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Abstract. In this paper, we consider the stochastic fluid-flow model of a single node in a high-speed
telecommunication network handling multi-class traffic. The node has multiple buffers, one for each class
of traffic. The contents of these buffers are multiplexed onto a single output channel using one of the service
scheduling policies: the Timed Round Robin Policy or the Static Priority Service Policy. The Quality of
Service requirements for each class are based on cell loss probabilities. Using effective bandwidth method-
ologies and the recently developed bounds for semi-Markov modulated traffic, we solve call admission
control problems for the two service scheduling policies at this node. We compare the performance of the
effective bandwidth methodologies and the SMP bounds technique. We also numerically compare the per-
formance of the two service scheduling policies.

Keywords: Quality of Service, admission control, multi-class traffic, timed round robin policy, static pri-
ority service policy, fluid-flow models, fluid queues

1. Introduction

High-speed telecommunication networks are rapidly becoming a reality. Modeling and
analysis of such networks is an important step in their design and operation. In this paper,
we mainly concentrate on high-speed networks that use the asynchronous transfer mode
(ATM) where information flows in the network in the form of 53-byte packets or cells.
These high-speed networks are expected to handle a wide variety of traffic on the same
channel. Therefore a cell may carry one of the different types of information: voice,
video, data, etc. This creates the need to deal with multi-class traffic. For each class of
traffic, a Quality of Service (QoS), measured by cell-loss probability, delay, delay-jitter,
etc. needs to be assured. The QoS may be different for each type of traffic. For example,
real-time traffic has a more stringent delay requirement but can tolerate higher cell-loss;
while data traffic can tolerate higher delay but demands much smaller cell-loss.

* This work was partially supported by NSF Grant No. NCR-9406823.
** N. Gautam’s research was partially supported by the IBM Co-operative Dissertation Fellowship Award.
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Figure 1. A multi-class node.

The high speed (e.g., 155-622 Mg} of the ATM network implies that it can
transmit millions of cells per second. This makes fluid-flow models useful in describing
the flow of cells. We analyze the packetized traffic by approximating it by fluids, follow-
ing the large literature using fluid-flow models for communication systems, (see [1,8],
etc.).

Figure 1 shows a schematic representation of a single node designed to handle
multi-class traffic. The node has multiple buffers, one for each class. The node follows
a given service scheduling policy to transmit the data from these buffers onto the out-
put channel. In [14] a similar scenario using the packetized general processor sharing
mechanism and the weighted round robin mechanism are considered for discrete arrival
systems.

We study two different service scheduling policies: timed round robin and static
priority. Under timed round robin policy (a variation of polling), the scheduler serves
the buffers in a fixed cyclical fashion. Takagi [23], Daganzo [5], etc. analyze the dif-
ferent types of policies in polling systems and describe their properties. Some of the
common polling policies studied are the full-service exhaustive policy, the gated policy,
the weighted round robin mechanism and the timed round-robin policy. We shall con-
centrate on the timed round-robin policy under which the scheduler serves each buffer
for a fixed amount of time in a given cyclic order.

Under static priority service policy each class of fluid has a fixed priority of ser-
vice. This policy gives full priority to the highest priority traffic and the transmission
capacity that is not utilized by highest priority traffic is offered to the next highest pri-
ority traffic, etc. Narayanan and Kulkarni [20] analyze multi-class fluid models that use
static priority service policy. They develop the marginal buffer-content distributions for
each class of fluid. Zhang [25] analyzes the joint distribution of the buffer contents of
each class.

For a single node using a single class of traffic the concept of effective band-
widths and its applications to the QoS problem is well established. Gibbens and
Hunt [13], Kesidis et al. [15], Elwalid and Mitra [9], Kulkarni [17], Choudhury et
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al. [4], Whitt [24], etc. discuss the concept of effective bandwidths for single-class traf-
fic.

The effective-bandwidth methodology, although simple to use, is based on an ex-
ponential approximation to the tail of the distribution of the buffer content in steady state.
This approximation holds only when the buffer sizes are very large, the tail probabili-
ties are small, and under certain assumptions about the input traffic. Several researchers
have attempted to redress these shortcomings. For example, Elwalid et al. [7,10] modify
the effective-bandwidth methodology and develop the Chernoff Dominant Eigenvalue
(CDE) approximation for single-class traffic. To avoid approximations, other approaches
have been developed. They include deriving upper and lower bounds for the buffer con-
tent process in steady state with a Markov additive input by discretizing time and using
extensions of Kingman'’s exponential bounds for waiting times in the stationary regime in
aG/G/1 queue (see [2,3,6,16,19,22]). Artiges and Nain [2] obtain exponential bounds
for multiplexing multiclass Markovian on—off sources, where the upper bounds are sim-
ilar to those in [21].

In [18], effective bandwidth approximation and Chernoff dominant eigenvalue ap-
proximation are used to solve design and admission control problems under static pri-
ority service policy. In this paper we use the bounds obtained for the semi-Markov
modulated fluid traffic (see [11]) in the analysis of both the static priority service policy
as well as the timed round robin policy.

The paper is organized as follows. In section 2, for a single buffer model, we re-
capitulate the effective bandwidth approximation and the semi-Markov process bounds.
In section 3 we illustrate the multi-class node model. In section 4 we describe the timed
round-robin policy and compare the performance of the effective bandwidth methodolo-
gies against the SMP bounds technique for QoS problems under this policy. In section 5,
we use the SMP bounds technique for admission control problems for the static priority
service policy. We compare the admissible regions with those obtained using effective
bandwidth techniques and Chernoff bounds. In section 6, we numerically compare the
performance of the two service scheduling policies.

2. Preliminary results: effective bandwidths and SMP bounds

Consider a single infinite-sized buffer (with constant output capagityat admits traffic
from K independent sources, wikith source driven by a random environment process
{(Zk(t), t > 0}, k =1,2,..., K (see figure 2). Attime, sourcek generates fluid at
ratery,(Z;(¢)). Let X (r) be the amount of fluid in the buffer at timeWe are interested

in the following probability:

lim P{X(t) > x} = P{X > x}. (1)

t—00

If B isthe actual buffer size theR{X > B} is taken as the steady state approximation
of the buffer overflow probability.
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Figure 2. Single buffer fluid model.

2.1. Effective bandwidths

Assume that the environment proces§8g(z), t > 0}, k =1,2,..., K, are stationary
and ergodic processes satisfying the Gartner—Ellis conditions (see [15]). Then, for a
givenv (v > 0), theeffective bandwidtlef sourcek is

eb.(v) = lim v—ltlogE{exp(v /trk(Zk(t)) dt) } (2)
—>00 0

When the{Z,(¢), t > 0} processes can be modeled as certain special stochastic process-
es, Kesidis et al. [15], Elwalid and Mitra [9] and Kulkarni [17] illustrate how to compute
eh, (v) in those cases. Letbe the solution to

K
> eb(n) =c. 3
k=1
The effective bandwidth methodology yields the following approximation of the proba-
bility in equation (1):
P(X > x)~e™. (4)

Using the effective bandwidth approximation, we conclude that the QoS criterion for
cell loss probabilityP(X > B) < ¢ is satisfied if &7 < ¢, whereB is the buffer size.
The R.H.S. in (4) is an approximation, not a bound and is valid for |&g&d smalle.

2.2. SMP bounds

Consider the case whe¢#(¢), r > 0} (k =1,2, ..., K) are independent semi-Markov
processes (SMPs) with state spage= {1, 2, ..., ¢} and kernelG*(x) = [Gf.‘,. ™].
The expected time thith SMP spends in statds t*. The stationary distribution vector
of thekth SMP{Z,(¢), t > O} is p*, where

pf = lim P{Z,1) = i}.
—>00
We describe how to computh, (v) first. Letéiﬁ. (s) be the Laplace—Stieltjes transform

(LST) of Gf;(x). For a giverw > 0, define

Xi'}(v, u)= 5,’; (—v(rk(i) — u)),
X @, u) =[x}, w)].
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Theneb, (v) is given by the smallest positive number such that the Perron—Frobenius
eigenvalue ofx*(v, eb.(v)) is one. Lety be a solution to equation (3), and denote
() = x*(n, eb.(n)). Let h* be the left eigenvector ob*(n) corresponding to the
eigenvalue 1, i.e.,

" = n* k().
Now, let

P (i, j) = [G*(c0)] (5)

ij’
We also define
Ly

h¥ b
k_ ; . B
o Z n(ri(@) — eb(n)) (Z(‘ﬁg(ﬂ)) 1>, (6)

i=1 j=1
Wk i i) = inf{ h{f e 10k —eb (m)x fxoo @1 (re(D)—elb(n)y dei () } -
m x (pf/th [ dGE (») ’
and
h* et —em)x [ en(i)—em)y G (y)
\Ijr];ax(i’ ]) = SUD{ l % ];[x ) * E } (8)
x (p,' /T,' )fx dG,’j(y)
From [11,12], we have
c,e < PX>x)<cCc*e™, x>0, 9
where
* Hf—l Hk Hlf—l Hk
C = . K — k . . ’ C* = K — & . . ’
min [ Ti_1 WinCiks Jio) maXa [ i1 Whaxlix: Jjk)
“4: (i17j1)?(i2’j2)a---a(iKajK): ik’jkESk7
K
> relix) > ¢ andvk, PX(ir. ji) > 0Of. (10)
k=1

Using the SMP bounds we conclude that the QoS criterion for cell loss probability
P(X > B) < ¢ is satisfied ifC*e 27 < ¢. Using equation (9), we can describe a
bound onP (X > B) that is valid for allB ands.

3.  Multi-class node model
In this section we use the single class model results obtained in section 2 to solve QoS

problems in multi-class nodes by making suitable transformations. Consider the model
of a multi-class node illustrated in figure 3. The node consist¥ @iput buffers, one
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Figure 3. The multi-class node model.

for each class of traffic. The input to buffgr(; = 1,..., N), is from theK; sources
of classj. Theith source of clasg is driven by an independent random environment
processZ;; = {Z;j(t), t > O} fori = 1,2,..., K;. Attimet, sourcei of type j

generates fluid at ratg; (Z;;(¢)). Let X (¢) be the amount of fluid in buffef at timez.
All the classes of fluids are served by a single channel of constant capacising a
specified service scheduling policy (in this paper, we consider timed round robin policy
and static priority service policy).

We assume that alv buffers are of infinite capacity. IB; is the actual size of
bufferj (j = 1,2,..., N), then we take

lim P{X;(®) > B;} = P{X; > B}

as the steady state approximation of the overflow probability from bffeete; be the
cell loss probability target for classtraffic (j = 1, 2,..., N). The Quality of Service
(QoS) criterion for cell loss that need to be satisfied clasaffic is

tlim P{X;(t) > B;} = P{X; > B;} <¢,. (12)

We first explain the two service scheduling policies, timed round robin policy and static
priority service policy. Note that the effective bandwidth and the SMP bounds analysis
for the multiclass model is not a trivial extension of that of the single class model. The
output channel capacity for each buffer is not a constant in the multiclass node model.
Therefore the model requires a careful transformation that results in a constant output
channel capacity model for each of the buffers. From the transformed models, we com-
pute P{X; > B;} using effective bandwidth approximation and SMP bounds techniques
for the two policies. We also solve admission control problems for the two policies. Fi-
nally, we compare the two policies.
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4. Timed round robin policy

Consider the multi-class node model described in section 3 and illustrated in figure 3. All
classes of fluids are multiplexed usindiaed Round Robiservice scheduling policy
which is described as follows. The scheduler allocates the entire output capaaity
each of theV buffers in a cyclic fashion. In each cycle, buffegets the entire capacity
for an interval of lengthr;. Note that during this interval, buffej could be empty.
Hence the scheduler is not work conserving.

Let z5o be the total switch-over time during an entire cycle. We assume.aaes
not change with time. Theycle timeT is defined as the amount of time the scheduler
takes to complete a cycle, and is given by

N
T=ZSO+ZTj' (12)
j=1

First we assume that all buffers are of infinite capacity. The dynamics of the buffer-
content procesgX(¢), t > 0} is described by

K
J rij (z,»j (z)) —c if X(r) > 0 and scheduler serving buffér
i=1
dX; (1) L T . .
—= {lzzl rii(Zij () — c} if X (r) =0 and scheduler serving buffgr (13)
K;
rij (zij (z)) if scheduler not serving buffey.

[N

i=

We assume that the following stability condition is satisfied for buffef = 1, ..., N):

K

E{rij(Zij(00))} < ¢ %} (14)
i=1

4.1. Effective bandwidth analysis

If we are giventy, 1o, ..., Ty andfse, then the buffer contents of a given buffer (say,
and its dynamics do not depend on the parameters of any other buffei (gay).
Therefore, it is convenient to analyze each buffer separately. Bjftan be modeled
as a single-buffer-fluid model with variable output capacity and input fiondiffer-
ent sources, such that sourcef classj is modulated by an environmental process
{Z;j(t), t > 0}. The output capacity alternates betweeffor r; units of time) and 0
(for T — 7; units of time).

Note that the effective-bandwidth approximation (see section 2.1) and the SMP
bounds (see section 2.2) assume that the output channel capacity is a constant. Therefore



358 N. GAUTAM, V.G. KULKARNI

1
2

R
/

K.
i
Compensating Source

Figure 4. Transformed buffer model.

to utilize those techniques, we need to first transform our model into an appropriate one
with a constant output channel capacity as follows.

Consider a single-buffer-fluid model for buffgrwith a constant output channel
capacityc whose input is generated by the originkill sources and a fictitious com-
pensating source. The compensating source is such that it stays on for a deterministic
amount of timeT" — t; and off for a deterministic amount of timg. When the com-
pensating source is on, it generates fluid at rated when it is off it generates fluid
at rate 0. Note that the compensating source is independent of the odgisalurces.
Clearly, the dynamics of the buffer-content process (of bufjén equation (13) remain
unchanged for this transformed single-buffer-fluid model with4- 1 input sources (in-
cluding the compensating source) and constant output capacRgfer to figure 4 for
an illustration of the transformed model for buffer

Using the effective bandwidth computations in [17], we can show that the effective
bandwidth of the compensating source described above is given by

C(T — 'L'j)
eb?,.(v) == (15)
Note that the effective bandwidth of this deterministic source is indeed its mean traffic
generation rate. Let the effective bandwidth of sour¢e= 1,2, ..., K;) of class;j be

eh;(v). ThereforeP(X; > B;) ~ e %", wheren; (using equation (3)) is obtained by
solving

K

J
(T — 1)
Zebj(nj)+ch=c- (16)
i=1
The QoS criteria for all the classes of traffic are satisfied if fojal 1,2,..., N,
e Bin < gj. an

Equations (16) and (17) indicate that the QoS guarantee using the effective-
bandwidth approximation technique depends only on the fafid and not on the indi-
vidual values ofr; or T. Consider two instances, one with largeand7 and the other
with smallz; and 7, such that the ratie; /T is the same in both instances. The effec-
tive bandwidth approximation implies that the loss probability will be the same in both
instances. Intuitively, the probability of buffer overflow should be larger for the longer
cycle timeT.

For example, consider an infinite-sized buffer into which fluid is generated contin-
uously at rate- (deterministic or CBR source). Let this buffer be emptied by a channel
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Figure 5. Buffer content process for differeft;, T') values.

whose capacity oscillates betwee(for time ;) and O (for timeT" — ;). For stability,
assume that < ct;/T. Then the limiting probability that the buffer content excedds
is given by

0 |fT—'L',<

P{X; > B} = ) B
' ( ¢ )(1-’-1——> T -7 > =
c—r T rT r

Clearly, the probabilityP{X; > B} increases withl". For this example, the buffer
content procesX;(¢) is shown in figure 5 for two instances, one with smalland T
(figure 5(a)) and the other with large andT (figure 5(b)), such that the ratig /T is
the same in both instances. From the figure it is easy to see{}t > B} is higher
for larger; andT (figure 5(b)).

Note that the effective bandwidth results are theoretically valid since the effective-
bandwidth analysis assumes extremely large buff8rs—> oo). However in practice,
this cannot be considered as valid due to finite buffers. Therefore the effective-bandwidth
approximation technigue fails for moderate to large sized buffers and works only for ex-
tremely large sized buffers. The Chernoff dominant eigenvalue approximation (see [10])
also faces the same problem. The SMP bounds below resolve this issue. In section 4.3,
the effect ofr; andT on the performance of the timed round robin policy is explained
using numerical examples.

4.2. Semi-Markov process (SMP) bounds analysis

We consider the transformed model of buffe¢j = 1, 2, ..., N) illustrated in figure 4.
We assume that thgZ;;(r), + > 0} processesi = 1,2,..., K;) are semi-Markov
processes. Therefore there & e+ 1 independent sources modulated by SMPs (includ-
ing the compensating source) that generate traffic into byffarose the output capacity
is a constant.

For the SMP bounds analysis for buffewe follow the single-class traffic analysis
in section 2.2 for a buffer with input generated by independent semi-Markovian sources
multiplexed together. Lej; be the smallest positive solution to equation (16).
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Using equations (6)—(8), we can obtakh/, and Wi, respectlvely, for

mln
sourcei (i = 1,2,...,K;) of classj. The corresponding expressiorg’, ¥ and
max for the jth compensating source are
s 1—exp(—n;c((T — 1;)/T)1)) [ T? } (18)
n;c (T — 'L'j)Tj
_ T_ 1.
} 0 Texp<—njc 7 i rj>
_T eXp(—T}jC T ] ‘L’j) 0
i 0T
Uiax= _T O:| . (20)

Lettings = K; + 1, we obtain the bounds on the limiting distribution of the buffer
content procesgX;(¢), ¢t > 0} as

Ci,e" < P(X;>x)< C*e"f

wheren; is from equation (16),

. My HY
Ci=— Kj+1 (21)
miny [Ty WeinCi me)
K;+1 ;
1—[ J ij
Cyj= I§+11 ’ (22)
maxy [Te2y Witaxe, me)
and
A =1 my), (2. ma), ..., (k41 m 41): Lo mi € S,
K.,'+l
> r) > candvk, PY(l,my) > 04. (23)
k=1
The QoS criteria for all the classes of traffic are satisfied if jfer 1,2, ..., N,
C; e b < gj. (24)

From equations (18)—(20), clearlg,*/ andll!ﬁ,{m are functions ot;, T andz;/T. Hence,
C7 is afunction of bothr; andT and not simply of the ratie; / 7. In the next section we
will illustrate some of the differences in the results obtained by using the two techniques,

effective-bandwidth approximation and semi-Markov process bounds.
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4.3. Effective bandwidth vs SMP bounds

For the sake of simplicity (and getting closed form results), we assume that the input
sources arek; independent and identical alternating on—off sources, that stay on for
an exponential amount of time with parameter parameteand off for an exponential
amount of time with parametg;. When a source is on, it generates traffic continuously
at rater; into buffer j of size B; and when it is off, it does not generate any traffic.
The scheduler serves buffgifor a deterministic time; at a maximum rate and stops
serving the buffer for a deterministic tinfe— ;.

The effective bandwidth of all thi€j sources combined is (see [9,15])

K;ebi(v) = K; j j j \/ sz j j i"iv

Equation (16) reduces to

cT;
Kjeb;(n;) = 71,

and solving fom ;, we get

0 = CTj(O[j+,3j)—ijj/3jT
T (et /(K T)(r;TK; —ctj)’

We can show that (see [12]) equations (21) and (22) reduce to

I e e R
‘ (T Tj)

o mincian {(SFD " (rrg ) e

R T TR "
(aoi:Séj)Kj(TKjﬂIjié;jjcrj)Kj_lnjcrj T-v)
max<i<x, (5" (rrpies) mer \T =%
B et 7y ”
() mjer, r-=/)

We now consider three scenarios to compare the performance of the effective-
bandwidth approximation and the SMP bounds technique by vargiremd z; such
thatt; /T remains a constant. For all the numerical examples we use,

o = 3, ,3/ = 02, ry = 34, Bj = 30, TAI'/T = 3/13 (27)
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Figure 6. Estimates of the logarithms of loss probability.

Estimate of loss-probability. If we are givenx;, 8;, rj, K;, ¢, B;, tjandT, thenthe
estimate of the cell-loss probability at buffeusing the effective-bandwidth techniques
is

Bj

loss(ebw)= e

and using the SMP bounds the estimate is
loss(smp)= C} e "%

Figure 6 shows the results for loss(ebw) and loss(smp) wihes 10, c = 15.3, andT

varies from 0.01 to 0.40 while; /T is fixed. Intuitively we expect the loss probability to
increase withl" since an increase ifi would increase the time the server does not serve
the buffer. The SMP bounds estimate, loss(smp), increasesratid hence confirms

our intuition. The effective-bandwidth estimate, loss(ebw), does not changeTwith

For smallT, since loss(smpX loss(ebw), we can conclude that the effective-bandwidth
technique produces a conservative result. For I&rgle estimate of the loss probability

is smaller using the effective-bandwidth technique than the SMP bounds technique. This
indicates that there may be a risk in using the effective-bandwidth technique as it could
result in the QoS criteria not being satisfied.

Estimate of the maximum number of sourcelset ¢; be maximum allowable cell-loss
at buffer j. Consider that we are given;, ;, r;, ¢, t; andT. We are required to
find the largest number of clagssources that can be admitted so that the QoS criterion
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Figure 7. Estimate of the maximum number of sources.
is satisfied. Then, the estimate of the maximum number of sources using the effective-
bandwidth technique is
Keow 1 i
J,max ebj(— IOg(SI)/B,) T ’
On the other hand, using the upper bound for an SMP we obtain (from equation (25))

C* for a givenk ;. Now we choose the largest integi' " that satisfies

CT e_"fo < é&j.

Figure 7 shows the results fafe% and K" whene; = 1075, ¢ = 153, andT
varies from 0.01 to 10.00 while;/ T is fixed.

As T increases, we expect fewer sources to be allowable into the buffer so that long
bursts of traffic can be avoided when the server is not serving. From the figﬂ}i%x
clearly conforms to our intuition. For largg, we may end up admitting more sources
if we used the effective-bandwidth technique and hence the QoS criterion may not be

satisfied.

Estimate of the required bandwidth Consider that we are given the parametersg;,
ri, K;j, r; andT and we would like to estimate the smallestalue required so that the
loss probability is no greater than. The estimate of the smallest bandwidth requieed,
using the effective-bandwidth technique is

chm = K eb;(—log(e,)/ B)).
The loss probability estimate using the SMP bounds decreases with increa3dare-

fore we perform a search using the bisection method to picbetween the mean and
peak input rates that satisfies

*anjBj _ o
Cje = ¢j,
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smp

whereC* is obtained using equation (25). We denotedh@lue obtained as;, since

it is the smallest output capacity that would result in satisfying the QoS criterion
C;k e B < Ej.

Figure 8 shows the results a2 andc,, whene; = 1075, K; = 10, andT varies from

0.01 to 0.40 whiler;/T is fixed. Intuitively, the bandwidth required should increase

with T so that all the buffer contents are drained out when the server is serving the buffer.

Thec, " obtained using the SMP bounds technique is consistent with our intuition. On

the other hand¢22" does not vary wittr". Therefore on using the effective-bandwidth

technique one faces the risk of the QoS criteria not being satisfied.

4.4. Two classes: admission control

Consider the exponential on-off source model described in section 4.3 with two classes
of traffic (say, real-time and non-real-time), i.8/,= 2. The admission control is per-
formed in the following manner: consider at a given point of tipelass 1 sources and

k> class 2 sources are transmitting. At this time, if a new source arrives into the system,
the admission control scheme decides whether or and not to admit this source. A simple
admission control scheme is an admissible region such that all points within it denote
the number of class 1 and class 2 sources such that their QoS is satisfied. Let the quality
of service parameter for buffgr, j = 1, 2, under the timed round-robin (trr) discipline

be

GY'(K1. K2) = P(X; > Bj).
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The aim is to identify the feasible region
K" = {(K1, K2): GY'(K1, K») < €1, G3' (K1, K2) < 2}. (28)

To begin with, we assume that the cycle tiffieand the switch-over time,, are fixed
known constants. However, the valugsandt, are variable and are appropriately cho-
sen such that; + 1, + 150 = T. We use the following algorithm to compute the feasible
region'" in equation (28). Note that the algorithm can be executed off-line to compute
K" and the required, 7,. This can be stored and used by table-look-up to imple-
ment on-line admission control. The algorithm does not need to be executed at every
admission decision, but only when the input parameters change.

Algorithm 1. An algorithm to compute the feasible region:

1. Set = #.

2. Letr; = T andt, = 0. (The scheduler always serves only buffer 1, hence there are
no switch-over times and no compensating source.)

3. Obtain the maximum number of admissible class-1 soukg¥¥ as the maximum
value of K4 such that

Ci e mbL ¢
where

[r1K1/(a10)]%
C1= 29
L7 (@1 + B0/ (@B ¥ (Ke/ (Kay + mic) it (29)

and
clar+ 1) —nKip1
(c/K1)(riKi —¢)
4. K=K U{(0,0), (1,0),..., (K" 0).

5. Lett, = T andr; = 0. (The scheduler always serves only buffer 2, hence there are
no switch-over times and no compensating source.)

N =

6. Obtain the maximum number of admissible class-2 soukcEs as the maximum
value of K5 such that

C; e B o,
where

Cr — [r2K2/ (apc) ]2
27 (a2 + B2)/(@2B2)K2(K 22/ (K22 + o)) K21

(30)

and
_ c(ap + B2) — r2Kop
(c/K2)(raKa —c¢)
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Figure 9. Admissible regiofC!"".

7. K =KU{(0.1),(0,2),..., 0, K"™)).
8. Setk; = 1.
9. While K; < K"

(i) Compute the minimum required (< T — t50) such that the loss probability is
less thare;.

(iiy Compute the available, (= T — 50 — 1).

(iii) Given 1, compute the maximum possibk, value by minimizing over the
set.A? (see equation (23)) fak, + 1 sources.

(iv) K=KU{(K1,1),(Ky,2),..., (K, Kz)}.
(V) Ki=K;+1.
10. Returnk™ = K.

Using algorithm 1, we plot the admissible regiGH" in figure 9 using the following
numerical values:
o =1, ,31 = 0.3, ry = 1.0, &1 = 106, B, = 8 T =122 Iso = 0.02,
ar =1 Ppo=02 =123 e=10° B,=10 and c=1322 (31)

Note that there is a steep fall in the admissible region f(Gn20) to (1, 12). This
is due to using equation (30) for th&, sources and using equation (25) for tkig+ 1
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Values of (11, 72) to be used for giverK1 and K». A ‘—' in the table denotes that the corresponding

Table 1

combinationkK; and K> if not admissible.

367

K1\ K2

0

1

2

3

4

o

O oo ~NO UL WNPE

(0,1.22)
(0.051Q 1.1490
(0.1072 1.0929
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025
(0.6833 0.5167)

(0,1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025
(0.6833 0.5167)

(0, 1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025
(0.6833 0.5167)

(0,122
(0.051Q 1.1490
(0.1072 1.0929
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025
(0.6833 0.5167)

(0,1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025
(0.6833 0.5167)

>
e
—
>
N

5

6

7

8

9

o

O oo ~NO U WNP

(0,122
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0299)
(0.2425 0.9575
(0.3246 0.8754
(0.4145 0.7855
(0.5071 0.6929
(0.5975 0.6025
(0.6833 0.5167)

(0,1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071, 0.6929
(0.5975 0.6025

(0, 1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297
(0.2425 0.9575
(0.3246 0.8754)
(0.4145 0.7855
(0.5071 0.6929

(0,122
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0299)
(0.2425 0.9575
(0.3246 0.8754
(0.4145 0.7855

(0,1.22)
(0.051Q 1.1490
(0.1072 1.0928
(0.1703 1.0297)
(0.2425 0.9575
(0.3246 0.8754)

sources (including the compensating source) respectively for the two poj28) and
(1, 12). Note that the correct choice of andz, depend upoik; andK, € K. Table 1
gives values oft, 7o) for selected values afKq, K,) € K. Note that from step 9
in algorithm 1,7, (and hencer,) depends only orkK;. However, there could be other
choices of(ty, 1,) for a given(Ky, K>).

Next we discuss the effect of varyirig, the cycle time. Intuitively, forl > ¢4,
an increase i would result in a smaller admissible region and a decreageviould
result in a bigger admissible region. We confirm our intuition by observing the results
in figure 10 (using the numerical values in (31)) for the caBes 1.22 andT = 12.02.
WhenT is approximately of the same order of magnitudesgsa significant fraction
of the server off-time is the switch-over time. Hence it is not clear how the admissible
region would change witlT" in this case. From figure 10 (using the numerical values
in (31)) we can see that for the casEs= 0.14 and7 = 1.22, one region is not the
subset of the other. Hence we conclude that it is not straightforward to obtain an optimal
value of T such that the feasible region is maximized. Note that,if= 0, then the
optimal T is such tha" — 0.

Before moving on to the next service scheduling policy, namely, static priority
policy, we briefly explain how the admission control can be carried out in reality by
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Figure 10.K!"" as a function off.

discussing a few implementation issues here. For the two classes of traffic, admission
control is implemented using the following algorithm:

Algorithm 2. An algorithm to implement admission control:

1. Obtain the input parameters (vigq, oo, B1, B2, r1, ra, €1, €2, B1, Bo, T, I
andc).

2. Use algorithm 1 to generate (off-line) a table similar to table 1 and store the table.

3. When a source arrives, look up the table.
If the (71, T2) entry for the new(K 1, K») value is missing
then reject the source
else
accept the source and use the new 1,) values.

4. Wait until another new source arrives or the input parameters change.
If a new source arrives, go to step 3 else go to step 1.

Note from table 1 that thérq, 7,) values need not be modified when a source
departs. Hence we do not consider source departing events in algorithm 2. Also this
means that théry, 1o) values need not be changed very often.

5.  Static priority service policy

In this section we analyze thstatic priority service policyfor the model in section 3
and illustrated in figure 3) to multiplex the multi-class traffic. Under this service policy,
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traffic of classj has higher service priority over traffic of clagsf i > j. The scheduler
serves the traffic of classonly if there is no fluid of higher priority in the buffers. Thus

all the available channel capacity (a maximumpis assigned for the class-1 fluid and

the leftover channel capacity (if any) that class-1 does not need, to class-2 fluid. Any
leftover channel capacity that class-1 and class-2 do not need, is assignhed to class-3 fluid,
and so on.

5.1. Two classes: admission control

We concentrate on the case of two-class traffic, although the analysis can be extended to
more than 2 classes. Ti& classj sources,j = 1, 2, are independent and identical on-

off sources with exponential on and off times, on-time parameteoff-time parameter

B; and on-time rate; (similar to the model in section 4.2). Let the Quality of Service
parameter for buffey, j = 1, 2, under the static priority policy (spp) regime be

spp, ;
G (K1, K) = t'LrQo P(X, (1) > B;) = P(X; > B)).
The aim is to identify the feasible region
KPP = { (K1, K2): GI™(K1, K2) < €1, G3™(K1, K) < €2} (32)

Note that even thouglt, () and X,(¢) are dependent, for the QoS performance analy-
sis, we require only the marginal distributions Xf() and X,(¢). Since the marginal
distributions (that take the dependenceXxafr) and X,(¢z) into account) can be easily
computed, we do not present the joint distributionXafz) and X,(¢) here.

Unlike the timed round-robin policy where we obtained the feasible admissible re-
gion XK' using only the SMP bounds, for the static priority service policy, we obtain
feasible admissible regioksPP using three different methods, namely, effective band-
width approximation, Chernoff dominant eigenvalue (CDE) approximation and the SMP
bounds. Each method produces a different feasible regih

In the next section we illustrate how to compute the feasible refjigg, using
SMP bounds. We compatésmp with the feasible regions obtained using effective band-
width approximation(Kepw and its relaxation\V') and Chernoff dominant eigenvalue
approximation(K 5. and its relaxatiorkZ) that are explained and computed in [18].

5.2. SMP bounds

Consider the transformed model depicted in figure 11. The sample paths of the buffer
content processd(1(¢), t > 0} and{X>,(¢), ¢t > 0} in this model are identical to those

in the original model in figure 3 (foN = 2). This observation is made in [10] and is
immensely useful in our analysis. Note that the output from buffer 1 can be modeled as
an SMP. Hence, the input to buffers 1 and 2 can be modeled as ones with multiplexing
independent SMP sources. Therefore, we can use the SMP bounds in section 2.2 to
obtain a feasible admissible region that is guaranteed to be conservative.
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Figure 11. The transformed model.

Buffer 1. If K; < ¢/r1, thenP{X, > B} = 0, since buffer 1 will always be empty.
Now for the caseK; > c¢/ry, the steady-state distribution of the buffer-content process
is bounded as

C.€ P < P{Xy > By} < Cie ™M,

where
Ki(cor + cfr — K1)
nm= ) (33)
c(Kyry —¢)
( Kqr1 o1 )Kl
w« _ \Kiri—c (01+B1)
1= ( coq )[C/"l] ’
B1(K1ir1—c)
and

Cor— (K1_1ﬂ1>
c(or + B1)

Buffer 2. We first model theK, exponential on-off sources as a singk; + 1)-state
SMP with the states denoting the number of priority-2 sources that are on and then
derive expressions fal®, Wl _ (i, j) and Wl (i, j) defined in equations (6)—(8) (see
appendix). In [18] it is shown that the output process from buffer 1 can be modeled
as an SMP. In appendix, we derive the corresponding expres&lén®2_ (i, j) and
w2, (i, j) for the SMP model of the output from buffer 1. Therefore we can analyze the
input to buffer 2 as traffic from two sources (output from buffer 1 and #e+ 1)-state
SMP), each modulated by an SMP.

We begin by obtaining,. Using the effective bandwidth of the output from a

buffer described in [18], we can show thgtsolves either

Kieb(n) + Koeb(n2) =c and np <v* (34)
or
v* . cv* .
— K, ebl(v ) + Ko ebp(np) = and 1, > v, (35)
n2 n2
where

v*:ﬁ L_l +ﬂ 1— M ,
r B1(K1r1 —¢) r cay
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andforj =12

v—o; — B+ (v —a; — B2+ 4Brv
2v

Therefore using the expressions fart, Wl .G, j), Wi, G, j), H? W2 (i, j) and

w2, (i, j) from appendix, we have

eb;(v) = -

(36)

HH?
¢ = min Wl (i, jOW2i(G2, j2)
(i1, j1) (i2, j2): Minfiary,ci+izra>c, pig jy >0, piyjp >0 mintt1> J1 = minti2: J2
and
HH?
C*Z = 1 . . 2 . . .
max Wiadit, JO)WYhadiz, j2)

(i1,j1), (i2, j2): minfiary,cl+izra>c, pig jy >0, piyjp>

We obtain the feasible admissible regidfim, as the set of all value¢K, K»,) that
satisfy

Ci e b &1, C3 g b &2. (37)
5.3. Comparisons

We compare the regiokismp with the regions obtained using the CDE approximation,
K%, andK2, and the regions obtained by effective-bandwidth approximatigg,
and\ (using numerical results from [18]). We represent the regions under consideration

in figure 12 using the following numerical values:

o1 = 10, ,31 = 02, ra = 10, &1 = 1&9, Bl = 10, (38)
=10, B,=02, rp=123 & =10°% B,=10 and c=132

The region obtained by the SMP boundlg,, is conservative. Therefore if an admissi-
ble region has points ilsmp, then those points are guaranteed to satisfy the QoS criteria.
Our numerical investigation suggests that

N C ’Cebw C ’Csmp,

although we do not have a proof of it. This means that the effective-bandwidth ap-
proximation produces overly conservative results for these parameter values. Usually
the effective bandwidth produces conservative results but it is not guaranteed to be con-
servative, unlike the results from SMP bounds. On one hand, the effective-bandwidth
approximation is computationally easy, on the other hand, it could either be too conser-
vative (and hence leading to under-utilization of resources) or be unconservative (and
hence uncertain about meeting the QoS criteria).
The CDE approximation, although computationally slower than the effective-

bandwidth approximation, is typically faster than the SMP bounds technique. However,
there are examples where we can show that the CDE approximation produces regions
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Figure 12. Regiond/, Kepw: Ksmp. K((:ﬁ)e K((:%)e.
KD and K, with points(K1, K») that would actually result in a higher cell loss than
what is allowable! Therefore while using the CDE approximation, we run the risk of the
QoS criteria not being satisfied.

Using SMP bounds is computationally intensive. However, similar to the imple-
mentation for the timed round robin policy in section 4.4, here too the computation can
be done off line and the feasible region can be stored in a table. The computation needs
to be repeated only when the input parameters change.

6. Comparisons: timed round robin vs. static priority

In this section we compare the timed round-robin policy against the static priority service
policy. From section 4, itis clear that the admissible region obtained by the timed round-
robin policy is dependent on the value of the cycle tifhehosen. In the following
comparison, we choosE to be equal ta:(B1 + B») + 5. All other numerical values
are as in (31). In figure 13 we compare the two policies, timed round-robin and static
priority by viewing their respective admissible regions (using SMP bounds) for 2-class
exponential on-off sources with parameters in (31).

From the figure we see the timed round-robin policy results in a smaller admissible
region. This is because the timed round-robin policy is not a work conserving service
discipline unlike the static priority service policy. Clearly, static priority service pol-
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Figure 13. Timed round-robin vs. static priority.

icy does not achieve fairness among the classes of traffic. Therefore it may not be an
appropriate policy to use at all times.

7. Conclusions and extensions

In this paper we analyze a single multi-class node of a high speed networkMvith
buffers, one for each class of traffic, and each buffer served according to a given service
scheduling policy. We study the overflow probability computations for Xhbuffers
served according to the timed round robin policy and the static priority service policy.

For the timed round robin policy, using a transformed model, we apply the standard
effective-bandwidth approximation to produce estimates for the overflow probability in
the asymptotic case when the buffers are of extremely large sizes. We also obtain esti-
mates of the overflow probability using the SMP bounds. On comparing the performance
of the two techniques we see that the SMP bounds conform to our intuition whereas the
effective-bandwidth approximation produces counter-intuitive results. Hence we use the
SMP bounds to obtain feasible admissible regions to solve call admission control prob-
lems. We also show that the switch-over time plays an important role especially while
chosing an optimal cycle timg.

For the static priority service policy, we use the SMP bounds technique to ob-
tain a conservative admissible region to solve call admission control problems. Using
admissible regions, we compare the SMP bounds method with other existing approxi-
mate methods and conclude that depending on what kind of trade-off one would like to
do between computational time, conservativeness and size of the admissible region, an
appropriate method can be used. On comparing the admissible region obtained using
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the SMP bounds for the timed round-robin policy and the static priority service policy,
we see that due to the non-work-conserving nature of the timed round-robin scheduling
policy, we obtain a smaller admissible region.

We also like to point out that for both the service scheduling policies we can use
SMP bounds to solve the admission control problem in the following manner: precom-
pute all the required parameters and store the points in the admissible region in a table.
When a source arrives, perform a table-look-up and check whether or not adding this
new source would result in a point in the admissible region. Also, for the timed round
robin policy, the table can also store the nevandz, values.

Note that it is possible to extend the computational resulfé te 2 classes. Other
extensions that will be considered in the future include analyzing different polling poli-
cies, e.g., exhaustive policy and gated policy. We have so far only dealt with a single
node in a network. It is possible to extend the analysis to a series network of nodes,
each using a given service scheduling policy. The main concern for using effective-
bandwidth-based approaches is that the output from the different buffers will be corre-
lated due to the service policy followed.

Appendix

The input traffic to buffer 2 can be modeled as two streams of traffic produced by two
independent sources modulated by SMPs. The first is modulated kiy & 1)-state
SMP which is the aggregate source formed usingkkhexponential on-off sources that
input traffic into buffer 2. In fact, théK, + 1)-state SMP is a continuous time Markov
chain (CTMC). The second source is the output from buffer 1 which can be modeled as
an SMP. We begin by analyzing thi&, + 1)-state SMP and obtain expressions fbt,
wl G, j)andW¥l (i, j). Then we analyze the SMP model of the output from buffer 1
and obtain expressions féf?, W2 _ (i, j) and W2, (i, j). We follow the analysis and
notations in section 2.2.

Using the expression fay, in equations (34) and (35), and feb;(v) in equa-
tion (36), define

ct = Koeby(n)
and
c?=c— Kye(n).

The (K, + 1)-state SMP. Fori = 0,1,...,K,andj = 0,1, ..., K, we define the
following:
iOlz
. ios + (Ko —i)fo
G;i(x)= (K2 —1)B2 . ) e
b 1— exp|— K> — if j = 1,
o Ky — g~ Pz (K2 = D)) i j =i+

0 otherwise,

(1—exp{—(ico + (K2 — D)B2)x}) if j=i—1,
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Gi(x) =1—exp{—(iaz + (K2 — i)B2)x},
1 1
T = s
"o+ (K2 —i)B2

1 1
P,'j=G,',j(oo),
and
1.1 Ko—i pi
p-l: a;’T; _ K>! 0522 IIB’Z
Yk alcl MK —D)! (a2 + PR

ThenWwi(n,) is given by

iO[z

. iag + (K2 — )2 — (irz — c¢)nz
- = Ko—i
¢w(772) . ( 2 l),32. . it j—i+1,
iag + (K2 — )2 — (irz — c¢)nz
0 otherwise.
Also, the eigenvectors are obtained by solving
ht = hledl(n,).
Therefore
1 < hl < 1
A=) ———1 L(n2)) — and
; n2(ira — ¢t ;((ﬁ] )

1 o—n2(irg—chx [0 apa(ira—cl)y 1
hi e n2lirz fx ghzlirz—c?)y dGij(y)
(pt/th [ dGE(y)
hl 1

1

pliaz+ (Ko —i)Ba — na(ira — c1)’

lIIr%ax(i’ = lIIr:;in(i’ =

The output from buffer 1. To model the output from buffer 1 as an SMP we need to
consider two scenarios. In the first we Kt < ¢/r, and thus buffer 1 would always be
empty and output from buffer 1 can be modeled as a continuous time Markov chain. In
the second whek; > c¢/r; we need to model the output as an SMP. We treat the two
cases separately.

Case (i). If K1 < ¢/r1then buffer 1 is always empty and the output from buffer 1 is a
K, + 1 state SMP/CTMC identical to that of the input to buffer 1. Hence we have, for
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i:O,l,...,Klandj :O,l,...,Kl,

iOl]_
iog + (K1 —1i)B1
G20={ (Ki—ip
icg + (K1 —1i)B1

(1—exp{—(io1 + (K1 —D)B)x}) if j=i—1,

(1—exp{—(ior + (K1 —D)B)x}) if j=i+1,

0 otherwise,
Giz(x) =1-— exp{—(iozl + (K1 — i)lgl)x}»
2o -
Yodag+ (Ki—i)Br
P =G? (),

and it is easy to derive

K1—i pi
2= afr? Kl A

S = z = . K
| Takeaitz MK Dl Geatpof

Then®?(n»,) is given by

iOl]_ P .
- - - > if j=i—1,
, iy + (Ky —i)B1 — (iry — ¢9)n2
#02) = | _ Kb iy
iy + (Ky —i)B1— (irp —c¢H)n2
0 otherwise.
Also, the eigenvectors are obtained by solving
h? = h?®2%(n,).
Hence we have
K1 h2 K1
H?= — 2 - and
; o — (Zo(dh,(nz)) )
1= J=
2 a—na(iri—c®)x [ qnaliri—cAy 4G2.
Whaxis ) = Wi, j) = e > zf f: > 0,
(pi/9) fx dGU 6))
_h? 1

p?iag+ (Ko — i)B1 — na(iry — ¢?)’



APPLICATIONS OF SMP 377

Case (ii). If K3 > ¢/rq1, we do the following analysis. Lef = [¢/r,]. Then the out-

put from buffer 1 can be modeled as an SMP on state sftade?2, ..., M} (see [18]).
Fori=0,1,....,.M—1andj =0,1,..., M, let

iOll

, iy + (K1 —i)B1

Gi ()= (K1 —1i)p1 . . ..

nJ 1—exp{— K, — t if j = 1,

ia1+(K1—i)/31( p{—(ica + (Ki —Dp1)t}) if j=i+

0 otherwise.

(1—exp{—(iay + (K1 — D)Bo)t}) if j=i—1,

Let
T =min{r > 0: X1(1) = 0}.
Thenforj =0,1,..., M — 1, we have
Gy ()= P{T <t, N(T) = j | X1(0) =0, N(0) = M},

whereN () denotes the number of priority 1 sources on at ttmé\ote thatGﬁLM(t)
= 0.) We need5%(00) = [G?;(00)] in our analysis. We have far=10,1,..., M — 1
andj =0,1,..., M,

, o if j—i—1,
, i+ (K1 —1)p1
Z . = — 39
G ;(c0) | (K1 l)ﬂ% it j=i+1, (39)
iy + (K1 — 1)1
0 otherwise,

G2, (00)=G2 .(0),

Whereé@i(s) is the Laplace—Stieltjes transform (LST) GﬁM(t), and can be com-
puted using the analysis in [20].

We also need the expression for the sojourn ti;?hm statei, fori =0,1,..., M.
We have

1

_ _ ifi=01... M—1
iog + (K1 —1i)B1

‘[.2:

: M-1
> G0 ifi =M.
j=0
Then we have for =0,1,..., M
2.2
2 a; T
Pi= = s (40)
21]:4:0 azgfz

where

a® = a’G?(c0).
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Following the analysis in [12] define
_2 55(—772(1."1 —c?)) foO<i<M-1,
¢ii(n2, m) = ~ .
i mGl% (—772(0 — cz)) ifi=M.
Solve form such that the Perron—Frobenius eigenvaluebdfn,, m) is 1. Hence we
obtain/? from

h2®? (12, m) = h?.
It can be shown that random variables with distribut'@ﬁ),j (x)/GﬁM(oo) have a de-

creasing failure rate. Henck?2, (M, j) and W2 (M, j) occur atx = oo andx = 0
respectively. Thus we have fot, j) € {0, 1, ..., M},

M hz M
H?=) —L— (Z(¢35<n2, m)) — 1>,

5 na2(iry — c?) Py
L[ e S anindr Gl )
Yrin(i, j) =inf ——— ; ; 2)) [* dG? ’
x pi/(la1+(K2_l),Bl_7]2(lr1_c ))fx dGij(y)
and
h2 efnz(ir]_fcz)x o0 e*’lZ(irlfcz)y dGZ( )
lpr%‘lax(i’ j):sup{ — i : fx - > ’éoy 2 }
v | p2/liar+ (Ko — i)Br — malirs — ¢2) [ dGZ ()
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