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Abstract. In this paper, we consider the stochastic fluid-flow model of a single node in a high-speed
telecommunication network handling multi-class traffic. The node has multiple buffers, one for each class
of traffic. The contents of these buffers are multiplexed onto a single output channel using one of the service
scheduling policies: the Timed Round Robin Policy or the Static Priority Service Policy. The Quality of
Service requirements for each class are based on cell loss probabilities. Using effective bandwidth method-
ologies and the recently developed bounds for semi-Markov modulated traffic, we solve call admission
control problems for the two service scheduling policies at this node. We compare the performance of the
effective bandwidth methodologies and the SMP bounds technique. We also numerically compare the per-
formance of the two service scheduling policies.

Keywords: Quality of Service, admission control, multi-class traffic, timed round robin policy, static pri-
ority service policy, fluid-flow models, fluid queues

1. Introduction

High-speed telecommunication networks are rapidly becoming a reality. Modeling and
analysis of such networks is an important step in their design and operation. In this paper,
we mainly concentrate on high-speed networks that use the asynchronous transfer mode
(ATM) where information flows in the network in the form of 53-byte packets or cells.
These high-speed networks are expected to handle a wide variety of traffic on the same
channel. Therefore a cell may carry one of the different types of information: voice,
video, data, etc. This creates the need to deal with multi-class traffic. For each class of
traffic, a Quality of Service (QoS), measured by cell-loss probability, delay, delay-jitter,
etc. needs to be assured. The QoS may be different for each type of traffic. For example,
real-time traffic has a more stringent delay requirement but can tolerate higher cell-loss;
while data traffic can tolerate higher delay but demands much smaller cell-loss.
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Figure 1. A multi-class node.

The high speed (e.g., 155–622 Mbits/s) of the ATM network implies that it can
transmit millions of cells per second. This makes fluid-flow models useful in describing
the flow of cells. We analyze the packetized traffic by approximating it by fluids, follow-
ing the large literature using fluid-flow models for communication systems, (see [1,8],
etc.).

Figure 1 shows a schematic representation of a single node designed to handle
multi-class traffic. The node has multiple buffers, one for each class. The node follows
a given service scheduling policy to transmit the data from these buffers onto the out-
put channel. In [14] a similar scenario using the packetized general processor sharing
mechanism and the weighted round robin mechanism are considered for discrete arrival
systems.

We study two different service scheduling policies: timed round robin and static
priority. Under timed round robin policy (a variation of polling), the scheduler serves
the buffers in a fixed cyclical fashion. Takagi [23], Daganzo [5], etc. analyze the dif-
ferent types of policies in polling systems and describe their properties. Some of the
common polling policies studied are the full-service exhaustive policy, the gated policy,
the weighted round robin mechanism and the timed round-robin policy. We shall con-
centrate on the timed round-robin policy under which the scheduler serves each buffer
for a fixed amount of time in a given cyclic order.

Under static priority service policy each class of fluid has a fixed priority of ser-
vice. This policy gives full priority to the highest priority traffic and the transmission
capacity that is not utilized by highest priority traffic is offered to the next highest pri-
ority traffic, etc. Narayanan and Kulkarni [20] analyze multi-class fluid models that use
static priority service policy. They develop the marginal buffer-content distributions for
each class of fluid. Zhang [25] analyzes the joint distribution of the buffer contents of
each class.

For a single node using a single class of traffic the concept of effective band-
widths and its applications to the QoS problem is well established. Gibbens and
Hunt [13], Kesidis et al. [15], Elwalid and Mitra [9], Kulkarni [17], Choudhury et
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al. [4], Whitt [24], etc. discuss the concept of effective bandwidths for single-class traf-
fic.

The effective-bandwidth methodology, although simple to use, is based on an ex-
ponential approximation to the tail of the distribution of the buffer content in steady state.
This approximation holds only when the buffer sizes are very large, the tail probabili-
ties are small, and under certain assumptions about the input traffic. Several researchers
have attempted to redress these shortcomings. For example, Elwalid et al. [7,10] modify
the effective-bandwidth methodology and develop the Chernoff Dominant Eigenvalue
(CDE) approximation for single-class traffic. To avoid approximations, other approaches
have been developed. They include deriving upper and lower bounds for the buffer con-
tent process in steady state with a Markov additive input by discretizing time and using
extensions of Kingman’s exponential bounds for waiting times in the stationary regime in
aG/G/1 queue (see [2,3,6,16,19,22]). Artiges and Nain [2] obtain exponential bounds
for multiplexing multiclass Markovian on–off sources, where the upper bounds are sim-
ilar to those in [21].

In [18], effective bandwidth approximation and Chernoff dominant eigenvalue ap-
proximation are used to solve design and admission control problems under static pri-
ority service policy. In this paper we use the bounds obtained for the semi-Markov
modulated fluid traffic (see [11]) in the analysis of both the static priority service policy
as well as the timed round robin policy.

The paper is organized as follows. In section 2, for a single buffer model, we re-
capitulate the effective bandwidth approximation and the semi-Markov process bounds.
In section 3 we illustrate the multi-class node model. In section 4 we describe the timed
round-robin policy and compare the performance of the effective bandwidth methodolo-
gies against the SMP bounds technique for QoS problems under this policy. In section 5,
we use the SMP bounds technique for admission control problems for the static priority
service policy. We compare the admissible regions with those obtained using effective
bandwidth techniques and Chernoff bounds. In section 6, we numerically compare the
performance of the two service scheduling policies.

2. Preliminary results: effective bandwidths and SMP bounds

Consider a single infinite-sized buffer (with constant output capacityc) that admits traffic
from K independent sources, withkth source driven by a random environment process
{Zk(t), t > 0}, k = 1,2, . . . , K (see figure 2). At timet , sourcek generates fluid at
raterk(Zk(t)). LetX(t) be the amount of fluid in the buffer at timet . We are interested
in the following probability:

lim
t→∞P

{
X(t) > x

} = P {X > x}. (1)

If B is the actual buffer size thenP {X > B} is taken as the steady state approximation
of the buffer overflow probability.
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Figure 2. Single buffer fluid model.

2.1. Effective bandwidths

Assume that the environment processes{Zk(t), t > 0}, k = 1,2, . . . , K, are stationary
and ergodic processes satisfying the Gartner–Ellis conditions (see [15]). Then, for a
givenv (v > 0), theeffective bandwidthof sourcek is

ebk(v) = lim
t→∞

1

vt
logE

{
exp

(
v

∫ t

0
rk
(
Zk(t)

)
dt

)}
. (2)

When the{Zk(t), t > 0} processes can be modeled as certain special stochastic process-
es, Kesidis et al. [15], Elwalid and Mitra [9] and Kulkarni [17] illustrate how to compute
ebk(v) in those cases. Letη be the solution to

K∑
k=1

ebk(η) = c. (3)

The effective bandwidth methodology yields the following approximation of the proba-
bility in equation (1):

P(X > x) ≈ e−xη. (4)

Using the effective bandwidth approximation, we conclude that the QoS criterion for
cell loss probabilityP(X > B) < ε is satisfied if eBη < ε, whereB is the buffer size.
The R.H.S. in (4) is an approximation, not a bound and is valid for largeB and smallε.

2.2. SMP bounds

Consider the case when{Zk(t), t > 0} (k = 1,2, . . . , K) are independent semi-Markov
processes (SMPs) with state spaceSk = {1,2, . . . , `k} and kernelGk(x) = [Gk

ij (x)].
The expected time thekth SMP spends in statei is τ ki . The stationary distribution vector
of thekth SMP{Zk(t), t > 0} is pk, where

pki = lim
t→∞P

{
Zk(t) = i

}
.

We describe how to computeebk(v) first. Let G̃ k
ij (s) be the Laplace–Stieltjes transform

(LST) ofGk
ij (x). For a givenv > 0, define

χkij (v, u)= G̃ k
ij

(−v(rk(i)− u)),
χk(v, u)= [χkij (v, u)].
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Thenebk(v) is given by the smallest positive number such that the Perron–Frobenius
eigenvalue ofχk(v,ebk(v)) is one. Letη be a solution to equation (3), and denote
8k(η) = χk(η,ebk(η)). Let hk be the left eigenvector of8k(η) corresponding to the
eigenvalue 1, i.e.,

hk = hk8k(η).

Now, let

P k(i, j) = [Gk(∞)]
ij
. (5)

We also define

Hk =
`k∑
i=1

hki

η(rk(i)− ebk(η))

(
`k∑
j=1

(
φkij (η)

)− 1

)
, (6)

9k
min(i, j)= inf

x

{
hki e−η(rk(i)−ebk(η))x

∫∞
x

eη(rk(i)−ebk(η))y dGk
ij (y)

(pki /τ
k
i )
∫∞
x

dGk
ij (y)

}
, (7)

and

9k
max(i, j) = sup

x

{
hki e−η(rk(i)−ebk(η))x

∫∞
x

eη(rk(i)−ebk(η))y dGk
ij (y)

(pki /τ
k
i )
∫∞
x

dGk
ij (y)

}
. (8)

From [11,12], we have

C∗ e−ηx 6 P(X > x) 6 C∗ e−ηx, x > 0, (9)

where

C∗ =
∏K
k=1H

k

minA
∏K
k=19

k
min(ik, jk)

, C∗ =
∏K
k=1H

k

maxA
∏K
k=19

k
max(ik, jk)

,

A=
{
(i1, j1), (i2, j2), . . . , (iK, jK): ik, jk ∈ Sk,
K∑
k=1

rk(ik) > c and∀k, P k(ik, jk) > 0

}
. (10)

Using the SMP bounds we conclude that the QoS criterion for cell loss probability
P(X > B) < ε is satisfied ifC∗ e−Bη < ε. Using equation (9), we can describe a
bound onP(X > B) that is valid for allB andε.

3. Multi-class node model

In this section we use the single class model results obtained in section 2 to solve QoS
problems in multi-class nodes by making suitable transformations. Consider the model
of a multi-class node illustrated in figure 3. The node consists ofN input buffers, one
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Figure 3. The multi-class node model.

for each class of traffic. The input to bufferj (j = 1, . . . , N), is from theKj sources
of classj . The ith source of classj is driven by an independent random environment
processZij = {Zij (t), t > 0} for i = 1,2, . . . , Kj . At time t , sourcei of type j
generates fluid at raterij (Zij (t)). LetXj(t) be the amount of fluid in bufferj at timet .
All the classes of fluids are served by a single channel of constant capacityc, using a
specified service scheduling policy (in this paper, we consider timed round robin policy
and static priority service policy).

We assume that allN buffers are of infinite capacity. IfBj is the actual size of
buffer j (j = 1,2, . . . , N), then we take

lim
t→∞P

{
Xj(t) > Bj

} = P {Xj > Bj }

as the steady state approximation of the overflow probability from bufferj . Letεj be the
cell loss probability target for classj traffic (j = 1,2, . . . , N). The Quality of Service
(QoS) criterion for cell loss that need to be satisfied classj traffic is

lim
t→∞P

{
Xj(t) > Bj

} = P {Xj > Bj } < εj . (11)

We first explain the two service scheduling policies, timed round robin policy and static
priority service policy. Note that the effective bandwidth and the SMP bounds analysis
for the multiclass model is not a trivial extension of that of the single class model. The
output channel capacity for each buffer is not a constant in the multiclass node model.
Therefore the model requires a careful transformation that results in a constant output
channel capacity model for each of the buffers. From the transformed models, we com-
puteP {Xj > Bj } using effective bandwidth approximation and SMP bounds techniques
for the two policies. We also solve admission control problems for the two policies. Fi-
nally, we compare the two policies.
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4. Timed round robin policy

Consider the multi-class node model described in section 3 and illustrated in figure 3. All
classes of fluids are multiplexed using aTimed Round Robinservice scheduling policy
which is described as follows. The scheduler allocates the entire output capacityc to
each of theN buffers in a cyclic fashion. In each cycle, bufferj gets the entire capacity
for an interval of lengthτj . Note that during this interval, bufferj could be empty.
Hence the scheduler is not work conserving.

Let tso be the total switch-over time during an entire cycle. We assume thattso does
not change with time. Thecycle timeT is defined as the amount of time the scheduler
takes to complete a cycle, and is given by

T = tso+
N∑
j=1

τj . (12)

First we assume that all buffers are of infinite capacity. The dynamics of the buffer-
content process{Xj(t), t > 0} is described by

dXj(t)

dt
=



Kj∑
i=1

rij
(
Zij (t)

)− c if X(t) > 0 and scheduler serving bufferj ,{
Kj∑
i=1

rij
(
Zij (t)

)− c}+ if X(t)= 0 and scheduler serving bufferj ,

Kj∑
i=1

rij
(
Zij (t)

)
if scheduler not serving bufferj .

(13)

We assume that the following stability condition is satisfied for bufferj (j = 1, . . . , N):

Kj∑
i=1

E
{
rij
(
Zij (∞)

)}
< c

τj

T
. (14)

4.1. Effective bandwidth analysis

If we are givenτ1, τ2, . . . , τN andtso, then the buffer contents of a given buffer (say,j )
and its dynamics do not depend on the parameters of any other buffer (sayi 6= j ).
Therefore, it is convenient to analyze each buffer separately. Bufferj can be modeled
as a single-buffer-fluid model with variable output capacity and input fromKj differ-
ent sources, such that sourcei of classj is modulated by an environmental process
{Zij (t), t > 0}. The output capacity alternates betweenc (for τj units of time) and 0
(for T − τj units of time).

Note that the effective-bandwidth approximation (see section 2.1) and the SMP
bounds (see section 2.2) assume that the output channel capacity is a constant. Therefore
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Figure 4. Transformed bufferj model.

to utilize those techniques, we need to first transform our model into an appropriate one
with a constant output channel capacity as follows.

Consider a single-buffer-fluid model for bufferj with a constant output channel
capacityc whose input is generated by the originalKj sources and a fictitious com-
pensating source. The compensating source is such that it stays on for a deterministic
amount of timeT − τj and off for a deterministic amount of timeτj . When the com-
pensating source is on, it generates fluid at ratec and when it is off it generates fluid
at rate 0. Note that the compensating source is independent of the originalKj sources.
Clearly, the dynamics of the buffer-content process (of bufferj ) in equation (13) remain
unchanged for this transformed single-buffer-fluid model withKj + 1 input sources (in-
cluding the compensating source) and constant output capacityc. Refer to figure 4 for
an illustration of the transformed model for bufferj .

Using the effective bandwidth computations in [17], we can show that the effective
bandwidth of the compensating source described above is given by

ebsj (v) =
c(T − τj )

T
. (15)

Note that the effective bandwidth of this deterministic source is indeed its mean traffic
generation rate. Let the effective bandwidth of sourcei (i = 1,2, . . . , Kj ) of classj be
ebij (v). ThereforeP(Xj > Bj) ≈ e−Bjηj , whereηj (using equation (3)) is obtained by
solving

Kj∑
i=1

ebij (ηj )+ c (T − τj )
T

= c. (16)

The QoS criteria for all the classes of traffic are satisfied if for allj = 1,2, . . . , N ,

e−Bjηj < εj . (17)

Equations (16) and (17) indicate that the QoS guarantee using the effective-
bandwidth approximation technique depends only on the ratioτj /T and not on the indi-
vidual values ofτj or T . Consider two instances, one with largeτj andT and the other
with smallτj andT , such that the ratioτj/T is the same in both instances. The effec-
tive bandwidth approximation implies that the loss probability will be the same in both
instances. Intuitively, the probability of buffer overflow should be larger for the longer
cycle timeT .

For example, consider an infinite-sized buffer into which fluid is generated contin-
uously at rater (deterministic or CBR source). Let this buffer be emptied by a channel
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(a) (b)

Figure 5. Buffer content process for different(τj , T ) values.

whose capacity oscillates betweenc (for time τj ) and 0 (for timeT − τj ). For stability,
assume thatr < cτj /T . Then the limiting probability that the buffer content exceedsB

is given by

P {Xj > B} =


0 if T − τj 6 B

r(
c

c − r
)(

1− τj
T
− B

rT

)
if T − τj > B

r
.

Clearly, the probabilityP {Xj > B} increases withT . For this example, the buffer
content processXj(t) is shown in figure 5 for two instances, one with smallτj andT
(figure 5(a)) and the other with largeτj andT (figure 5(b)), such that the ratioτj/T is
the same in both instances. From the figure it is easy to see thatP {Xj > B} is higher
for largeτj andT (figure 5(b)).

Note that the effective bandwidth results are theoretically valid since the effective-
bandwidth analysis assumes extremely large buffers(B → ∞). However in practice,
this cannot be considered as valid due to finite buffers. Therefore the effective-bandwidth
approximation technique fails for moderate to large sized buffers and works only for ex-
tremely large sized buffers. The Chernoff dominant eigenvalue approximation (see [10])
also faces the same problem. The SMP bounds below resolve this issue. In section 4.3,
the effect ofτj andT on the performance of the timed round robin policy is explained
using numerical examples.

4.2. Semi-Markov process (SMP) bounds analysis

We consider the transformed model of bufferj (j = 1,2, . . . , N) illustrated in figure 4.
We assume that the{Zij (t), t > 0} processes(i = 1,2, . . . , Kj ) are semi-Markov
processes. Therefore there areKj +1 independent sources modulated by SMPs (includ-
ing the compensating source) that generate traffic into bufferj whose the output capacity
is a constantc.

For the SMP bounds analysis for bufferj we follow the single-class traffic analysis
in section 2.2 for a buffer with input generated by independent semi-Markovian sources
multiplexed together. Letηj be the smallest positive solution to equation (16).
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Using equations (6)–(8), we can obtainHij , 9ij

min and9ij
max, respectively, for

sourcei (i = 1,2, . . . , Kj ) of classj . The corresponding expressionsHsj , 9sj

min and
9
sj
max for thej th compensating source are

Hsj = 1− exp(−ηj c((T − τj )/T )τj )
ηj c

[
T 2

(T − τj )τj
]
, (18)

9
sj

min=

 0 T exp

(
−ηjc T − τj

T
τj

)
T exp

(
−ηjc T − τj

T
τj

)
0

 , (19)

9sj
max=

[
0 T

T 0

]
. (20)

Letting s = Kj + 1, we obtain the bounds on the limiting distribution of the buffer
content process{Xj(t), t > 0} as

Cj∗ e−ηj x 6 P(Xj > x) 6 C∗j e−ηj x,

whereηj is from equation (16),

C∗j =
∏Kj+1
k=1 Hkj

minAj
∏Kj+1
k=1 9

kj

min(lk,mk)
, (21)

C∗j =
∏Kj+1
k=1 Hkj

maxAj
∏Kj+1
k=1 9

kj
max(lk,mk)

, (22)

and

Aj =
{
(l1,m1), (l2,m2), . . . , (lKj+1,mKj+1): lk,mk ∈ Sk,
Kj+1∑
k=1

rkj (lk) > c and∀k, P kj (lk,mk) > 0

}
. (23)

The QoS criteria for all the classes of traffic are satisfied if, forj = 1,2, . . . , N ,

C∗j e−ηjBj < εj . (24)

From equations (18)–(20), clearly,Hsj and9sj

min are functions ofτj , T andτj /T . Hence,
C∗j is a function of bothτj andT and not simply of the ratioτj /T . In the next section we
will illustrate some of the differences in the results obtained by using the two techniques,
effective-bandwidth approximation and semi-Markov process bounds.
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4.3. Effective bandwidth vs SMP bounds

For the sake of simplicity (and getting closed form results), we assume that the input
sources areKj independent and identical alternating on–off sources, that stay on for
an exponential amount of time with parameter parameterαj and off for an exponential
amount of time with parameterβj . When a source is on, it generates traffic continuously
at raterj into buffer j of sizeBj and when it is off, it does not generate any traffic.
The scheduler serves bufferj for a deterministic timeτj at a maximum ratec and stops
serving the buffer for a deterministic timeT − τj .

The effective bandwidth of all theKj sources combined is (see [9,15])

Kj ebj (v) = Kj rj v − αj − βj +
√
(rjv − αj − βj )2+ 4βj rj v

2v
.

Equation (16) reduces to

Kj ebj (ηj ) = cτj

T
,

and solving forηj , we get

ηj = cτj (αj + βj)− rjKjβjT
(cτj /(KjT ))(rjT Kj − cτj ) .

We can show that (see [12]) equations (21) and (22) reduce to

C∗j =
[ rj T Kj
αj cτj

]Kj (exp
(
njc

τj (T−τj )
T

)− 1
)

min16i6Kj
{(αj+βj

αj βj

)Kj ( TKjβj

TKjβj+ηj cτj
)Kj−i}

ηjcτj

(
T

T − τj
)

=
[ rj T Kj
αj cτj

]Kj (exp
(
njc

τj (T−τj )
T

)− 1
)

(αj+βj
αj βj

)Kj ( T Kjβj

TKjβj+ηj cτj
)Kj−1

ηj cτj

(
T

T − τj
)
, (25)

C∗j =
[ rj T Kj
αj cτj

]Kj (1− exp
(−njc τj (T−τj )T

))
max16i6Kj

{(αj+βj
αj βj

)Kj ( TKjβj

TKjβj+ηj cτj
)Kj−i}

ηjcτj

(
T

T − τj
)

=
[ rj T Kj
αj cτj

]Kj (1− exp
(−njc τj (T−τj )T

))
(αj+βj
αj βj

)Kj
ηjcτj

(
T

T − τj
)
. (26)

We now consider three scenarios to compare the performance of the effective-
bandwidth approximation and the SMP bounds technique by varyingT and τj such
thatτj /T remains a constant. For all the numerical examples we use,

αj = 3, βj = 0.2, rj = 3.4, Bj = 30, τj /T = 3/13. (27)
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Figure 6. Estimates of the logarithms of loss probability.

Estimate of loss-probability. If we are givenαj , βj , rj , Kj , c, Bj , τj andT , then the
estimate of the cell-loss probability at bufferj using the effective-bandwidth techniques
is

loss(ebw)= e−ηjBj

and using the SMP bounds the estimate is

loss(smp)= C∗j e−ηjBj .

Figure 6 shows the results for loss(ebw) and loss(smp) whenKj = 10,c = 15.3, andT
varies from 0.01 to 0.40 whileτj/T is fixed. Intuitively we expect the loss probability to
increase withT since an increase inT would increase the time the server does not serve
the buffer. The SMP bounds estimate, loss(smp), increases withT and hence confirms
our intuition. The effective-bandwidth estimate, loss(ebw), does not change withT .
For smallT , since loss(smp)< loss(ebw), we can conclude that the effective-bandwidth
technique produces a conservative result. For largeT , the estimate of the loss probability
is smaller using the effective-bandwidth technique than the SMP bounds technique. This
indicates that there may be a risk in using the effective-bandwidth technique as it could
result in the QoS criteria not being satisfied.

Estimate of the maximum number of sources.Let εj be maximum allowable cell-loss
at bufferj . Consider that we are givenαj , βj , rj , c, τj andT . We are required to
find the largest number of class-j sources that can be admitted so that the QoS criterion
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Figure 7. Estimate of the maximum number of sources.

is satisfied. Then, the estimate of the maximum number of sources using the effective-
bandwidth technique is

Kebw
j,max=

⌊
1

ebj (− log(εj )/Bj )

cτj

T

⌋
.

On the other hand, using the upper bound for an SMP we obtain (from equation (25))
C∗j for a givenKj . Now we choose the largest integerKsmp

j,max that satisfies

C∗j e−ηjBj < εj .

Figure 7 shows the results forKebw
j,max andKsmp

j,max whenεj = 10−5, c = 15.3, andT
varies from 0.01 to 10.00 whileτj/T is fixed.

AsT increases, we expect fewer sources to be allowable into the buffer so that long
bursts of traffic can be avoided when the server is not serving. From the figure,K

smp
j,max

clearly conforms to our intuition. For largeT , we may end up admitting more sources
if we used the effective-bandwidth technique and hence the QoS criterion may not be
satisfied.

Estimate of the required bandwidth.Consider that we are given the parametersαj , βj ,

rj , Kj , τj andT and we would like to estimate the smallestc value required so that the
loss probability is no greater thanεj . The estimate of the smallest bandwidth required,c,
using the effective-bandwidth technique is

cebw
min = Kj ebj

(− log(εj )/Bj
)
.

The loss probability estimate using the SMP bounds decreases with increase inc. There-
fore we perform a search using the bisection method to pick ac between the mean and
peak input rates that satisfies

C∗j e−ηj Bj = εj ,
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Figure 8. Estimates of the required bandwidth.

whereC∗j is obtained using equation (25). We denote thec value obtained ascsmp
min since

it is the smallest output capacity that would result in satisfying the QoS criterion

C∗j e−ηjBj < εj .

Figure 8 shows the results forcebw
min andcsmp

min whenεj = 10−5,Kj = 10, andT varies from
0.01 to 0.40 whileτj /T is fixed. Intuitively, the bandwidth required should increase
with T so that all the buffer contents are drained out when the server is serving the buffer.
Thecsmp

min obtained using the SMP bounds technique is consistent with our intuition. On
the other hand,cebw

min does not vary withT . Therefore on using the effective-bandwidth
technique one faces the risk of the QoS criteria not being satisfied.

4.4. Two classes: admission control

Consider the exponential on-off source model described in section 4.3 with two classes
of traffic (say, real-time and non-real-time), i.e.,N = 2. The admission control is per-
formed in the following manner: consider at a given point of timek1 class 1 sources and
k2 class 2 sources are transmitting. At this time, if a new source arrives into the system,
the admission control scheme decides whether or and not to admit this source. A simple
admission control scheme is an admissible region such that all points within it denote
the number of class 1 and class 2 sources such that their QoS is satisfied. Let the quality
of service parameter for bufferj , j = 1,2, under the timed round-robin (trr) discipline
be

Gtrr
j (K1,K2) = P(Xj > Bj).
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The aim is to identify the feasible region

Ktrr = {(K1,K2): G
trr
1 (K1,K2) < ε1, G

trr
2 (K1,K2) < ε2

}
. (28)

To begin with, we assume that the cycle timeT and the switch-over timetso are fixed
known constants. However, the valuesτ1 andτ2 are variable and are appropriately cho-
sen such thatτ1+ τ2+ tso= T . We use the following algorithm to compute the feasible
regionKtrr in equation (28). Note that the algorithm can be executed off-line to compute
Ktrr and the requiredτ1, τ2. This can be stored and used by table-look-up to imple-
ment on-line admission control. The algorithm does not need to be executed at every
admission decision, but only when the input parameters change.

Algorithm 1. An algorithm to compute the feasible region:

1. SetK = ∅.
2. Letτ1 = T andτ2 = 0. (The scheduler always serves only buffer 1, hence there are

no switch-over times and no compensating source.)

3. Obtain the maximum number of admissible class-1 sourcesKmax
1 as the maximum

value ofK1 such that

C∗1 e−η1B1 < ε1,

where

C∗1 =
[r1K1/(α1c)]K1

((α1+ β1)/(α1β1))K1(K1β1/(K1β1+ η1c))K1−1
(29)

and

η1 = c(α1+ β1)− r1K1β1

(c/K1)(r1K1− c) .

4. K = K ∪ {(0,0), (1,0), . . . , (Kmax
1 ,0)}.

5. Letτ2 = T andτ1 = 0. (The scheduler always serves only buffer 2, hence there are
no switch-over times and no compensating source.)

6. Obtain the maximum number of admissible class-2 sourcesKmax
2 as the maximum

value ofK2 such that

C∗2 e−η2B2 < ε2,

where

C∗2 =
[r2K2/(α2c)]K2

((α2+ β2)/(α2β2))K2(K2β2/(K2β2+ η2c))K2−1
(30)

and

η2 = c(α2+ β2)− r2K2β2

(c/K2)(r2K2− c) .
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Figure 9. Admissible regionKtrr.

7. K = K ∪ {(0,1), (0,2), . . . , (0,Kmax
2 )}.

8. SetK1 = 1.

9. WhileK1 < K
max
1 :

(i) Compute the minimum requiredτ1 (6 T − tso) such that the loss probability is
less thanε1.

(ii) Compute the availableτ2 (= T − tso− τ1).

(iii) Given τ2, compute the maximum possibleK2 value by minimizing over the
setA2 (see equation (23)) forK2+ 1 sources.

(iv) K = K ∪ {(K1,1), (K1,2), . . . , (K1,K2)}.
(v) K1 = K1+ 1.

10. ReturnKtrr = K.

Using algorithm 1, we plot the admissible regionKtrr in figure 9 using the following
numerical values:

α1 = 1, β1 = 0.3, r1 = 1.0, ε1 = 10−6, B1 = 8, T = 1.22, tso= 0.02,

α2 = 1, β2 = 0.2, r2 = 1.23, ε2 = 10−9, B2 = 10 and c = 13.22.
(31)

Note that there is a steep fall in the admissible region from(0,20) to (1,12). This
is due to using equation (30) for theK2 sources and using equation (25) for theK2 + 1
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Table 1
Values of(τ1, τ2) to be used for givenK1 andK2. A ‘−’ in the table denotes that the corresponding

combinationK1 andK2 if not admissible.

K1 \ K2 0 1 2 3 4

0 (0,1.22) (0,1.22) (0, 1.22) (0,1.22) (0,1.22)
1 (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490)
2 (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928)
3 (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297)
4 (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575)
5 (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754)
6 (0.4145, 0.7855) (0.4145, 0.7855) (0.4145, 0.7855) (0.4145, 0.7855) (0.4145, 0.7855)
7 (0.5071, 0.6929) (0.5071, 0.6929) (0.5071, 0.6929) (0.5071, 0.6929) (0.5071, 0.6929)
8 (0.5975, 0.6025) (0.5975, 0.6025) (0.5975, 0.6025) (0.5975, 0.6025) (0.5975, 0.6025)
9 (0.6833, 0.5167) (0.6833, 0.5167) (0.6833, 0.5167) (0.6833, 0.5167) (0.6833, 0.5167)

K1 \ K2 5 6 7 8 9

0 (0,1.22) (0,1.22) (0, 1.22) (0,1.22) (0,1.22)
1 (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490) (0.0510, 1.1490)
2 (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928) (0.1072, 1.0928)
3 (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297) (0.1703, 1.0297)
4 (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575) (0.2425, 0.9575)
5 (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754) (0.3246, 0.8754)
6 (0.4145, 0.7855) (0.4145, 0.7855) (0.4145, 0.7855) (0.4145, 0.7855) –
7 (0.5071, 0.6929) (0.5071, 0.6929) (0.5071, 0.6929) – –
8 (0.5975, 0.6025) (0.5975, 0.6025) – – –
9 (0.6833, 0.5167) – – – –

sources (including the compensating source) respectively for the two points(0,20) and
(1,12). Note that the correct choice ofτ1 andτ2 depend uponK1 andK2 ∈ Ktrr. Table 1
gives values of(τ1, τ2) for selected values of(K1,K2) ∈ Ktrr. Note that from step 9
in algorithm 1,τ1 (and henceτ2) depends only onK1. However, there could be other
choices of(τ1, τ2) for a given(K1,K2).

Next we discuss the effect of varyingT , the cycle time. Intuitively, forT � tso,
an increase inT would result in a smaller admissible region and a decrease inT would
result in a bigger admissible region. We confirm our intuition by observing the results
in figure 10 (using the numerical values in (31)) for the casesT = 1.22 andT = 12.02.
WhenT is approximately of the same order of magnitude astso, a significant fraction
of the server off-time is the switch-over time. Hence it is not clear how the admissible
region would change withT in this case. From figure 10 (using the numerical values
in (31)) we can see that for the casesT = 0.14 andT = 1.22, one region is not the
subset of the other. Hence we conclude that it is not straightforward to obtain an optimal
value ofT such that the feasible region is maximized. Note that iftso = 0, then the
optimalT is such thatT → 0.

Before moving on to the next service scheduling policy, namely, static priority
policy, we briefly explain how the admission control can be carried out in reality by
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Figure 10.Ktrr as a function ofT .

discussing a few implementation issues here. For the two classes of traffic, admission
control is implemented using the following algorithm:

Algorithm 2. An algorithm to implement admission control:

1. Obtain the input parameters (viz.α1, α2, β1, β2, r1, r2, ε1, ε2, B1, B2, T , tso

andc).

2. Use algorithm 1 to generate (off-line) a table similar to table 1 and store the table.

3. When a source arrives, look up the table.
If the (τ1, τ2) entry for the new(K1,K2) value is missing

then reject the source
else

accept the source and use the new(τ1, τ2) values.

4. Wait until another new source arrives or the input parameters change.
If a new source arrives, go to step 3 else go to step 1.

Note from table 1 that the(τ1, τ2) values need not be modified when a source
departs. Hence we do not consider source departing events in algorithm 2. Also this
means that the(τ1, τ2) values need not be changed very often.

5. Static priority service policy

In this section we analyze thestatic priority service policy(for the model in section 3
and illustrated in figure 3) to multiplex the multi-class traffic. Under this service policy,
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traffic of classj has higher service priority over traffic of classi, if i > j . The scheduler
serves the traffic of classj only if there is no fluid of higher priority in the buffers. Thus
all the available channel capacity (a maximum ofc) is assigned for the class-1 fluid and
the leftover channel capacity (if any) that class-1 does not need, to class-2 fluid. Any
leftover channel capacity that class-1 and class-2 do not need, is assigned to class-3 fluid,
and so on.

5.1. Two classes: admission control

We concentrate on the case of two-class traffic, although the analysis can be extended to
more than 2 classes. TheKj class-j sources,j = 1,2, are independent and identical on-
off sources with exponential on and off times, on-time parameterαj , off-time parameter
βj and on-time raterj (similar to the model in section 4.2). Let the Quality of Service
parameter for bufferj , j = 1,2, under the static priority policy (spp) regime be

G
spp
j (K1,K2) = lim

t→∞P
(
X, (t) > Bj

) = P(Xj > Bj).
The aim is to identify the feasible region

Kspp= {(K1,K2): G
spp
1 (K1,K2) < ε1, G

spp
2 (K1,K2) < ε2

}
. (32)

Note that even thoughX1(t) andX2(t) are dependent, for the QoS performance analy-
sis, we require only the marginal distributions ofX1(t) andX2(t). Since the marginal
distributions (that take the dependence ofX1(t) andX2(t) into account) can be easily
computed, we do not present the joint distribution ofX1(t) andX2(t) here.

Unlike the timed round-robin policy where we obtained the feasible admissible re-
gion Ktrr using only the SMP bounds, for the static priority service policy, we obtain
feasible admissible regionKspp using three different methods, namely, effective band-
width approximation, Chernoff dominant eigenvalue (CDE) approximation and the SMP
bounds. Each method produces a different feasible regionKspp.

In the next section we illustrate how to compute the feasible regionKsmp using
SMP bounds. We compareKsmp with the feasible regions obtained using effective band-
width approximation(Kebw and its relaxationN ) and Chernoff dominant eigenvalue
approximation(K(1)

cde and its relaxationK(2)cde) that are explained and computed in [18].

5.2. SMP bounds

Consider the transformed model depicted in figure 11. The sample paths of the buffer
content processes{X1(t), t > 0} and{X2(t), t > 0} in this model are identical to those
in the original model in figure 3 (forN = 2). This observation is made in [10] and is
immensely useful in our analysis. Note that the output from buffer 1 can be modeled as
an SMP. Hence, the input to buffers 1 and 2 can be modeled as ones with multiplexing
independent SMP sources. Therefore, we can use the SMP bounds in section 2.2 to
obtain a feasible admissible region that is guaranteed to be conservative.
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Figure 11. The transformed model.

Buffer 1. If K1 6 c/r1, thenP {X1 > B1} = 0, since buffer 1 will always be empty.
Now for the caseK1 > c/r1, the steady-state distribution of the buffer-content process
is bounded as

C∗1 e−η1B1 6 P {X1 > B1} 6 C∗1 e−η1B1,

where

η1= K1(cα1+ cβ1 −K1β1r1)

c(K1r1− c) , (33)

C∗1 =
(
K1r1
K1r1−c

α1
(α1+β1)

)K1(
cα1

β1(K1r1−c)
)dc/r1e ,

and

C∗1 =
(

K1r1β1

c(α1+ β1)

)K1

.

Buffer 2. We first model theK2 exponential on-off sources as a single(K1 + 1)-state
SMP with the states denoting the number of priority-2 sources that are on and then
derive expressions forH 1, 91

max(i, j) and91
min(i, j) defined in equations (6)–(8) (see

appendix). In [18] it is shown that the output process from buffer 1 can be modeled
as an SMP. In appendix, we derive the corresponding expressionsH 2, 92

max(i, j) and
92

min(i, j) for the SMP model of the output from buffer 1. Therefore we can analyze the
input to buffer 2 as traffic from two sources (output from buffer 1 and the(K2+ 1)-state
SMP), each modulated by an SMP.

We begin by obtainingη2. Using the effective bandwidth of the output from a
buffer described in [18], we can show thatη2 solves either

K1 eb1(η2)+K2 eb2(η2) = c and η2 6 v∗ (34)

or
v∗

η2
K1 eb1

(
v∗
)+K2 eb2(η2) = cv∗

η2
and η2 > v∗, (35)

where

v∗ = β1

r1

(√
cα1

β1(K1r1 − c) − 1

)
+ α1

r1

(
1−

√
β(K1r1− c)

cα1

)
,
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and forj = 1,2

ebj (v) = rj v − αj − βj +
√
(rjv − αj − βj)2+ 4βj rj v

2v
(36)

Therefore using the expressions forH 1, 91
max(i, j), 9

1
min(i, j), H

2, 92
max(i, j) and

92
min(i, j) from appendix, we have

C∗2 =
H 1H 2

min
(i1,j1),(i2,j2): min{i1r1,c}+i2r2>c,pi1j1>0,pi2j2>0

91
min(i1, j1)9

2
min(i2, j2)

and

C∗2 = H 1H 2

max
(i1,j1),(i2,j2): min{i1r1,c}+i2r2>c,pi1j1>0,pi2j2>0

91
max(i1, j1)92

max(i2, j2)
.

We obtain the feasible admissible regionKsmp as the set of all values(K1,K2) that
satisfy

C∗1 e−η1B1 < ε1, C∗2 e−η2B2 < ε2. (37)

5.3. Comparisons

We compare the regionKsmp with the regions obtained using the CDE approximation,
K(1)cde, andK(2)cde, and the regions obtained by effective-bandwidth approximationKebw

andN (using numerical results from [18]). We represent the regions under consideration
in figure 12 using the following numerical values:

α1 = 1.0, β1 = 0.2, r1 = 1.0, ε1 = 10−9, B1 = 10,
α2 = 1.0, β2 = 0.2, r2 = 1.23, ε2 = 10−6, B2 = 10 and c = 13.2.

(38)

The region obtained by the SMP bounds,Ksmp, is conservative. Therefore if an admissi-
ble region has points inKsmp, then those points are guaranteed to satisfy the QoS criteria.
Our numerical investigation suggests that

N ⊂ Kebw⊂ Ksmp,

although we do not have a proof of it. This means that the effective-bandwidth ap-
proximation produces overly conservative results for these parameter values. Usually
the effective bandwidth produces conservative results but it is not guaranteed to be con-
servative, unlike the results from SMP bounds. On one hand, the effective-bandwidth
approximation is computationally easy, on the other hand, it could either be too conser-
vative (and hence leading to under-utilization of resources) or be unconservative (and
hence uncertain about meeting the QoS criteria).

The CDE approximation, although computationally slower than the effective-
bandwidth approximation, is typically faster than the SMP bounds technique. However,
there are examples where we can show that the CDE approximation produces regions
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Figure 12. RegionsN ,Kebw,Ksmp,K(1)cde,K
(2)
cde.

K(1)cde andK(2)cde, with points(K1,K2) that would actually result in a higher cell loss than
what is allowable! Therefore while using the CDE approximation, we run the risk of the
QoS criteria not being satisfied.

Using SMP bounds is computationally intensive. However, similar to the imple-
mentation for the timed round robin policy in section 4.4, here too the computation can
be done off line and the feasible region can be stored in a table. The computation needs
to be repeated only when the input parameters change.

6. Comparisons: timed round robin vs. static priority

In this section we compare the timed round-robin policy against the static priority service
policy. From section 4, it is clear that the admissible region obtained by the timed round-
robin policy is dependent on the value of the cycle timeT chosen. In the following
comparison, we chooseT to be equal toc(B1 + B2) + tso. All other numerical values
are as in (31). In figure 13 we compare the two policies, timed round-robin and static
priority by viewing their respective admissible regions (using SMP bounds) for 2-class
exponential on-off sources with parameters in (31).

From the figure we see the timed round-robin policy results in a smaller admissible
region. This is because the timed round-robin policy is not a work conserving service
discipline unlike the static priority service policy. Clearly, static priority service pol-
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Figure 13. Timed round-robin vs. static priority.

icy does not achieve fairness among the classes of traffic. Therefore it may not be an
appropriate policy to use at all times.

7. Conclusions and extensions

In this paper we analyze a single multi-class node of a high speed network withN

buffers, one for each class of traffic, and each buffer served according to a given service
scheduling policy. We study the overflow probability computations for theN buffers
served according to the timed round robin policy and the static priority service policy.

For the timed round robin policy, using a transformed model, we apply the standard
effective-bandwidth approximation to produce estimates for the overflow probability in
the asymptotic case when the buffers are of extremely large sizes. We also obtain esti-
mates of the overflow probability using the SMP bounds. On comparing the performance
of the two techniques we see that the SMP bounds conform to our intuition whereas the
effective-bandwidth approximation produces counter-intuitive results. Hence we use the
SMP bounds to obtain feasible admissible regions to solve call admission control prob-
lems. We also show that the switch-over time plays an important role especially while
chosing an optimal cycle timeT .

For the static priority service policy, we use the SMP bounds technique to ob-
tain a conservative admissible region to solve call admission control problems. Using
admissible regions, we compare the SMP bounds method with other existing approxi-
mate methods and conclude that depending on what kind of trade-off one would like to
do between computational time, conservativeness and size of the admissible region, an
appropriate method can be used. On comparing the admissible region obtained using
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the SMP bounds for the timed round-robin policy and the static priority service policy,
we see that due to the non-work-conserving nature of the timed round-robin scheduling
policy, we obtain a smaller admissible region.

We also like to point out that for both the service scheduling policies we can use
SMP bounds to solve the admission control problem in the following manner: precom-
pute all the required parameters and store the points in the admissible region in a table.
When a source arrives, perform a table-look-up and check whether or not adding this
new source would result in a point in the admissible region. Also, for the timed round
robin policy, the table can also store the newτ1 andτ2 values.

Note that it is possible to extend the computational results toN > 2 classes. Other
extensions that will be considered in the future include analyzing different polling poli-
cies, e.g., exhaustive policy and gated policy. We have so far only dealt with a single
node in a network. It is possible to extend the analysis to a series network of nodes,
each using a given service scheduling policy. The main concern for using effective-
bandwidth-based approaches is that the output from the different buffers will be corre-
lated due to the service policy followed.

Appendix

The input traffic to buffer 2 can be modeled as two streams of traffic produced by two
independent sources modulated by SMPs. The first is modulated by a(K2 + 1)-state
SMP which is the aggregate source formed using theK2 exponential on-off sources that
input traffic into buffer 2. In fact, the(K2 + 1)-state SMP is a continuous time Markov
chain (CTMC). The second source is the output from buffer 1 which can be modeled as
an SMP. We begin by analyzing the(K2+ 1)-state SMP and obtain expressions forH 1,
91

max(i, j) and91
min(i, j). Then we analyze the SMP model of the output from buffer 1

and obtain expressions forH 2, 92
max(i, j) and92

min(i, j). We follow the analysis and
notations in section 2.2.

Using the expression forη2 in equations (34) and (35), and forebj (v) in equa-
tion (36), define

c1 = K2 eb2(η2)

and

c2 = c −K2 eb2(η2).

The(K2 + 1)-state SMP. For i = 0,1, . . . , K2 andj = 0,1, . . . , K2, we define the
following:

G1
i,j (x)=


iα2

iα2 + (K2− i)β2

(
1− exp

{−(iα2 + (K2− i)β2
)
x
})

if j = i − 1,

(K2− i)β2

iα2 + (K2− i)β2

(
1− exp

{−(iα2 + (K2− i)β2
)
x
})

if j = i + 1,

0 otherwise,
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G1
i (x)= 1− exp

{−(iα2 + (K2− i)β2
)
x
}
,

τ 1
i =

1

iα2+ (K2 − i)β2
,

P 1
ij =G1

i,j (∞),

and

p1
i =

a1
i τ

1
i∑K2

m=0 a
1
mτ

1
m

= K2!
i!(K2 − i)!

α
K2−i
2 βi2

(α2+ β2)K2
.

Then91(η2) is given by

φ1
i,j (η2) =


iα2

iα2+ (K2− i)β2− (ir2 − c1)η2
if j = i − 1,

(K2− i)β2

iα2+ (K2− i)β2− (ir2 − c1)η2
if j = i + 1,

0 otherwise.

Also, the eigenvectors are obtained by solving

h1 = h181(η2).

Therefore

H 1=
K2∑
i=0

h1
i

η2(ir2 − c1)

(
K2∑
j=0

(
φ1
ij (η2)

)− 1

)
and

91
max(i, j) = 91

min(i, j)=
h1
i e−η2(ir2−c1)x

∫∞
x

eη2(ir2−c1)y dG1
ij (y)

(p1
i /τ

1
i )
∫∞
x

dG1
ij (y)

= h
1
i

p1
i

1

iα2+ (K2− i)β2 − η2(ir2 − c1)
.

The output from buffer 1. To model the output from buffer 1 as an SMP we need to
consider two scenarios. In the first we letK1 6 c/r1 and thus buffer 1 would always be
empty and output from buffer 1 can be modeled as a continuous time Markov chain. In
the second whenK1 > c/r1 we need to model the output as an SMP. We treat the two
cases separately.

Case (i). If K1 6 c/r1 then buffer 1 is always empty and the output from buffer 1 is a
K1 + 1 state SMP/CTMC identical to that of the input to buffer 1. Hence we have, for
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i = 0,1, . . . , K1 andj = 0,1, . . . , K1,

G2
i,j (x)=


iα1

iα1+ (K1− i)β1

(
1− exp

{−(iα1+ (K1− i)β1
)
x
})

if j = i − 1,

(K1− i)β1

iα1+ (K1− i)β1

(
1− exp

{−(iα1+ (K1− i)β1
)
x
})

if j = i + 1,

0 otherwise,

G2
i (x)= 1− exp

{−(iα1+ (K1 − i)β1
)
x
}
,

τ 2
i =

1

iα1+ (K1− i)β1
,

P 2
ij =G2

i,j (∞),

and it is easy to derive

p2
i =

a2
i τ

2
i∑K1

m=0 a
2
mτ

2
m

= K1!
i!(K1 − i)!

α
K1−i
1 βi1

(α1+ β1)
K
1

.

Then82(η2) is given by

φ2
i,j (η2) =


iα1

iα1+ (K1− i)β1− (ir1 − c2)η2
if j = i − 1,

(K1− i)β1

iα1+ (K1− i)β1− (ir1 − c1)η2
if j = i + 1,

0 otherwise.

Also, the eigenvectors are obtained by solving

h2 = h282(η2).

Hence we have

H 2=
K1∑
i=0

h2
i

η2(ir1 − c2)

(
K1∑
j=0

(
φ2
ij (η2)

)− 1

)
and

92
max(i, j) = 92

min(i, j)=
h2
i e−η2(ir1−c2)x

∫∞
x

eη2(ir1−c2)y dG2
ij (y)

(p2
i /τ

2
i )
∫∞
x

dG2
ij (y)

= h
2
i

p2
i

1

iα1+ (K2− i)β1 − η2(ir1 − c2)
.
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Case (ii). If K1 > c/r1, we do the following analysis. LetM = dc/r1e. Then the out-
put from buffer 1 can be modeled as an SMP on state space{0,1,2, . . . ,M} (see [18]).
For i = 0,1, . . . ,M − 1 andj = 0,1, . . . ,M, let

G2
i,j (t)=


iα1

iα1 + (K1− i)β1

(
1− exp

{−(iα1 + (K1− i)β1
)
t
})

if j = i − 1,

(K1− i)β1

iα1 + (K1− i)β1

(
1− exp

{−(iα1 + (K1− i)β1
)
t
})

if j = i + 1,

0 otherwise.

Let

T = min
{
t > 0: X1(t) = 0

}
.

Then forj = 0,1, . . . ,M − 1, we have

G2
M,j (t) = P

{
T 6 t, SN(T ) = j | X1(0) = 0, SN(0) = M},

whereSN(t) denotes the number of priority 1 sources on at timet . (Note thatG2
M,M(t)

= 0.) We needG2(∞) = [G2
i,j (∞)] in our analysis. We have fori = 0,1, . . . ,M − 1

andj = 0,1, . . . ,M,

G2
i,j (∞)=


iα1

iα1+ (K1− i)β1
if j = i − 1,

(K1− i)β1

iα1+ (K1− i)β1
if j = i + 1,

0 otherwise,

(39)

G2
M,j (∞)= G̃ 2

M,j (0),

whereG̃ 2
M,j (s) is the Laplace–Stieltjes transform (LST) ofG2

M,j (t), and can be com-
puted using the analysis in [20].

We also need the expression for the sojourn timeτ 2
i in statei, for i = 0,1, . . . ,M.

We have

τ 2
i =


1

iα1+ (K1 − i)β1
if i = 0,1, . . . ,M − 1,

M−1∑
j=0

G̃ 2′
M,j (0) if i = M.

Then we have fori = 0,1, . . . ,M

p2
i =

a2
i τ

2
i∑M

k=0 a
2
k τ

2
k

, (40)

where

a2 = a2G2(∞).
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Following the analysis in [12] define

φ̄2
ij (η2,m) =

{
G̃ 2
ij

(−η2
(
ir1 − c2

))
if 0 6 i 6 M − 1,

mG̃ 2
ij

(−η2
(
c − c2

))
if i = M.

Solve form such that the Perron–Frobenius eigenvalue ofS82(η2,m) is 1. Hence we
obtainh2 from

h2S82(η2,m) = h2.

It can be shown that random variables with distributionG2
Mj(x)/G

2
Mj (∞) have a de-

creasing failure rate. Hence92
min(M, j) and92

max(M, j) occur atx = ∞ andx = 0
respectively. Thus we have for(i, j) ∈ {0,1, . . . ,M},

H 2=
M∑
i=0

h2
i

η2(ir1 − c2)

(
M∑
j=0

(
φ̄2
ij (η2,m)

)− 1

)
,

92
min(i, j)= inf

x

{
h2
i e−η2(ir1−c2)x

∫∞
x

eη2(ir1−c2)y dG2
ij (y)

p2
i /(iα1+ (K2 − i)β1− η2(ir1 − c2))

∫∞
x

dG2
ij (y)

}
,

and

92
max(i, j)= sup

x

{
h2
i e−η2(ir1−c2)x

∫∞
x

e−η2(ir1−c2)y dG2
ij (y)

p2
i /(iα1+ (K2− i)β1 − η2(ir1− c2))

∫∞
x

dG2
ij (y)

}
.
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