, 2003. Profit-driven service differentiation in transient
environment. In MASCOTS, Orlando, FL, pages 230–233.

[23] S. Stidham, 1992. Pricing and capacity decisions for a service facility: stability and multiple
local optima. In Management Science, 38(8): pages 1121–1139.

15

