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Abstract—The dynamic and unpredictable nature of energy
harvesting sources available for wireless sensor networks, and
the time variation in network statistics like packet transmission
rates and link qualities, necessitate the use of adaptive duty
cycling techniques. Such adaptive control allows sensor nodes
to achieve long-run energy neutrality, where energy supply and
demand are balanced in a dynamic environment such that the
nodes function continuously.

In this paper, we develop a new framework enabling an
adaptive duty cycling scheme for sensor networks that takes
into account the node battery level, ambient energy that can be
harvested, and application-level QoS requirements. We model
the system as a Markov Decision Process (MDP) that modifies
its state transition policy using reinforcement learning. The MDP
uses Continuous Time Markov Chains (CTMCs) to model the
network state of a node in order to obtain key QoS metrics
like latency, loss probability and power consumption, as well as
to model the node battery level taking into account physically
feasible rates of change. We show that with an appropriate choice
of the reward function for the MDP, as well as a suitable learning
rate, exploitation probability and discount factor, the need to
maintain minimum QoS levels for optimal network performance
can be balanced with the need to promote the maintenance
of a finite battery level to ensure node operability. Extensive
simulation results show the benefit of our algorithm for different
reward functions and parameters.

I. INTRODUCTION

Wireless sensor networks (WSNs) can be used in a large
number of applications, such as environmental and structural
health monitoring, weather forecasting [1]-[3], surveillance,
health care, and home automation [4]. A key challenge that
constrains the operation of sensor networks is limited lifetime
arising from the finite energy storage in each node [5].
However, recent advances in energy harvesting technologies
are enabling the deployment of sensor nodes that are equipped
with a replenishable supply of energy [6]-[10]. These tech-
niques can potentially eliminate the limited lifetime problem
in sensor networks and enable perpetual operation without the
need for battery replacement, which is not only labourious and
expensive, but also infeasible in certain situations.

Despite this, the uninterrupted operation of energy
harvesting-powered wireless sensor networks (EH-WSNs)
remains a major challenge, due to the unpredictable and
dynamic nature of the harvestable energy supply [5], [11].
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Fig. 1. Main components of proposed adaptive scheme. Quantities that
fluctuate due to environmental influences are marked in green.

To cope with the energy supply dynamics, adaptive duty cy-
cling techniques [11]-[17] have been proposed. The common
underlying objective of these techniques is to attain an optimal
energy-neutral point at every node, wherein the energy supply
and energy demand are balanced. Also, other works focus
on optimizing energy consumption in EH-WSNs by formu-
lating the response to a time-varying harvesting profile as a
Markov Decision Process (MDP) or other probability-driven
processes [18], [19]. These energy-oriented techniques tend to
focus primarily on obtaining the optimal per-node duty cycle
to prolong network lifetime, while neglecting application-
level quality of service (QoS) requirements [20]-[22]. More
recently, adaptive duty cycling techniques involving MDPs
have been proposed that focus on achieving energy efficient
operations while considering a subset of the QoS requirements
(such as throughput or delay) with full channel state informa-
tion [23]-[27], but without considering the long-term energy
availability of the system or tolerating ambiguity in the state
information.

In this paper, we develop a novel framework enabling an
adaptive duty cycling scheme that allows network designers
to trade-off between both short-term QoS requirements and
long-term energy availability using an adaptive reinforcement
learning algorithm. In our framework, the QoS metrics of
the system are estimated based on knowledge of the average
performance of the network, such as the average packet
transmission and probing rates, without necessarily requir-
ing knowledge of the full channel state information. These
quantities can be monitored online or estimated offline with a
time delay depending on the requirements of the system. Fig.
1 illustrates the main components of such a scheme, which
comprises the following: (i) energy harvesting controller; (ii)
adaptive duty cycle controller; and (iii) wakeup scheduler.



The energy harvesting controller provides information on
the amount of harvested energy that is currently available,
while predicting the harvested energy available within the next
few hours, depending on the diurnal cycles of the energy
sources. The adaptive duty cycle controller computes the
optimal operating duty cycle based on user inputs (in the form
of application QoS requirements) and the available amount
of harvested energy. The wakeup scheduler will then: (i)
manage the sleep and wake interfaces of each node, based
on the recommended operating duty cycle, and (ii) provide
feedback to the adaptive duty cycle controller on the energy
consumption of and remaining energy in the node. This
feedback loop allows the duty cycle controller to adapt its
duty cycle, based on the harvested and remaining energies -
in order to meet QoS requirements - via operating policies
such as energy neutrality.

In our previous work [28], we developed a duty cycle con-
troller key to the energy-aware operations of a sensor network.
Using a Continuous Time Markov Chain (CTMC) model, we
derived key QoS metrics including loss probability, latency,
as well as power consumption, as functions of the duty cycle.
(We define these metrics more explicitly in Section III-B.)
We then formulated and solved the optimal operating duty
cycle as a non-linear optimization problem, using latency and
loss probability as the constraints. We validated our CTMC
model through Monte Carlo simulations and demonstrated that
a Markovian duty cycling scheme can outperform periodic
duty cycling schemes. In this paper, we extend the previous
work and enhance the duty cycle controller by considering the
battery level and energy harvesting rate. We then formulate
the adaptive duty cycle problem as a MDP model. The states
of the MDP model correspond to the energy consumption
rates at which the node can operate. The actions refer to the
transition rates between the various duty cycle values that the
node can adopt. The reward function is derived based on the
QoS parameters derived in the previous paper, as well as on
the energy availability of the battery based on a fluid model
[29]-[31] that indicates the ability of the node to function
continuously. While finding the optimal duty cycle scheme
to operate under is a nonconvex optimization problem which
is hard to implement on-line, we propose a relatively simple
on-line approach which uses reinforcement learning [32], [33]
to heuristically update the reward function to approximate
convergence. We also use extensive simulations to show that
the MDP converges to a desirable result quickly, and to
compare our approach with a random approach to demonstrate
the performance of the MDP scheme.

In this work, we make several key contributions: (i) we
enable a WSN to determine its duty cycle control through
simultaneous consideration of the energy supply dynamics
and application-level QoS requirements; (ii) we establish
a reward framework that allows the network to tune the
relative importance of the energy availability and the QoS
requirements; (iii) we implement a reinforcement learning
algorithm that converges to a desirable solution quickly and
with lower computational complexity than convergence to a
fully optimal solution; and (iv) we allow the system to adapt
to changes in the environment and/or the network that occur

at timescales larger than the convergence time of the learning
curve. In Fig. 2, we provide an approximate comparison of
the timescales involved in our system.

The rest of the paper is organized as follows. Section II
provides details on the key assumptions used in the system
model for a battery-free framework. In Section III, we derive
network performance metrics using a CTMC model. We
extend the system model to incorporate battery levels in
Section IV, and describe the behaviour of the battery with
another CTMC model in Section V. In Section VI, we allow
the system to determine the optimal rates of transition between
its constituent states using a MDP model. Simulation results
are presented in Section VII. Section VIII concludes the

paper.

II. SYSTEM MODEL FOR BATTERY-FREE FRAMEWORK

In this Section, we develop a probabilistic model that
describes the features of a single WSN node, i.e. data re-
ception from other nodes and data transmission towards the
gateway (GW) via another node. Both this node and its
recipient node are duty cycled, and several QoS parameters
are investigated as functions of this duty cycle. Under the
framework developed in this Section, we do not consider
the role of energy harvesting. Thus, we assume the network
is powered by mains electricity, and the effective battery
capacity of each node is unlimited (although we would still
try to minimise the energy consumption of each node). In
Section IV, we will generalise our framework by considering
energy harvesting nodes.

We now present all the statistical assumptions of our
framework and provide details of various system components
required, such as the traffic model, channel model and packet
transmission schemes. The notation used in this section is
shown in Table I.

1) Node State: Each node v; is in one of the following
states N; € {0,1} at any point in time, where N; = 0
and N; = 1 denote that v; is in the asleep and awake
states respectively. The duration ¢ that node v; is in each
of the states IN; is a random variable that follows an
exponential distribution:

Yire V>0
t) = 1
p(t) {0 £ <0, (1

where v;, © € {0, 1} are the rates of the asleep and awake
states. The average long-term fraction of time that the
node is awake is given by ¢ = ﬁ where T' = 7—10 + %
is the average cycle time.

2) Traffic Model: The number of data packets d, generated
by each node follows a Poisson distribution with an aver-
age rate of )¢ packets per unit time, i.e., dy ~ Pois(Ap).
In addition, the node receives d,, packets from all of its
neighbours according to a Poisson process d,, ~ Pois(\).

3) Wireless Channel Model: The time-varying wireless link
quality is modelled by the classical Gilbert-Elliot Marko-
vian model [34], [35] with two states L € {0,1}, where
L = 0 and L = 1 denote that the channel quality is
bad and good respectively. The duration ¢ that a node is



Fig. 2.
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Comparison of timescales involved in our system.

TABLE I
NOTATION USED IN SECTION II

Notation Description Value

v J-th node N.A.

Vg Downstream node N.A.

N Awake or Asleep states of v, {0,1}

Yi Respective rates of asleep (IN; = ¢ = 0) / awake (IN; = ¢ = 1) states RT

T Average cycle time % + %
q Average long-term fraction of time in which node is in the awake state M%

Ao Average self-packet generation rate R

A Average received-packet rate from nearby nodes RT

do Number of self-packets generated by each node do ~Pois(Ap)
dp, Number of received-packets from nearby nodes dn ~Pois(X)
L Wireless link quality {0,1}

c; Average rate of bad (¢ = 0) and good (i = 1) link quality states RT

B Probabilities of successfully delivered data packets when channel is in bad link quality state [0,1]

« Probabilities of successfully delivered data packets when channel is in good link quality state [0,1]

04 Intensities of probing when channel is good RT

0y Intensities of probing when channel is bad RT

Xn No Retransmissions N.A.

Xy Retransmissions N.A.

Ag Average number of successfully received packets at a node under good channel conditions RT

Ap Average number of successfully received packets at a node under bad channel conditions RT
Pasteep Power consumption of a node in the asleep state RT
Pawake Power consumption of a node in the awake state RT
Pprobe Power consumption of probing mechanism RF

Etx Energy consumed to transmit a single data packet RT

in each of the channel states is a random variable that
follows an exponential distribution:

—c;-t

ci-e t>0

2
0 t <0, &

p(t) =

where ¢;, ¢ € {0,1} are the respective rates of the bad
and good states. We let 5 and « denote the probabilities
of successfully delivered data packets when the channel
is in the bad and good states respectively. Acknowl-
edgment packets are assumed to always be delivered
successfully.

4) Probing Mechanism: The network utilizes probes to
determine if an arbitrary downstream node vy is in an
awake state N = 1, prior to the commencement of
data transmission. The probing mechanism is modelled
as a Poisson process, with intensities 6, and 6, when the
channel quality is good and bad respectively. The recep-
tion of a probe-acknowledgment by the transmitter node
v; indicates that vy, is awake; v; will then instantaneously
transmit all its data packets to vy.

5) Transmission Schemes: We consider two transmission

schemes:

a) No Retransmissions: data packets that have not been
successfully delivered to the receiver (due to poor
channel quality) will not be retransmitted. The corre-
sponding average numbers of packets that successfully
arrive at a node under good and poor channel condi-
tions are denoted as A\, and A, respectively, where

Ap = B '(j‘y. We denote this scheme by A,.

b) Retransmissions: data packets are retransmitted un-
til they are successfully delivered to the receiver.
The corresponding average number of packets that
successfully arrive under this scheme is A, where
Ag = Xy = A. The effective packet arrival rate when
the node is in the awake state is %. We denote this
scheme by X..

6) Power Consumption Parameters: The power consump-
tions of a node in the asleep and awake states are Pygieep
and P qke respectively. The power consumption of the
probing mechanisms is denoted as Pp.op.. The energy
incurred to transmit a single data packet is ;.

With these definitions, we now present in the next Section



a probabilistic model based on a Continuous Time Markov
Chain (CTMC) model, and derive the QoS parameters of
interest.

III. CTMC MODEL FOR NODE PERFORMANCE STATE
(BATTERY-FREE; FIXED DUTY CYCLE)

In this Section, we design a probabilistic model to de-
scribe the performance of a single node in the WSN for a
fixed duty cycle g. To this end, we model the system as a
CTMC, as shown in Fig. 3. In addition, we assume that the
system evolves independently of the battery level, as we will
be using this model to generate instantaneous QoS metrics
for the system, assuming in addition that the timescale of
energy fluctuations exceeds the timescale of packet traffic
equilibration (i.e. the convergence time of this CTMC). The
notation used in this section is shown in Table II.

Fig. 3. CTMC model of a two-node section of a network. The CTMC is
guided by the transition rate matrix Q.

A. CTMC State Space Model

We consider a 4-tuple CTMC state space as follows:

1) Node buffer: Each node has a FIFO buffer of finite size
B. The number of packets in the finite queue is denoted
by b€ {0,1,...,B}.

2) Node state: As mentioned in Section II, each node v;
is in state N; € {0,1} at any one time, depending on
whether it is asleep (N; = 0) or awake (N; = 1).

3) Downstream node state: An arbitrary downstream (re-
ceiving) node vy, is in state Ni, € {0, 1} at any one time,
depending on whether it is asleep (N, = 0) or awake
(N, =1).

4) Link quality: The wireless link quality is in state L €
{0, 1} at any one time, depending on whether the channel
is bad (L = 0) or good (L = 1). (We note that it is
straightforward to extend the analysis to multiple link
quality states.)

Given these definitions, the state space S can be written as
the following Cartesian product S = {0,1,...,B} x {0,1} x
{0,1} x {0,1} € RIPIXIN;IXINeIXILl The corresponding
cardinality of the state space is given by |S| = 8(B + 1).

B. QoS metric definitions
We now present the following key QoS metrics of interest:

o loss probability due to wireless channel transmission
errors and packet drops arising from buffer overflows,
denoted 7 (q);

e latency incurred by holding packets in the transmission
queue, denoted ¢ (q);
o and average power consumption incurred by a node,
denoted p (q).
In the next Lemma we present the derived expressions
for these QoS metrics for the two cases under consideration,
namely the Retransmissions and No Retransmissions schemes.

Lemma 1. QoS metrics under Retransmissions scheme
The QoS parameters are given by (5).

Proof. See Appendix A. O

Lemma 2. QoS metrics under No Retransmissions scheme
The QoS parameters are given by (6).

Proof. See Appendix B. O

By defining parameters (e.g. packet arrival rates Ay and
A, probing intensities 6, and ¢,, and maximum buffer size
B) of the transitive matrix Q according to parameters of the
actual sensor network, we can obtain the optimal duty cycle
q in terms of the asleep and awake rates vy and ;. This is
presented next.

C. Optimal Duty Cycle

To find the optimal duty cycle, different criteria can be
considered. Here, we choose to find the duty cycle which min-
imizes the power consumption, while satisfying application-
level QoS constraints. We note that other criteria could be
considered and our framework is general enough to handle
them as well.

For our criterion, the resulting optimisation problem is
given as follows:

g = arg min p(q) subject to  7(q) < mo,£(q) < lo,q >0
q

3)

where my and ¢ are pre-defined latency and loss thresholds.
Recall that 77 and 7y can be expressed as functions of ¢

and the average cycle time 7" as follows:

1 1
= — Yo =
T-q T-(1-q)

Thus, we can further simplify the optimisation problem to
a single parameter optimization problem by defining 7" and
solving for 7; and 7. Hence, even though the optimization
problem in (3) does not have an analytical closed form
expression, it is easy to find the optimal ¢ (denoted ¢*)
numerically via simple evaluation on a finely divided grid.
In Fig. 4, we plot the optimal duty cycle of the system after
constraint optimization for various latency and loss probability
constraints, as well as for different sets of system parameters.
Note that there are regions in which the constraints cannot be
satisfied simultaneously.

" 4)

IV. SYSTEM MODEL FOR FRAMEWORK WITH FINITE
BATTERY LEVEL AND ENERGY HARVESTING

In this Section and the next, we develop a framework
that describes the evolution of the battery level of a single



TABLE I
NOTATION USED IN SECTION III

Notation Description Value
B FIFO buffer size VAS
b Number of packets in finite queue be{0,1,---,B}
Ny Awake or Asleep states of vy, {0,1}
S State space {0,1,---,B} x {0,1} x {0,1} x {0,1}
Sk Arbitrary state s €S
Pk Steady-state probability of state sy, (0,1)
Q Transition matrix of CTMC for node performance states N.A.
w(q) Loss probability [0, 1]
b Average number of packets in the buffer RT
Ae Effective packet arrival rate at the node RT
£(q) Latency L= )\—bﬁ
p(q) Average power consumption of node v; RT
1
(q) = Z PB.1,0,k(A g+ o) Z PB,1,1,k (A q+ Xo) Z DB,0,0,kA0 Z DB,0,1,kA0
A/Q+>\o+’Yo+V1+0k Mgt ot 2nt0ta Ao+ 2nta Ao+ttt

1 1
t(q) = PN )\0 ZZ kzzobpb,m,k (5)

0 i=0 j=
B 1 1 B 1 1 B 1 1 A
14 (q asleep Z DPv,0,5,k + Pawak:e Z Z Zpb,l,j,k + 7Dprobe Z Z Zpb,l,j k + — ﬂ/OL + >\O)gta:
b=0 =0 k=0 b=0 j7=0 k=0 b=1 =0 k=0
r(q) = PB,1,0,0(Ab/q + Ao) PB,1,1,0(As/q + Xo) PB,0,0,0\0 PB,0,1,0\0
)\b/q+)\0+’70+’71+00 )\b/q+)\0+2’71+9+00 Ao + 2790 + ¢o Ao +v +71+co
PB,1,0,1(Ag/q + o) PB,1,1,1(Ag/q + No) PB,0,0,1A0 DB,0,1,1A0
g/Q+>\o+70+71+01 g/Q+/\o+2’70+71+C1 A+20+ca Adt+twt+tnta
(6)
e 3) ) DITRELES 3 9 DT
b=0 i= 0] 0 b=0 =0 =0
B 1 1
P (q) = Pasleep Z Z Zpb,[),j,k: + Pawake Z Z Zpb,l,j,k + Pp'robe Z Z Zpb,l,j,k + ()\ + )\O)gtw
b=0 j=0 k=0 b=0 j7=0 k=0 b=1 j=0 k=0
(a) (b) (C)

Fig. 4. Optimal duty cycle as a function of the QoS constraints for different sets of system parameters. The optimal duty cycle is represented by a colour
whose corresponding value can be read off from the colour bar. Steps are observed because the duty cycle was sampled discretely.

node with finite battery capacity and the capability to harvest can be designed to control the performance of the network,
energy from the environment. Under the constraints of this namely the transition rates that govern the transition of the
framework, we eventually identify a set of variables that battery state between different rates of energy harvesting and



consumption. The consumption rates were previously derived
in Section III. Note that the battery states in this Section and
the next are distinct from the CTMC states of Sections II
and III, which describe the network status and capacity of the
node.

Here, we provide details of additional system components
required in this framework, in particular the battery model and
its time evolution. The notation used in this section is shown
in Table III.

1) Battery Model: The battery level X (¢) of the sensor node
is treated in a continuous fashion, i.e. X () € R and
X(t) € [0,C], where C is the capacity of the battery
and ¢ > 0.

2) Rate of Change of Battery Level: In reality, the rate
of change of X (t) can take any value in a continuous,
bounded interval [Xmim Xmax] where Xy and X pax are
the minimum and maximum possible rates determined
by the battery chemistry, the maximum harvesting power
available, and the maximum power consumption of the
node.

We model this with a fluid model by sampling mn possi-
ble rates within this interval, and defining the cardinality
of the state space of the battery to be mn. Let Z(t) be the
state of the battery at time ¢. When Z(t) is in some state

1 €T ={1,2,...,mn}, the evolution of the process
satisfies
0,7;) if X(t)=0,
s [mOr) X0
S =T ifo<X@t)<C, (D
min(0,7;) if X(t) =C,

where r; is the rate governing the process evolution
corresponding to state ¢ provided the battery is neither
full nor empty. In this model, if the battery is full,
the rate of change of X (¢) with respect to time cannot
take positive values; if the battery is empty, the rate of
change of X (¢) with respect to time cannot take negative
values. This allows us to model the continuous nature
of the battery level using a set of discrete states that
best describe the time evolution of the battery level by
characterizing the most common rates of change in the
battery level.

Physically, the change in the battery level X (¢) is driven

by two processes: the harvesting of energy from the

surroundings at rate hy, and the consumption of energy

by the system at rate u;.

a) Discretized Energy Harvesting Rate: In reality, the
energy harvesting rate hj can take any value between
zero and the maximum physically possible harvesting
rate hp.. We model this by sampling m possible
harvesting rates between zero and fpax-

b) Discretized Energy Consumption Rate: In reality,
the energy consumption rate u; can take any value
between zero and the maximum physically possible
consumption rate wum,c. We model this by sampling
n possible consumption rates between zero and Upx-
As demonstrated in our previous paper [28], u; can be
modelled as a monotonic function of the duty cycle q.

c) Discretized Rate of Change of Battery Level: Now,
we set k,l € Z, k € (0,m] and | € (0,n], and we
define

Tn(k—1)+1 = hik — uy, (3

choosing {h.} and {u;} such that the resulting r; are
unique. Note Xpin = —Umax and Xpax = Amax-

V. CTMC MODEL FOR NODE BATTERY STATE
(VARIABLE DUTY CYCLE)

With the model described in the previous Section, we
can now extend our framework so that it also captures the
time evolution of the battery level of a single node in the
network. Based on this extended framework, we can thereby
describe the energy availability of the battery in terms of a
probabilistic description of the amount of time the battery
level is above zero, as well as a transition rate matrix that
describes the transition of the system from one set of energy
harvesting and consumption rates to another set. By isolat-
ing the transitions between different harvesting rates from
the transitions between different consumption rates, we then
separate the influences of the environment from a potential
set of user inputs for system optimization. The notation used
in this section is shown in Table IV.

A. Characteristics of CTMC describing transitions between
battery states

Here, we introduce a CTMC that describes the transitions
between the mn battery states. This allows us to concretely
set up the battery model, as well as to generate the energy
availability required for the reward function of the Markov
decision process (MDP) to be presented in Section VI.

Suppose the CTMC has a generator matrix QMPFP =
[ge,ij]- Let us define a drift matrix

1

no 0

D= § . ©)

0 o

In addition, let

mi(t) = P(Z(t) = j|Z2(0) =4), i,j€T  (10)
and
my = lim P(Z(t) = j|Z(0) =4), 4jeT. (D

In other words, m;;(t) is the probability that the battery
is in state j at time ¢ given that it was initially in state i,
and =; is the limit of m;;(t) as ¢ goes to infinity, assuming
the CTMC has a stationary distribution. As in the results
of Section III, the steady-state probabilities 7; should then
satisfy peQ2'PF = 0 and Y, p7m; = 1, where p. =
(1 T2 ... mp]



TABLE III
NOTATION USED IN SECTION IV

Notation Description Value

C Capacity of the battery RT

X(t) Battery level of the sensor node at time t [0,C]

Z(t) State of battery at time ¢ {1,2,--- ,m x n}

hi Harvesting rate of energy from surroundings 0, hmaz), k € (0, m]

uy Energy consumption rate 0, Umaz), I € (0,n]

i Rate governing the evolution of the battery at state ¢ = Z(t) Tn(k—1)+1 = his —w

Xmin Minimum battery change rate —Umaz

Xmax Maximum battery change rate hmaz

TABLE IV
NOTATION USED IN SECTION V

Notation Description Value
QMDP Transition rate matrix of CTMC describing transitions between different discretized battery evolution rates N.A.
D Diagonal matrix of all possible discretized battery evolution rates N.A.
F Cumulative transition probability of battery level (0,1)
A Energy availability [0,1]
QQ{D P Transition rate matrix of CTMC describing transitions between different discretized energy harvesting rates N.A.
Q{f[ DP Transition rate matrix of CTMC describing transitions between different discretized energy consumption rates N.A.

B. Energy availability

The probability that the node battery of the node contains
a non-zero amount of energy is given by the limiting avail-
ability, A.

Lemma 3. The energy availability A is given by
an (0)?

where Fj(x) = tlim F(t,x, j;y,4). F(t,x,j;y,1) gives the
— 00

A=1-F(0)— F(0)—...— (12)

cumulative transition probability that the battery level X (t)
is at most x at time t and that the battery is in state j, given
that the battery was originally in state i with battery level y.

Proof. See Appendix C. O

In order to increase A, we have to choose the entries of
the grand transition matrix QM PF appropriately such that the
stationary probabilities 7; give us the lowest possible values
of F;(0).

C. Decomposing the CTMC into harvesting and consumption
states

Since the harvesting and consumption processes are phys-
ically distinct, we can decompose our CTMC into two sub-
chains: one involving the transition between different harvest-
ing rates, and one involving the transition between different
consumption rates.

If we assume that the transitions between the harvesting
rates take place randomly and independently of the transitions
between the consumption rates, for example as in direct solar
radiation [36], [37], then we can define a stationary distri-
bution py, and a transition matrix Q)PF for the harvesting
states, and a stationary distribution p,, and a transition matrix
QMDP for the consumption states. We can then implement a

Markovian scheme to transition between the various consump-
tion rates. Note that p, QPP = 0, ZkeZ,ke(O,m] pun(k) =1,
puQMPF = 0 and > 1ez,1e(0,m Pull) = L. Then, pe is the
Kronecker product of the two component stationary distribu-
tions py, ® pu, while QMPP = QMDP @ gMDP

Conversely, if we assume that the harvesting rate changes
smoothly and periodically, for example as in diffuse solar
radiation [38], then we should instead take QMPF = gMPF
and assume the harvesting rate is sufficiently stationary that
we ignore the harvesting transitions in the battery model
CTMC. We then measure the harvesting rate hy regularly and
implement the MDP to be discussed in Section VI such that
r; is updated regularly. If the convergence rate of the MDP
is faster than the timescale of the variation of the harvesting
rate, then this method will be able to reasonably adapt to a
changing harvesting rate.

1) Derivation of the harvesting transition matrix (for first
assumption): Qﬂ/f DP and pn can be derived from empirical
data. For a solar-harvesting sensor node, one could measure
the time variation of solar energy over a suitably long period
of time, and then fit to the averaged data a CTMC whose
statistics match the empirical distribution of solar energy
throughout the day [36], [37].

2) Definition of the consumption transition matrix (for
both assumptions): QMPF and p, are user-defined inputs.
In the MDP formulation to follow, we generate an adaptive
transition matrix QPP based on the optimization of the
quality matrix @, = [@m 5] to be defined in Section VI-A.

VI. MDP MODEL FOR VARIABLE DUTY CYCLE

With the model described in Sections II and III, we can
quantify the performance of our system for a known duty
cycle ¢ assuming a sufficiently stationary battery level X
such that the QoS metrics obtained can be approximated as




instantaneous. Using this information, we can now construct
a duty cycle policy that allows our system to respond to
environmental variations, such as the sunlight available to a
solar-harvesting node, while cognizant of the QoS targets that
the system is required to fulfil. The effectiveness of the policy
is measured both by the QoS targets, for which a model was
provided in Sections II and III, and by the battery level, for
which a model was provided in Sections IV and V. In addition,
the policy is used to determine a good set of transition rates
between the various consumption rates described in Section
V-C. The notation used in this section is shown in Table V.

A. MDP for Variable Duty Cycle with Reinforcement Learn-
ing

In principle, we could try out every single possibility of
q for every possible harvesting rate hj; and consumption rate
u; to determine the best ¢ for each rate of change of the
battery level r;. However, this is likely to be costly in terms
of both time and computational resources. By formulating our
problem as a Markov Decision Process (MDP) driven by a
reinforcement learning algorithm, we could possibly reduce
the number of computations, perform them online instead of
offline, and make our system adaptive to changing system
parameters, such as the instantaneous packet transmission and
probing rates.

A MDP is useful to describe a decision making process
that allows the system to transit between a set of states.
MDPs have been used in various works to control duty
cycling and channel usage in WSNs [39]-[43]. The decision
maker has a set of actions that can be chosen to describe
the state transitions. Each state transition is associated with
an immediate scalar reward, which is given to the decision-
maker or learner. Here, the goal of the reinforcement learning
algorithm is to take actions, transit from one state to another,
and maximize the expected sum of the rewards in the long run.
To keep track of its rewards, the system maintains a quality
function for each state-action pair, which is a cumulative
measure of the rewards obtained so far, and consults this to
take an action (with greedy probability €;). Thus, by taking
actions, obtaining rewards and updating the quality matrix
based on this reward, the learner finally converges to a policy
which approaches maximum return of rewards.

1) States: We define the set F of states f; where [ € Z and
! € (0,n] such that each state corresponds to a unique
consumption rate ;.

2) Actions: We define the set G of actions g, such that
each action corresponds to a CTMC transition matrix
QQ{SD P corresponding to transitions between different
discretized energy consumption rates. The action space
can be designed such that each Q)" has a different
stationary distribution. Different actions will then signify
different duty cycle probability distributions in the limit
of infinite time. For example, we could design an action
that constrains the duty cycle to frequently take a low
value, and another action that constraints it to frequently
take a high value. The size of the square matrix QMPF is
n. Here, we sample the entire space of possible QPP to

obtain a representative set of transition matrices that span
the space and are physically convenient to implement.
3) Rewards: Based on the requirements of the user, be it a
need to conserve energy aggressively, to consume energy
aggressively, or to maintain a minimum level of QoS
statistics by achieving a balance between conservation
and consumption, one can define an appropriate reward
function to achieve one’s objective. Here, we define a
reward function that incorporates both QoS statistics and
some measure of the amount of energy available to the
system to balance the QoS requirements and the energy
needs of the system. Since the consumption rate u; is a
function of the duty cycle g, we can use the QoS statistics
derived in Section III to derive a reward for each state
in the MDP.
In this work, we examine two different reward functions.
The first reward function is an n-dimensional reward
column vector with the following constituent entries for
the corresponding states [

W(l) = —wxm(l) —wel(l) /0" (1) —w,p(l) +waA, (13)

for some arbitrary weights wy, we, w, and wa € RT,
and where ¢* (1) = B/(A(u;)+Xo(w;)). This definition of
the reward offers a high reward for a low loss probability,
low latency, low energy consumption and high energy
availability A. Note that since A is dependent on some
transition matrix that governs the time evolution of the
system, W (1) is not strictly a function of only the system
state [, but is a non-stationary function that varies with
time.

The second reward function is a similar column vector
with the following constituent entries

W) =4t (1) < mo,£(1) < Lo, p(l) < po, A € Ag = [Ao,—, Ao,+)
w_  otherwise

(14)

involving the latency and loss thresholds 7y and ¢
defined earlier in Section III, as well as analogous power
consumption and availability thresholds py and Ag. In
this case, the reward takes one of two discrete values
w4 or w_ instead of a continuous spectrum of values in
the earlier example.
The continuous function (13) enables users to finetune
the balance between energy availability and QoS re-
quirements, while the thresholding function (14) enables
users who are aware of the thresholds that the system is
required to satisfy, such as network engineers, to provide
a clear system input.

4) Quality: Last but not least, we associate each state f; and
action g, with a quality Q, 5.

In Fig. 5, we use a state machine diagram to illustrate the
state and action spaces of the MDP.



TABLE V
NOTATION USED IN SECTION VI

Notation Description Value

F Set of states f; corresponding to a unique u; 1€ (0,n]
QMDP Transitions between different discretized energy consumption rates for each action gs N.A.

g Set of actions gs QMDP
W (1) Reward column vector RT

A Energy availability [0,1]
Qm, i, Quality of each state f; and action g RT

Fig. 5. MDP state and action spaces. Qﬁ/f SD( £> refers to the (i, 7)-th entry
of the transition rate matrix corresponding to the s-th action.

B. Implementing the MDP

We begin our MDP by selecting a suitable initial guess for
the quality matrix Q,,, = [Qu, ], some initial state fy, and
a suitable initial CTMC transition matrix QMPF = Qﬁ{({j P,
Then, we evolve our MDP as follows: based on some tuning
parameter 0 < €; < 1, we select with probability €; the action
gs = gy € G with the highest value in the quality matrix Q,,
for the corresponding state fj, or with probability 1 — ¢; a
random action g5 = g, € G. Based on this action, we select
the fo-th row in the transition matrix Q) 4, corresponding to
the action g, and replace the fy-th row in our actual CTMC
transition matrix Q}'PF with this row. Then, we evolve the
system based on Q}/PF. When the system evolves to a new
state f1 based on this transition matrix, the reward associated
with the new state W (f;) is computed using the value of
A corresponding to the current matrix Qﬁ/{f P Next, the
appropriate entry in the quality matrix is computed using the
Q-learning method [44]

Qm,0snew = (1—=10) Q05,01 H 14 <W(f1) + ymax Qm,ls’,o]d)
(15) S

for some learning rate 0 < p < 1 and some discount factor
v € [0,1). The next action is then selected using the entries of
the updated quality matrix, and the entire process is repeated
for the entire time evolution process. The intention is to
maximize the following expectation value over all sample
paths

o0
W=k | [Tyl (16)
0

where the state of the process at time ¢ is f(¢). An optimal so-
lution will attain the maximum possible expected discounted
reward W,.. In our adaptive framework, we aim to maximize
W, for the system under consideration by tuning ¢; and p,
and choosing an appropriate set of actions G. Under this
framework, we believe the CTMC transition matrix Q}/””
increases its optimality over time in the long run and is able
to respond to changes in the system parameters.

In Fig. 6, we use a flow diagram to illustrate the reward
generation, quality update and decision-making process in the
MDP. We also summarize the process in Algorithm 1.

Fig. 6. MDP dynamics. At all times, the system evolves based on knowledge
of the current state f and the system transition matrix (QQu,q. A new action
is selected whenever the system undergoes a state transition.

Algorithm 1: Procedure for solving MDP
Input: Initial guess for @),,, initial state f = fy, initial
CTMC transition matrix Q)/P¥ = QMPF
Output: Instantaneous (actual) CTMC transition matrix
QMDP Ingtantaneous state f

initialization;

while node is functioning do

Select action g,;

With probability €;, determine if optimal action
selection is triggered;

if optimal action selection triggered then
‘ Select gs with highest corresponding value in

Q. for corresponding state f ;
else
L Select random g; ;

Update Q}/P" based on g,;

Evolve system in time based on QPP until state f
changes to fyext; /

Compute reward W ( fyex) and update corresponding
entry in Qp,;

Repeat loop

Note that under the assumption of Markovian transitions
between harvesting rates, we can choose to either establish
a different state space, action space, quality matrix and
instantaneous transition matrix for each harvesting rate, or we
can choose to evolve a single MDP and simply let it respond
to the harvesting rate variation with a time-varying reward



(in particular the variation in A). The first option is more
rigorous and is likely to provide better convergence, but the
second option could be more convenient and less intensive
to implement. Under the assumption of a smooth variation of
the harvesting rate, we can evolve the MDP as it is and allow
it to respond to harvesting rate variations with a time-varying
reward, provided the MDP convergence timescale is shorter
than the harvesting rate variation timescale.

VII. SIMULATION RESULTS

In this Section, we present some results obtained using
Monte Carlo simulations of a single node involving the simul-
taneous time evolution of the CTMCs describing the network
and battery states of the node, and of the MDP describing the
evolution of the duty cycle of the node. We first describe the
parameters and the MDP formulation used in the simulation.
We then discuss the impact of the reinforcement learning
parameters, and evaluate the performance of our algorithm for
both the continuous and discrete reward functions highlighted
in Section VI

A. Simulation set-up

The network parameters used in our simulations are de-
scribed in Table VI. For simplicity, we consider the case where
the node in question does not generate its own packets. Also,
we first consider the case where the link quality between
the nodes in the network is always good (so there is no
difference between the Retransmissions and No Retransmis-
sions schemes), and where the energy harvesting rate adopts
a constant value of 0.3 energy units per unit time for the
duration of the learning. (We relax the link quality and
constant harvesting rate assumptions in Sections VII-E and
VII-F respectively.) For the chosen set of network parameters,
this bounds the possible battery evolution rates between about
-0.03 and 0.07 energy units per unit time. Finally, we assign
our battery a capacity of 0.05 energy units.

For our MDP, we consider a relatively small state space
with 9 states, involving the regularly-spaced duty cycles {0.1,
0.2, ---, 0.9}, as well as a relatively small action space with
5 actions, to make the conclusions we derive from our sim-
ulations clearer. The infinitesimal generators corresponding
to the five actions are detailed in Appendix D, and have
corresponding stationary distributions that are centred around
states 1, 3, 5, 7 and 9 respectively. In all trials, we initialize our
MDP with a randomly chosen state, an all-zero quality matrix,
and a state transition matrix where all inter-state transitions
have a rate of 0.1 transitions per unit time, and force the MDP
to select an action immediately.

B. Reinforcement learning parameters

We highlight the effects of varying the learning rate p,
the exploitation probability €;, and the discount factor +.
In particular, we note the trade-off between decreasing the
response time of the system and maintaining the stability
of the convergence of the learning curves, and make the
observation that the reinforcement learning algorithm used
in our simulations outperforms a random decision-making
scheme.
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1) Effects of varying learning rate p: In Fig. 7, we
observe that a higher p increases the learning ability of the
system by decreasing the convergence time, but results in
higher-frequency and larger fluctuations in the learned quality
values.

2) Effects of varying exploitation probability ¢;: In Fig. 8,
we again observe that a higher ¢; decreases the convergence
time of the system at the expense of higher-frequency and
larger fluctuations in the learned quality values. In Fig. 9, we
observe that as ¢; increases, the distribution deviates more
strongly from a uniform distribution for the odd-numbered
states, which is what we would expect in a system that
selects its actions randomly. In addition, as e; increases, the
standard deviations of the probabilities decrease, suggesting
convergence towards a desirable stationary distribution. By
choosing a non-zero €;, we obtain a scheme that outperforms
a random decision-making policy.

3) Effects of varying discount factor ~: Without a suf-
ficiently large <, the randomness inherent in a MDP, and
especially in the reward function we selected due to the
constantly varying nature of A, may impede the learning of
the system. In Fig. 10, we observe that only with a sufficiently
large v does effective learning take place in the system.

C. Performance of algorithm: Continuous reward function

The performance of our algorithm depends on our system
objectives, as well as the reward function implemented in our
MDP. An appropriate choice of the reward function can shift
the behaviour of the system. Here, we consider the reward
function (13), and look at the effects of varying the weights.

1) Effects of energy availability on system: We expect that
in a system that places great emphasis on energy availability,
the average duty cycle will be low in order to ensure the
battery does not expend all its energy; conversely, in a system
that places little emphasis on energy availability, the average
duty cycle will then be governed by the QoS metrics, which
are likely to push the duty cycle higher to ensure effective
transmission. This intuition is validated by the results in Figs.
11 and 13a.

2) Effects of latency on system: We similarly expect that
when emphasis on latency is high, the average duty cycle
will be high to maintain the QoS standards; conversely, when
emphasis on latency is low, the average duty cycle will then
be lower to conserve energy and meet the power consumption
and energy availability requirements. This intuition is vali-
dated by the results in Figs. 12 and 13b.

D. Performance of algorithm: Reward function with thresh-
olding

1) Convergence analysis: Figure 14 plots the quality for
a single state and action with respect to different values of
power and latency thresholds in order to demonstrate the
convergence of the algorithm. When the power threshold is
increased with all other thresholds fixed, the magnitude of the
quality and the convergence time decrease. When the latency
threshold is increased with all other thresholds fixed, the
magnitude of the quality and the convergence time increase.



TABLE VI
NETWORK PARAMETERS

Notation Description (units) Value
T Average cycle time (time units) 2
Ag = N\p Average received-packet rate from nearby nodes (per time unit) 0.5
B FIFO buffer size (packets) 10
0y =0y Intensity of probing (per time unit) 3
Pasteep Power consumption of a node in the asleep state (energy units per time unit) 0.01
awake Power consumption of a node in the awake state (energy units per time unit) 0.1
Pprobe Power consumption of probing mechanism (energy units per time unit) 0.2
Etx Energy consumed to transmit a single data packet (energy units) 0.4
50 50 50
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Fig. 7. Graphs of quality Q,, ;1 against time for MDP state 1, all actions / and different values of y for a single trial. Each line represents a different

action. Here, ¢; = 0.5 and v = 0.995. In addition, we use the reward function (13) and set all weights to 1.
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Fig. 8. Graphs of quality Q,, ;1 against time for MDP state 1, all actions / and different values of ¢ for a single trial. Each line represents a different

action. Here, p# = 0.1 and « = 0.995. In addition, we use the reward function (13) and set all weights to 1.
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Fig. 9. Stationary distribution based on the transition rate matrix QYPP for the 9 MDP states averaged over 50 trials each for different values of e;. Here,

p = 0.1 and v = 0.995. In addition, we use the reward function (13) and set all weights to 1.

2) Comparison with random approach: Figure 15 shows approaches, the latter of which we highlighted in our al-
the effect of various QoS thresholds on the selection of ac- gorithm above. The three cases of thresholds we consider
tions, as well as the comparison of the random and €;-greedy are: Case I {py = 0.3,4y = 5,79 = 0.01}; Case II:
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Fig. 10. Graphs of quality Q,, ;1 against time for MDP state 1, all actions [ and different values of  for a single trial. Each line represents a different
action. Here, x = 0.1 and €; = 0.5. In addition, we use the reward function (13) and set all weights to 1.
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Here, e = 0.5, © = 0.1 and v = 0.995. In addition, we use the reward function (13) and set all other weights to 1.

Stationary distribution based on the transition rate matrix QIZIEP for the 9 MDP states averaged over 50 trials each for different values of w4.
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Fig. 12. Stationary distribution based on the transition rate matrix Qz’lﬁ’lp for the 9 MDP states averaged over 50 trials each for different values of wy. Here,
et = 0.5, p = 0.1 and v = 0.995. In addition, we use the reward function (13) and set all other weights to 1.
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Fig. 13. Plot of average duty cycle versus (a) w4, holding all other weights constant at 1 and (b) wy, holding all other weights constant at 1, using (13)
and averaging over 50 trials for each w4 and wy respectively. Here, ¢z = 0.5, 4 = 0.1 and v = 0.995.
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{po =0.32,¢y = 5,19 = 0.01}; Case III: {pg = 0.33,4y =
0.91,m9 = 4E-5}. Here, we do not consider the effects of
energy availability by taking Ay = [0, 1).

Figure 16 shows the optimal sets of duty cycles for
the three cases in order to satisfy the QoS thresholds. In
Case I, the corresponding optimal state is 4. In Case II, the
corresponding optimal states are 5, 6 and 7. In Case III, the
corresponding optimal states are 7, 8 and 9. This agrees with
the results shown in Fig. 15 when ¢, = 0.9, keeping in mind
that our action space tends to direct the system towards the
odd-numbered states only. When ¢; = 0, the scheme reduces
to a random approach where the states are chosen randomly
and the stationary probabilities of states 1, 3, 5, 7 and 9 are
uniform.

Caselll

Fig. 16. Optimal sets of duty cycles for each case without considering the
energy availability A.

3) Effects of energy availability: As seen in the previous
subsection, the QoS thresholds can help to choose a set of
optimal duty cycles. However, the energy availability depends
on the attainment of equilibrium by the whole system, and
the derivation of the optimal set of duty cycles is not as
straightforward.

a) Simulation settings: In this section, we modify the
learning rate p to be inversely proportional to the total time
spent in the current state [32] in order to handle the variation
in the energy availability. In addition, we select a subset of the
action space in which the system’s steady state probabilities
are centred around states 3, 5, 7 and 9 to better illustrate the
effects of varying Ay.

b) Convergence analysis: The convergence of the al-
gorithm with the presence of the energy availability term
is not as fast with the learning rates used in the previous
sections. Hence, we use a learning rate that decreases with
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total time elapsed in the current state (including past transi-
tions) to speed up convergence. Figure 17 demonstrates the
convergence of the learned quality values and the emergence
of an optimal action. As seen in Fig. 17a, low values of A
result in an action that favours a higher duty cycle and lower
energy availability, and vice versa as evident from Figs. 17b
and 17c.

c) Analysis of steady state probabilities: Fig. 18a
demonstrates that when energy availability is not considered
and when all the duty cycles satisfy the given QoS thresholds,
the steady state probabilities learned are almost uniform with
high standard deviation. This changes in Figs. 18b to 18d,
where we see that a low Aq selects higher duty cycles and a
high Aj selects lower duty cycles on average.

d) Summary: For greater clarity, the results above are
summarised in Fig. 19. These graphs demonstrate that an
increase in Ag decreases the average duty cycle and promotes
the selection of actions favouring states that correspond to
lower duty cycles.

4) Remarks: As we mentioned earlier, the continuous
reward function (13) enables finetuning of the balance be-
tween energy availability and QoS requirements, while the
thresholding reward function (14) enables clear demarcations
of the boundaries of the system, provided the intersection of
the threshold requirements is physically achievable. Our re-
sults demonstrate that the convergence characteristics of both
reward mechanisms are comparable and can simultaneously
take into consideration short-term QoS requirements and long-
term energy availability standards.

E. Varying link quality

We now consider the effects of variable link quality as
discussed in the system model in Section II. Here, we use the
thresholding reward function (14) analogous to the results in
Section VII-D.

1) Convergence analysis: Figure 20 demonstrates the
convergence of the learned quality values for different power
thresholds when the channel can exist in either the good or bad
state, for both the Retransmissions and No Retransmissions
schemes.

2) Comparison with random approach: Figure 21 com-
pares the random and e;-greedy approaches, for the Retrans-
missions (Case I) and No Retransmissions (Case II) schemes.
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The thresholds and parameters adopted in these

two Cases

21 that our algorithm is able to learn this optimal condition.

are identical to those adopted in Fig. 20. The corresponding
optimal state for both Cases is 1, and we demonstrate in Fig.

14
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Fig. 21. Comparison of the e;-greedy approach in our algorithm (e; = 0.9) with a random approach (e; = 0) using the average stationary probability of
each state over 10 trials for two different cases of thresholds. The values of Ay and A, are identical to those in Fig. 20.

F. Varying harvesting rate

We now consider the effects of variable harvesting rate to
simulate environmental fluctuations. Here, we again use the
thresholding reward function (14) and the same simulation
settings as Section VII-D3a.

1) Simulation setup: In the simulations to be described,
we used 4 different values of the harvesting rate hy, =
[0.2, 0.2875, 0.3, 0.4] where the lowest rate corresponds to
zero energy availability (A = 0) and the largest rate corre-
sponds to maximum energy availability (A = 1). In addition,
we define the harvesting rate to vary in a cyclical manner such
that hg is uniformly distributed over time.

2) Simulation Results:

a) Reward histogram: The reward histograms in Fig.
22 summarize the frequency of the rewards obtained after a
single trial (excluding transient variations) for two different
sets of Ag. In both cases, a reward of +1 is obtained around
67% of the time even under a varying harvesting rate. Under
these conditions, the instantaneous network parameters satisfy
the predefined thresholds.

b) Convergence of the quality matrix: As similar to
Section VII-D3a, we used a time-varying learning rate to
handle the changing environment. As demonstrated in Fig.
23, this has proven to be effective: when Ay = [0.6, 1], the
preferred action takes the system from state 5 to state 3 to
ensure sufficient energy availability, and when Ay = [0.4, 1],
the preferred action takes the system state 5 to state 7 as the
threshold for energy availability relaxes.

¢) Comparison of the average steady state probabili-
ties: From Fig. 24, it is evident that when Ay = [0.6, 1], the
lower duty cycle states are preferred, in contrast to the case
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when Ag = [0.4,1], where higher duty cycle states are pre-
ferred. Thus, our algorithm is cognizant of the requirements
in our system even under varying environmental conditions.

VIII. CONCLUSION

In this paper, we develop an adaptive duty cycling scheme
in wireless sensor networks that takes into account both the
energy supply dynamics and application-level QoS require-
ments at the same time. Continuous Time Markov Chain
(CTMC) models are used to derive analytical expressions
for these QoS metrics - such as latency, loss probability
and average energy consumption - as well as for the energy
availability of the system, which offers a probabilistic measure
of the ability of the battery to maintain a non-zero energy
level on average. We then establish a reward framework that
allows the network to tune the relative importance of the
energy availability and the QoS requirements, and we perform
numerical simulations to verify our model. We implement a
reinforcement learning algorithm that converges to a desirable
solution quickly and with lower computational complexity
than a completely optimal algorithm, and show that our
adaptive scheme performs better than a random scheme.
With the quick convergence of our algorithm, we enable the
possibility of the system adapting to changes in the energy
supply dynamics or the network transmission statistics that
take place at timescales larger than the convergence time of
the learning curve. We intend to extend this work by looking at
update rules and threshold functions that enhance the decision-
making ability of the system, and hopefully further increase
the responsiveness of the system to unexpected externalities.
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of energy availability thresholds A over an average of 5 trials. In Case I (red), Agp = [0.4, 1], and



APPENDIX A
PROOF OF LEMMA 1 (APPENDIX)

We define the QoS metrics, as follows:

1) Loss probability 7(q): The loss probability 7(q) de-
scribes the event that there is incoming traffic (either
from the node itself or its neighbors), when the buffer is
already full, for a given duty cycle ¢. This is given by
m(q) = P.(b = Bldg = 0,d, = 1) + P.(b = B|dy =
1,d, =0).

Latency ¢(q): The latency ¢ is given by Little’s Law ¢ =
)\%, where b is the average number of packets in the
buffer, and ). is the effective packet arrival rate at the
node

2)

U(q) = E[ ]. (17)

A+ X

3) Average power consumption p(q): The average power
consumption p of a node v; is the sum of the power ex-
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pended for the probing mechanism, packet transmissions,
and other normal operations in each node state

p(Q) = PasleepPr(Nj = 0)

+ (Pawake + Pprobe)Pr(Nj = 1) + (/\ + Ao)gtx.
(18)

We derive these quantities in (5) to (6) for the two
transmission schemes X, (Retransmissions) and X,, (No Re-
transmissions) as described in Section II.

To calculate these QoS metrics, we solve the steady
state probabilities of the CTMC system, i.e. the long term
probabilities of being in each state of the state space. The
steady-state probability of an arbitrary state s; € S is given
by pr = limg oo P(S(t) = si). We let p = [p1 p2 ... ps|]-
The steady state probabilities can then be obtained by solving
p@ =0 and ZSke sPr = 1, where Q is the transition matrix
of the CTMC.

APPENDIX B
PROOF OF LEMMA 2 (APPENDIX)

The procedure for the calculation of the QoS metrics for
the No Retransmissions scheme is identical to the procedure
for the calculation of the metrics for the Retransmissions
scheme, except that care has to be taken to distinguish
between the different packet transmission rates for the good
and bad link quality states. In addition, the power consumption
for the No Retransmissions scheme is lower than that for
the Retransmissions scheme exactly by the amount of energy
required to retransmit the packets.

APPENDIX C
PROOF OF LEMMA 3 (APPENDIX)

A. Transient behaviour of battery
Let F(t,,j;y,4) = P(X(t) < z,2(t) = j|X(0) =

y, Z(0) = i). F(t,x,j;y,i) gives the cumulative transition
probability that the battery level X (¢) is at most z at time ¢
and that the battery is in state j, given that the battery was
originally in state ¢ with battery level y. It can be shown
that the cumulative transition probability mmn-by-mn matrix

F(t,z;y) = [fi;] satisfies the equations
OF(t.aiy) | OF(t,aiy)
ot Ox
for each x € [0,C] and y € [0, C], with boundary conditions
F(t,0,5;y,i) =0,
F(tv Ca]a Y, 7’) = ﬂ-lj(t)a

D = F(t,z;y)QMPF (19

if i > 0,
if r; <O0. (20)
B. Steady-state behaviour of battery

As t goes to infinity, the limits of (19) and (20) become,
for the mn-dimensional row vector F'(x) with entries F'(z, j),

r
@) _ p(g)Qmo? @1
dx
for each x € [0, C], with boundary conditions
F(0,j) =0 if r; >0,
F(C,j) =m; if r; <0. (22)



We see that
F' = F(QMPPp—1) (23)

which leads us to guess the solutions F'(z) = e**¢ where A
is a scalar and ¢ is an mn-dimensional row vector. It can be
shown that the general solution to (23) is given by F(x) =

3 a;e*i®¢;, where \; are the generalized eigenvalues and
i€T
¢; the generalized eigenvectors of the equation

di(\D — QMPPY =0 (24)

or
(QMPPYT _ \,DT)¢T = 0. (25)

In other words, \; and QSiT are the eigenvectors of
(D-1)T(QMPP)T — (QMDP) p—1)T.

€
The coefficients a; are given by the solutions to

> aigi(4) =0 if j €T,
€T
> aigi(§)eMC = ifjeT”, (26

i€T
where T and T~ contain the elements of T° where the
corresponding rate r; is positive and negative respectively.

Note that keeping all else constant, a higher C results in lower
a; and thus a larger A.

APPENDIX D
ACTION SPACE OF MDP USED FOR SIMULATIONS
(APPENDIX)

The infinitesimal generators corresponding to the five
actions are such that they encourage the system to transition
to states 1, 3, 5, 7 and 9 respectively. An action that transitions
the system to some state ¢ has an infinitesimal generator where
state ¢ has a transition rate of 0.1 to all other states, and all
other states have transition rates of 0.9 to state ¢ and 0.1 to
all other states. For example, for action 1, the infinitesimal
generator is

MDP
Qu,1 =
—0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.9 —1 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143  0.0143
0.9  0.0143 -1 0.0143  0.0143 0.0143 0.0143 0.0143  0.0143
0.9  0.0143 0.0143 —1 0.0143  0.0143 0.0143  0.0143  0.0143
0.9  0.0143 0.0143 0.0143 —1 0.0143  0.0143  0.0143  0.0143| .
0.9  0.0143 0.0143 0.0143  0.0143 -1 0.0143  0.0143  0.0143
0.9  0.0143 0.0143 0.0143 0.0143 0.0143 —1 0.0143  0.0143
0.9  0.0143 0.0143 0.0143 0.0143 0.0143  0.0143 -1 0.0143
0.9  0.0143 0.0143 0.0143 0.0143 0.0143 0.0143  0.0143 -1

@7
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