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ABSTRACT 

 
To predict the delay between a source and destination as well as to identify anomalies in a network, it is crucial to 

continuously monitor the network by sending probes between all sources and destinations. It is of prime importance to reduce 
the number of probes drastically and yet be able to reasonably predict the delays and identify anomalies. In this paper we state 
and solve a graph-theoretic problem to optimally select a subset of traceroute-type probes to monitor networks. 
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1. INTRODUCTION 
 
The tremendous growth of the Internet users and applications has resulted in severe congestion of the network1,2. 

This has led to the users demanding a Quality-of-Service (QoS) for their network applications. In particular, users are 
interested in the latency or delay and also in specifying a suitable route (or path; we will use path and route interchangeably) 
by identifying congestion bottlenecks, if any, in the network. In this research, we concentrate on monitoring the network to 
answer two questions in real-time, namely, what will be the delay in sending a message from a source to a destination, and, 
where are the "hot-spots" or anomalies in the network.  

 
A way to answer the two questions is by continuously monitoring the network and making predictions about the end-

to-end delay and the location of the "hot-spots"3. This monitoring requires sending probes between all sources and 
destinations in the network, which could potentially result in heavy traffic by just using the probes. A crucial decision is to 
choose an optimal subset of probes that is both small enough to handle (small files to store and browse through quickly for 
monitoring) and not contribute to the congestion as well as large enough to make accurate predictions4. 

   
In this paper we use "traceroute-like" probes that give round-trip delay information between the source and every 

node in the route traversed by the probe from the source to the destination. Given these "traceroute-like" probes, the network 
topology, and, the routes followed by packets between all sources and destinations, we formulate and solve a graph theoretic 
problem to optimally select a subset of probes. 

 
This graph-theoretic problem that we call the "constrained coverage problem" is an important contribution to graph 

theory literature. We also develop a sub-optimal polynomial time algorithm to solve the problem. Using this algorithm we 
obtain a set of probes that can be used to continuously monitor the network to obtain information about the roundtrip delays 
between any two nodes and also to identify the “hot spots” in the network. 

 
In Section 2 we describe the objective of this study, analyze the model's input variables and state the assumptions. In 

Section 3 we state the graph theoretic problem formulate it as a mathematical programming problem. In Section 4 we 
illustrate the algorithms and present examples. In Section 5 we state the conclusions of this work. 
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2. PROBLEM DEFINITION AND INPUT ANALYSIS 

 
The objective of this study is to select the optimal or sub-optimal subset of source and destination (S-D) pairs for 

continuous probing. The delay data obtained from the probes sent between the subset nodes will be used to calculate the 
delays between any S-D pair in the topology.  

 
The probe type can be one of many alternatives (traceroute, ping, etc.) each of which provides different levels of 

details for the delay information. For example, ping** provides round-trip end-to-end delay, but no information about delays 
arcs along its path from the source to the destination. On the other hand, traceroute provides round trip delays from the source 
node to all the nodes along its path. Therefore, in this study, we use traceroute-like intelligent agents as the probe type. For 
sake of simplicity, we refer to such probes as, simply, traceroutes.  

 
It is important to note that some arcs might belong to more than one path. Assume an arc is in n paths. Sending 

probes over these n paths will provide n pieces of delay information about the arc. However, only one sample of delay 
information on each arc is sufficient for monitoring purposes at a given time. It is essential to arrange probes in such a way 
that all the arcs are covered at least once while minimizing the number of probes. The following Three-Node Example (Figure 
1) shows how to extract delay data from each arc using traceroute probes: 
 
 
 
 

 
Figure 1 

Topology of the Three-Node Example 
 

Three probes are necessary (between 1 and 2, 1 and 3,and 2 and 3) to cover all the S-D pairs in the topology if 
round-trip delays are the same in opposite directions of any path. If round-trip delays are not the same, there will be six S-D 
pairs instead of three (between Nodes 1-2, 2-1, 1-3, 3-1, 2-3, 3-2). Moreover, every arc should be replaced by two one-
direction arcs as shown in the Figure 2. Modeling the inequality of round-trip delays on opposite directions of paths will 
double the number of arcs and S-D pairs in the topology. For simplicity reasons, we assumed that round-trip delays are same 
on the opposite directions of each path for the remaining part of this study.  
 
 
 
 
 

Figure 2 
Topology of the Three-node example with one-directional arcs 

 
If a traceroute is sent from Node 1 to Node 3, the following delay data will be obtained (see Figure 3): 
 
a) delay over the trip Node1-Node2-Node1 
b) delay over the trip Node1-Node2-Node3-Node2-Node1 
 

 
 
 
 
 

Figure 3 
Delay data from traceroute between 1 and 3 
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The delay data in (a) is what we would have if we sent a traceroute between Node 1 and Node 2. So, the only data 
we need is the delay data corresponding to the traceroute between Node2 and Node 3. Let’s examine the topology of the 
Three-Node Example in more detail (see Figure 4). 

 

 

 

 

 

 
Figure 4 

Buffers in the topology of the Three-Node Example 
 

 The delay information recorded using traceroutes between Node 1 and Node 3 (traceroute13) is due to the wait in the 
buffers 1-3-5-7-8-6-4-2. Traceroute23 has to use the buffers 5-7-8-6. Interesting enough, these are the four buffers in the 
middle of traceroute13. Remaining buffers (1-3 and 4-2) are the buffers used by traceroute12 (the delay data in (a)). 
Traceroute13 and traceroute12 do pass buffers 1 and 3 at the same time, so delay due to those buffers are exactly same for both 
traceroutes. However, the delay at buffers 4 and 2 in traceroute12 is not exactly the same as the delay at the buffers 4 and 2 in 
traceroute13, because traceroute12 and traceroute13 do not enter (and leave) buffers 4 and 2 at the same time. Although, there 
will be an error factor, Equation (1) will provide us a very close estimate of the delay on traceroute23. 

 
 traceroute23 = traceroute13 - traceroute12 ± ε       (1) 

 
 By sending enough traceroute probes that will cover all the arcs in the topology (in the Three-Node Example, it is 
possible to achieve this with only one traceroute probe), sufficient information will be collected to make conclusions on the 
delay of any arc in the topology. Consequently, delay on any given path can be easily calculated. 

 
 It is known that sometimes packets take different routes from source to destination than from destination to source2. 
Such instances create a loop (or loops) in the traceroute path. We now explain, using a Six-Node Example (see Figure 5), the 
problem that arises due to the loops and suggest a solution to the problem. 

 
 
 
 
 
 

 
 
 

Figure 5 
Topology of the Six-Node Example 

 
 As seen in Figure 5, there are alternative minimum hop paths between B and E, which may create a loop. We assume 
that in the Six-Node Example, the packets from B to E take the path B-C-E, and the packets from E to B take the path E-D-B. 
Such traffic pattern will create a loop on the path between E and B. The traceroute from B to E will provide the following 
data: 

 
a) B-C-B (will cover both directions of arcBC, exactly same as tracerouteBC)  
b) B-C-E-D-B (total delay data from one directional loop) 

 We can only use this traceroute delay data to predict the tracerouteBC delays. It is impossible to make inferences 
about the round-trip delays experienced by tracerouteCE, tracerouteED or tracerouteDB, although tracerouteBE travels on arcCE, 
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arcED and arcDB. However, the second delay data (from the loop B-C-E-D-B) can be used to calculate the delay on any 
traceroute that will travel over the nodes B and E such as tracerouteAF, tracerouteAE and tracerouteBF. The delay data of a loop 
cannot be used to calculate the traceroute values of single arcs, and traceroute delay data from single arcs cannot be used to 
calculate the one-directional loop delay. Therefore, in the final solution, there should be at least one path to cover each one-
directional loop, in addition to the paths which are selected to cover the arcs. The proposed formulation in Section 3 selects 
paths that will cover the arcs in the topology. To force the algorithm to select a path that contains the loop, an artificial arc 
should be added to the topology. The revised topology of the Six-Node Example can be seen in Figure 6. 
 
 

 
 
 
 
 
 

 
Figure 6 

Revised topology of the Six-Node Example 
 

 After adding one artificial arc for each loop in the topology, any example with loops can be solved as a topology 
without loops. Notice that, although tracerouteAF, tracerouteBF, tracerouteAE and tracerouteBE have loops in their traceroute 
paths only one artificial link is created between B and E since all the loops are caused due to the loop between nodes B and E. 

 
 For the analysis in Sections 3 and 4, the following assumptions are made: 

 
 i)   The topology is known 
 ii)  No breakdowns occur on the links or the nodes. If a breakdown occurs, there is a chance that at least one of the 

paths of the selected S-D pairs can change. Any change on the paths of the selected subset may cause some arcs 
to be left uncovered. Subsequently, no delay information can be gathered about a path containing the uncovered 
arc. Such cases can be handled by solving the Constrained-Coverage Problem (explained in Section 3) repeatedly 
whenever the status of the network changes (arcs going up or down). However, this issue will not be discussed 
any further in this study. For the sake of simplicity we will assume that there will be no breakdowns. 

 iii) The routes between any S-D pair are given, and every packet sent between an S-D pair takes the same path every 
time. This assumption is valid as long as there are no breakdowns in the network. The routes taken by the probes 
are based on a static routing table.  The routes can be obtained in practice by sending traceroutes between all 
possible S-D pairs (in both directions) and recording the paths.    

 iv) Each arc is covered at least by one path. If all the paths for the network traffic are included in the analysis, then 
an arc that is not covered by any of the paths does not carry any traffic. In such cases, any arc without a traffic 
load can be discarded from the formulation. 

 v)  Round-trip delays are the same for the paths between S-D pairs NodeA - NodeB  and NodeB - NodeA. This 
assumption can be relaxed easily, by adding NodeB - NodeA  as a new S-D pair and adding the path in-between as 
a new path (which would be the opposite of the path between NodeA to NodeB). However, this will cause 
significant increase in the number of variables and constraints . 

 
 

3. THE GRAPH THEORY FORMULATION FOR THE CONSTRAINED COVERAGE PROBLEM 
 

Given a topology and the paths between all S-D pairs, the Constrained Coverage Problem (explained below) selects 
a subset of S-D pairs with paths that will traverse all the arcs in the topology, while minimizing the size of the subset. The 
Constrained Coverage Problem has predefined paths hence differs from the classical coverage problem5,6. There is a unique 
path (pathj for j=1,..,number of paths) for each S-D pair in topology. Therefore, minimizing the number of paths is equivalent 
to minimizing the size of the subset of the S-D pairs.   
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The Constrained Coverage Problem can be stated as a mathematical programming problem, more precisely a binary 
integer programming formulation as follows: 

 
Notation:  
 N = number of nodes 
 M = number of arcs 
 n_paths = number of paths  
   =  N*(N-1)/2        

pathj = path number j    j = 1..n_paths, 
 
 
 
 
 
 
 

 
 
 
 
 

 
(2) 

 
 
 

Example 
 
The integer programming formulation is illustrated using the Three-Node Example in Section 2. There are three S-D 

pairs which are 1-2, 1-3 and 2-3 (in other words there will be three paths). In Table 1, the paths and the corresponding 
variables are given.   
 

S-D  Path   Variables 
1-2  arc1      path1 
1-3  arc1-arc2      path2 
2-3  arc2      path3 

 
Table 1 

Integer Programming variables for Three-node example 
 
The  Integer Programming formulation can be stated as: 
 
Min z = path1+ path2+ path3 
s.t. 
         1*path1 + 1*path2 + 0* path3 ≥ 1 
 0*path1 + 1*path2 + 1* path3 ≥ 1 
 

path1, path2, path3 = 0 or 1  
 
The unique optimal solution to the problem is: 
 z = 1,  path2 = 1,  path1 = path3 = 0   
 

The result implies that only path2 is chosen to send a probe. In other words, a probe will be sent only between nodes 
1-3 and its path covers all the arcs in the topology.  
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4. IMPLEMENTATION OF THE CONSTRAINED COVERAGE PROBLEM 

 
In this section, after discussing the complexity and implementation issues of the integer programming formulation, a 

polynomial time sub-optimal algorithm is proposed and compared with the integer programming formulation. Later, both 
algorithms for the Constrained Coverage Problem are compared on a real topology.  
 
4.1. Complexity Discussion and an Alternative Sub-optimal Algorithm 
 

There are at most N*(N-1)/2 variables and M constraints in the integer program of the Constrained Coverage 
Problem. Since all the variables are binary, there are at most 2N(N+1)/2 alternative solutions. So complexity of the integer 
programming formulation is of the order of O(

2

2n ). The Constrained Coverage Problem should be solved each time the routes 
changes due to breakdowns. Since the complexity of the integer programming algorithm is in exponential time, there is a need 
for a polynomial-time algorithm. We hence develop a sub-optimal polynomial time algorithm for the problem. Although the 
optimal solution is not guaranteed, the goal to determine a subset of S-D pairs to cover all the arcs in the topology is satisfied. 
At each step of the algorithm, an S-D pair that will cover most of the uncovered arcs is selected. 

 
Let  A=[aij], where aij is defined in Section 3. The sum of row i of the matrix A gives us the information of how many 

paths cover the arc i. The column sum Sj, depicts the number of arcs covered by pathj. Choosing the path with the most 
covered arcs is a reasonable step to begin the algorithm. After selecting the first path, the matrix A should be updated, such 
that the column sum Sj should give us the number of uncovered arcs that pathj will cover if selected. The Sj values for the 
updated matrix A is used to select the next path to be included in the subset. The sub-optimal algorithm for the Constrained 
Coverage Problem can be summarized as follows: 
 
Step 1: Set p=0, LIST =∅  and A0 =A, where p is the counter for the number of columns chosen and the LIST is the set of the 

selected paths.  
 
Step 2: Calculate the column sum Sj of Ap . 

 ∑
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Step 3: Choose the largest nonzero Sj, j=1,…,n_paths (ties are broken arbitrarily). Let Sk=max (Sj), j=1,…,n_paths.  
   

If Sk=0, then terminate. The paths in the LIST will constitute the sub-optimal subset of the S-D pairs. 
Else p=p+1, LIST =LIST U {pathk}. 

 
Step 4: Modify the matrix with respect to column k of matrix Ap-1 to form Ap as: 

},0{max 11
,

−−
≠ −= p

ik
p

kjij
p
ij aaa . Goto Step 2.  

 
Example: 

 
The sub-optimal algorithm is demonstrated by applying it to the Three-Node Example: 
 

S_D PAIR  
    1-2     1-3     2-3 

Arc1       1       1       0 A
R
C
S 

Arc2       0       1       1 

 
Step 2: Calculate Sj, i=1,2,3  
  

S_D PAIR  
    1-2     1-3     2-3 



Arc1       1       1       0 A
R
C
S 

Arc2       0       1       1 

     Sj       1       2       1 

 
 
Step 3: S2=max(Sj), j=1,2,3. S2>0, LIST={1-3}, go to Step 4 

  
Step 4: Modify the remaining columns to form matrix A1.The modifications are as  
            follows: 
 

S_D PAIR  
1-2 1-3 2-3 

Arc1 Max{(1-1),0} Max{(1-1),0} Max{(0-1),0} A
R
C
S 

Arc2 Max{(0-1),0} Max{(1-1),0} Max{(0-1),0} 

 
 The new matrix A1 is as follows: 

 
S_D PAIR  

    1-2     1-3     2-3 
Arc1       0       0       0 A

R
C
S 

Arc2       0       0       0 

 
 Goto Step2. 

 
Step 2: Calculate Sj, i=1,2,3.  
 

S_D PAIR  
1-2 1-3 2-3 

Arc1 0 0 0 A
R
C
S 

Arc2 0 0 0 

     Sj 0 0 0 

 
 
Step 3: S2=max(Sj)=0, j=1,2,3. Terminate. 

 
Path 1-3 is selected to cover the topology of the three-node example. The solution of the sub-optimal algorithm is 

same as the solution of the optimal integer programming algorithm. In order to compare, sub-optimal and integer 
programming algorithms, first we have to calculate the computational complexity of the sub-optimal algorithm. 

 
At each step, the proposed algorithm chooses one path that will cover the most number of uncovered arcs. Note that 

the selected path should cover at least one uncovered arc. If there are no such paths, then the algorithm will terminate. Due to 
assumption (iv) in Section 2.1., all the arcs should be covered when the algorithm terminates. In the worst case, only one arc 
is covered by the selected path at each step, meaning that the algorithm may have a maximum of M iterations. At each 
iteration, the matrix AM*n_paths is updated. The dimensions of the matrix can be at most M*[N(N-1)/2]. The worst case 



computational effort needed for this algorithm is M*[M*N*(N-1)/2]. In other words, the complexity of the algorithm is in the 
order of O(M2N2).  

 
In terms of complexity, the polynomial algorithm has advantages over the integer programming algorithm. Since 

there is no guarantee on the proximity of the solutions from the sub-optimal (polynomial) algorithm and the integer 
programming algorithm, we should test both methods on an Internet topology. 

 
4.2. Application of the constrained coverage problem formulations to the vBNS  Network 
 

To compare the performance of the integer programming algorithm and the polynomial algorithm, we consider the 
vBNS (very high Backbone Network Service) (Figure 7). There are 12 nodes and 17 arcs in the network. If we want to 
observe all the round trip delays on all the S-D pairs in the topology, then we have to send probes on 66 paths. The route 
between an S-D pair was selected arbitrarily using the minimum hop path. In some cases, alternative paths (with the same 
number of hops) were observed between some S-D pairs, which might cause loops as mentioned in Section 2. However, in 
this example we assumed no loops, since we provided a method to handle loops in Section 2. 

 

 
Figure 7 

vBNS backbone10 

 
After solving the problem with the IP formulation, we achieved an optimal solution of six paths (Boston-Atlanta, 

Boston-San Francisco, NY City-Cleveland, Cleveland-Washington DC, Washington DC-Seattle, Houston-Seattle; note that 
the paths for Washington DC-Seattle and Houston-Seattle have alternative shortest paths). By sending traceroutes between the 
six selected paths, we can calculate the necessary information for all 66 paths, thus obtaining a 90.91 percent reduction in the 
number of observed S-D pairs. The same problem was also solved using the polynomial algorithm, yielding a subset of six 
paths (Boston-Washington DC, Boston-San Francisco, NY City-Cleveland, Cleveland-Atlanta, Washington DC-Seattle, 
Houston-Seattle). However, the new subset has different paths compared to the subset obtained from the integer programming 
formulation due to multiple optimal solutions. The polynomial algorithm performed as efficiently as the integer programming 
formulation in this case. 
 
 

5. CONCLUSION 
 
Given the network topology, the routes followed by packets between all S-D pairs, and the traceroute-like probes, we 

formulate a graph-theoretic problem of minimizing the number of source-destination probes such that every arc in the network 
is covered. 

  
We state an integer programming problem for the graph-theoretic formulation. We compare the complexity and the 

accuracy of the classical integer programming solution techniques and a sub-optimal algorithm we developed. The example 
we considered resulted in a drastic (approximately 91 percent) reduction in the number of probes by both techniques. In most 
cases the sub-optimal polynomial time algorithm performs as well as the optimal exponential time integer programming 
algorithm. 



 
Now using the final subset of probes, the network can be continuously monitored and the delay across each arc in the 

network can be stored. Then the delay between any source and destination can be obtained by adding up the delays across the 
arcs in the route and possibly a safety factor to account for random network behavior. Also, the hot spots can be identified by 
observing any anomalies in the delay across each arc. 
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