
Page 1 of 13

Design, Performance and Dependability of a Peer-to-Peer
Network supporting QoS for Mobile Code Applications

Amit Kapur, Natarajan Gautam

310, Leonhard Building
 Industrial and Manufacturing Engineering

Penn State University
State College, PA 16801

e-mail: amitkapur@psu.edu , ngautam@psu.edu

Richard Brooks
Applied Research Laboratory

Penn State University
State College, PA 16801

e-mail: rrb5@psu.edu

Suresh Rai
Electrical and Computer Engineering

Louisiana State University
Baton Rouge, LA 70803

e-mail: suresh@ece.lsu.edu

Abstract

 With the advent of web applications such as Napster, Gnutella and
Freenet, peer-to-peer (P2P) networks have gained unprecedented importance in
the networking world. In this paper we study the effect of different network
parameters on the performance of P2P networks supporting mobile code
applications, and analyze various quality of service (QoS) issues such as
response times, jitter and loss probability. We derive analytic expressions for (a)
the number of hops using graph-theoretic techniques and, (b) the QoS measures
using probabilistic models. For our studies, we have used three types of network
models, namely Erdös-Rényi graph, small world graph, and scale free graph.
Further, we formulate and solve an optimization problem to design the number
of indexes and time out value, where an index refers to a database that maps
mobile codes to nodes that contain them.

1 Introduction

This paper looks at the intersection of two current technologies for
creating distributed adaptive systems: mobile code [9] and peer-to-peer (P2P)
networking [12]. We are interested in creating a network infrastructure that is
capable of adapting to malicious, possibly catastrophic events. Mobile code
technology enables transmission and execution of programs between networked
nodes. It supports adaptation by allowing nodes to reconfigure their software
and change roles dynamically. P2P networks distinguish themselves from
traditional client/server or master/slave networks in that there is neither a central
point of control nor centralization of data. They could potentially support
adaptation by allowing the network structure to evolve. To realize our goal of
creating adaptive network services, we are creating a P2P infrastructure from
existing mobile code daemons [3].

As described in [12], many technologies can be classified as P2P. The
two most widely known implementations are Napster and Gnutella. Napster is a
file-sharing network with only one central index. This index contains a database
of users and their files. When a user connects to Napster, a list of available files
on their machine is added to a central index. When the user requests a specific
file, a list of participating machines containing the file is returned. The file can
be retrieved from any machine on the list. This is an efficient architecture. File
names and machine addresses contain tens of bytes. Files being exchanged
contain megabytes of data. The large data transfers occur between machines
chosen virtually at random. This tends to spread data traffic evenly throughout
the Internet. On the other hand, its survivability is poor as a single failure or a
court order can stop the entire network by switching off the central index.

Gnutella offers a radically different approach [7]. It is fully distributed
with no single point of failure. Each node has an index of its own files. File
discovery is performed by flooding the network with request packets. There
appears to be serious scalability issues with this approach [Hong 2001, Ritter
2001]. Another application, Freenet [8] addresses this scalability issue. On the
other hand, Gnutella has interesting survivability characteristics. To stop the
Gnutella service, it would be necessary to stop every node on the Internet from
running Gnutella.

This paper studies the question: what is an appropriate number of
indexes for a P2P network? We analyze this problem in terms of Quality of
Service (QoS), scalability, and survivability. Recall that Napster has 1 index. It
is efficient, but has a single point of failure. Gnutella provides n indexes for n
nodes. It, thus, lacks single points of failure, but does not scale well. We
consider Napster and Gnutella as the extreme cases of a continuum. The number

mailto:amitkapur@psu.edu
mailto:ngautam@psu.edu
mailto:rrb5@psu.edu
mailto:suresh@ece.lsu.edu

Page 2 of 13

of indexes could vary in the range of 1 to n. Before designing and implementing
an optimal network, it is necessary that the network�s performance and
dependability be thoroughly analyzed. These two issues are critical in P2P
networks because of their complex topologies and the unreliable environments
they operate in. In P2P networks it is of interest to know how long it will take to
retrieve a file and what portion of the requests are lost. These issues become
more critical with each additional hop a request needs to travel and nodes going
down due to random failures or attacks.

The layout of the paper is as follows: In Section 2, we provide some
preliminary results such as network topology and hop count, which form the
building block of our QoS analysis. The scenario under consideration is
described in Section 3 with results for QoS measures calculated against different
input parameters. Section 4 develops an analytical model for the QoS measures.
We formulate and solve an optimization problem to select appropriate number
of indexes and time-out value in Section 5. Section 6 concludes the paper and
also gives the direction for future work.

2 Preliminaries

P2P networks are characterized by a lack of central authority.
Implementations generally allow nodes to join and leave the infrastructure at
will. We characterize the network as a graph consisting of n nodes and a bi-
directional arcs connecting them. Each node has an associated degree k, which is
the number of edges incident on the node. The length of each edge of the
network is one, so if two nodes are connected by one edge then the shortest path
between them is 1. We are interested in the general class of P2P networks and
not a particular instance. For P2P systems, no central control exists to enforce a
specific topology. In the case of Napster, file transfers are initiated at random
among participants. These considerations support analysis of the problem with
various graph formalisms [2].

2.1 Types of networks

In the following, we consider three classes of randomly generated
graphs:

Random Graphs or Erdös-Rényi graphs � Consider a set of n nodes and a
uniform probability p that an edge exists between any two nodes. The node
degree distribution follows a Poisson distribution [2]. When these graphs have a

single connected component, the average path length of these graphs grows as
the logarithm of the number of nodes [1].

Small world graphs � They are a class of graphs with two properties: (i) average
path length increases with the number of nodes in the same order of magnitude
as random graphs, and (ii) there is a significant clustering of nodes (i.e. many
nodes have multiple neighbors in common). For this class, we use the connected
caveman model described in [14]. A set of fully connected components is
constructed. One edge at random is rewired in each fully connected component
so that the set of components is connected in a cycle. A small set of edges in the
resulting structure is rewired at random. The node degree distribution depends
on the number of edges re-wired.

Scale-free graphs – A class of graphs where the probability p (k) that a node has
degree k follows a power law distribution kkp γ−∝)(, where γ is a constant.
Empirical studies have shown that many real-world systems including the
Internet [1,4] and Gnutella [6] have this property. The average path length of
scale-free networks grows more slowly with respect to the number of nodes than
the path length of random networks.

The generality and applicability of these three models to many potential
applications is attractive. They all scale well. The number of hops increases at
most logarithmically with respect to the number of nodes. Due to the higher
probability of having some nodes with very large degrees in scale-free networks,
failure of those nodes could cause serious concerns while designing survivable
systems. However, random (or Erdös-Rényi) graphs and small-world graphs that
have very low probability of having nodes with high degrees are more suitable
for survivable systems. Also, the clustered nature of small world graphs could be
useful for detecting and containing system intrusions.

2.2 Comparison of the network types

 (a) (b)

Small world

0

10

20

30

1 3 5 7 9

Degree

Fr
eq

ue
nc

y

 Random graph

0
5

10

15

1 3 5 7 9 11 13 15
Degree

Fre
qu
en
cy

Page 3 of 13

 (c)

Figure 1: Histograms of degree. (a) Random graph. (b) Small world.
(c) Scale-free.

We now compare the three types of networks: Random graph, small
world and scale-free. We considered networks with 100 nodes and average
degree of 5. In Figures 1 and 2, we illustrate histograms of the degree and
number of hops, respectively, for the three network types. From these
histograms it can be seen that the variance in degree of nodes is highest for
scale-free and lowest for small world. Also, there is not a very significant
difference in the mean and the variance of the number of hops for all the three
network models.

 (a) (b)

 (c)
Figure 2: Histogram of hops. (a) Random graph. (b) Small world. (c) Scale-free.

2.3 Analytical model of hop count

 We would like to analytically investigate the hop count characteristics
against the number of nodes, n, average degree, kave, and network type. A simple
estimator for the average number of hops (lave) between any two nodes in a
random graph is [Dorogovtsec 2001]:

lave ~ ln [n] / ln [kave]

Empirical results from [14] indicate that the relationship between graph size and
average number of hops is similar for random and small world graphs. Scale-
free graphs appear to grow even more slowly [1]. To analyze further, we define
the clustering coefficient, which expresses the cliquishness of the network (C =
1 for a complete graph, C = 0 for a tree). From [11]:

 C = 3 * (Number of triangles in network) / (Number of connected
triples of vertices)

 C = 6 * (Number of triangles in network) / (Number of paths of length
two)

As an example, the clustering coefficient C for 1-lattice is given as

C = 3
4

× k − 2
k −1

 +

i(i +1)
k(k −1)

 (1)

where i =

3k
2

−n +1; k +1 ≤ n ≤ 3k
2

0 ; n > 3k
2

The expression for C contains an extra
i(i +1)
k(k −1)

term that applies to all

nodes n such that k +1 ≤ n ≤
3k
2

. Thus, if k = 100 then the expressions in [14]

fails to give correct value for the clustering coefficient C in 1-lattice for nodes
101<n<151. The expression (1) helps fix the anomaly. Also in [11] there is a
factor mutuality M for the mean number of paths of length two leading to the
nodes two hops away (squares in the network):

Random graph

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6
Hops

Fr
eq

ue
nc

y
Scale-free

0
5

10
15
20
25
30

1 4 7 10 13 16 19 22 25

Degree

Fr
eq

ue
nc

y

Small world

0

1000

2000

3000

4000

0 1 2 3 4 5 6

Hops

Fr
eq

ue
nc

y

Scale-free

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6

Hops

Fr
eq

ue
nc

y

Page 4 of 13

M= ave [k / [1+ C2 (k-1)]] / kave

 As noted in [11], mutuality M provides the density of �squares� as
against clustering coefficient C, which refers to the �fraction of transitive
triples� in the network. Mathematically

M =
mean number of vertices two steps away, N2
mean paths of length two to those vertices, P2

 (2)

In 1-lattice network, we have from equation (2)

M =

0; n = k +1
1

2k −n + 2
; k +1 < n < 2k

4(k −1)
k(k + 2)

; n = 2k

4
k + 2

; n > 2k

 (3)

Best estimator of q2 = M (1-C) * (Average [k2] – Average [k]), where q2 is

the expected number of nodes 2 hops away from a node. M accounts for the
possible over count of nodes two hops away relying solely on C. [11] provides a
derivation using generating functions approach, which shows that the number of
nodes h hops away can be approximated using only two factors: the number of
nodes one hop away and the number of nodes two hops away. Results are
approximated since detailed graph structures may cause specific graph instances
to deviate, and they assume single fully connected component in the graph.
According to them (zi = mean number of nodes h hops away):

zm = (z2 / z1) m-h * z1

Based on the above literature study, we now derive a simple estimate of

the number of nodes reachable after exactly h hops as:

qh = (kave – 1) * qh-1 (1-C) * M [h] and q1 = kave

For h > 1 qh = (1-C) h-1 * (kave – 1) h-1 kave∏
=

h

i 2

]h[M

The average number of nodes reachable after one hop is by definition
kave. For the second hop, every node reached by one hop has (kave – 1) degrees
free. C of those kave*(kave – 1) degrees are the percentage on the average already
reachable by one hop. M [2] compensates for the over count due to
quadrilaterals. M [h] generalizes this. A more accurate estimate of the number of
nodes reachable in h hops can be given by taking into account the greater
likelihood of connecting to a node with a higher degree [11] (again h > 1, for h
= 1 it remains the same):

 qh = (1-C) h-1 ∏
=

h

i 2

]h[M [∑
−

=

1

1

n

k
(k-1) h-1 * k * pk]

This would yield the expected number of hops between any two nodes
chosen at random as:

α (n, a, s) = (0 + q1 + 2 (q2 – q1) + …) / n

 = (1 / n){ kave+2 [(1 – C) M[2] (∑
−

=

1

1

n

k
(k-1) h-1 k pk) - kave]

 + ∑
=

maxhops

3h

h {[(1 – C) h-1 ∏
=

h

i 2

]h[M (∑
−

=

1

1

n

k
(k-1) h-1 k pk)] –

 [(1 – C) h-2 ∏
=

h

i 2

]h[M (∑
−

=

1

1

n

k
(k-1) h-1k pk)]}}

where α (n, a, s) is the expected number of hops for n nodes, a arcs and s
standard deviation of degree.

3 Scenario: Platform for Simulation and Analytical models for
QoS

3.1 Problem Description

This paper addresses the issue of finding out the optimum number of
indexes that should be there in a P2P network. Each index carries with it the
information regarding who in its vicinity has what document or file. The various
inputs that will be used to study the QoS issues are number of nodes n, number
of arcs a, type of network (random graph, small world, and scale-free),
communication speeds (link speeds) l, processing speeds d, number of different
documents (modules) m, and number of replicas of documents c.

Page 5 of 13

 Number of indexes Time-out value

 Number of nodes

 Number of arcs

 Type of network
 QoS
 Link speeds
 (Delay, Jitter
 and Loss probability)
 Computing Speeds

 Number of modules

Figure 3: Problem description
We also assume that the nodes go up and down from time to time

independent of other nodes. Nodes go down due to several reasons including
denial-of-service attacks. The QoS issues considered include: average response
time, jitter and loss probability.

We consider a scenario where a node (called the source node) makes a
request for a document and starts a timer. If the source node does not receive the
document before time θt (called the time-out value), the request is dropped. We
compare the effect of varying the number of indices (I ranging from1 to n) and
the time-out value, θt, on the QoS of the three networks types. Figure 3
illustrates the variables that are in our control to design (top of the box) and that
are not in our control (left of the box).

3.2 Request-response process

If we divide the entire network into as many groups as there are number
of indices each index node has a database of only those nodes that are in its
group. The entire request-response process is described in Figure 4.

Figure 4: Flowchart of request-response process

3.3 Preliminary Results

 Several simulations were run to study the effect of varying input
parameters on the three QoS issues. It was observed that all the three network
types (Random graph, Small world, and Scale-free) reacted similar to the
variations in the parameters. The parameters that were varied (Figure 3) were:
number of nodes, average arc degree, number of indices I, number of copies of a
document co, the time-out value and the probability of nodes being up p. We
considered our base model with n = 25, kave = 3, I = 1, m = 25000, co = 1, p =

Page 6 of 13

0.95 and infinite time-out value, θinf. The reason for choosing one index and
infinite time-out is that it then resembles the structure in Napster. The results for
varying different input parameters are summarized in Figures 5-10. Due to space
restrictions only Scale-free network results are depicted with the understanding
that the other networks, Random graph and Small world, do not produce
significantly different results.
! Varying the number of nodes: Figure 5 shows the effect of increasing the
number of nodes from 25 to 50 and 100 on the QoS. Notice from Figure 5 that
the delay, jitter and loss probability do not change significantly as the number of
nodes increase. This shows that the network is very scalable. The reason for the
scalability is that with nodes the number of edges also increases in the same
proportion. However the loss probability will increase if the time-out value is
small (Figure 9 c).

 (a) (b)

 (c)

Figure 5: Scale-free QoS. (a) Delay vs. Number of nodes. (b) Jitter vs. Number
of nodes. (c) Loss probability vs. Number of nodes

! Varying the average arc degree: We compared the QoS for three average
arc degrees: 3, 5 and 7. The results are in Figure 6. Increasing the average arc
degree means that on an average the nodes will have more edges and hence the
number of hops from one node to another will decrease. Decrease in hops means
that it will take less time for a source node to get to the index node and the
destination node. Hence the delay and the jitter will drop with increasing
average degree. The loss probability will only be affected if there is a finite
time-out value. In that case the loss probability will decrease with average arc
degree.

(a) (b)

(c)

Figure 6: Scale-free QoS. (a) Delay vs. Average degree. (b) Jitter vs. Average
degree. (c) Loss probability vs. Average degree.

! Varying the number of index nodes: We considered several indexing
schemes from a centralized (Napster) to a fully distributed (Gnutella)

Page 7 of 13

mechanism. Figure 7 shows the results that were obtained on varying the
number of indices. Intuitively delay and jitter will increase with number of
indices, I, as the time to search a document increases with I. The loss probability
will remain more or less the same if there is only one copy of the document as
nodes fail independent of each other. But if we increased the probability of an
index node being up as the number of nodes increases, the loss probability
decreases as shown in Figure 7(c).

(a) (b)

 (c)

Figure 7: Scale-free QoS. (a) Delay vs. Number of indices. (b) Jitter vs.
Number of indices. (c) Loss probability vs. Number of indices.

! Varying the number of copies: Figure 8 shows how increasing the number
of copies influences the QoS measures. Increasing the number of copies means
that even if an index node or destination node with a particular document is
down, the source node might get it from some other node (provided the other
index node and destination node are up). With more number of copies, the time

to fulfill a request increases as all the indexes are searched. Hence, the average
time and jitter increase with number of copies but the probability of loosing a
request drops down.

(a) (b)

 (c)

Figure 8: Scale-free QoS. (a) Delay vs. Number of copies. (b) Jitter vs. Number

of copies. (c) Loss probability vs. Number of copies.
! Varying the time-out value: When a source makes a request, it sets a time
out value which if it expires, the source assumes the request is lost. Decreasing
the time-out value from there would decrease the delay and jitter as they are
measured for only requests that are completed. On the other hand, the loss
probability will increase on decreasing the time-out value, as more requests
would be dropped. Figure 9 shows the effect of time-out value on the three QoS
measures.

Page 8 of 13

(a) (b)

 (c)
Figure 9: Scale-free QoS. (a) Delay vs. Time-out value. (b) Jitter vs. Time-out

value. (c) Loss probability vs. Time-out value.

! Varying the probability of nodes being up: Increasing the probability of
nodes being up will affect only the percentage of requests being lost. The loss
probability decreases if the nodes are up for a longer time. However, increasing
the probability of nodes being up does not affect the delay and the jitter. The
affect of varying the probability on QoS measures is summarized in Figure 10.

 (a) (b)

 (c)

Figure 10: Scale-free QoS. (a) Delay vs. Probability of nodes being up. (b) Jitter

vs. Probability of nodes being up. (c) Loss probability vs. Probability of nodes
being up.

4 Analytical Models

 Since the number of copies, number of indexes and the time-out values
are under our control, we would like to select them in an optimal manner. In
order to do that, we first build analytical models that relate QoS measures to the
design parameters. We initially assumed time-out is infinite and then use an
appropriate model to include time-outs. The analytical models are then
compared (in Section 5) with the simulation results.

4.1 QoS measures: Infinite time out

(a) The expected delay in retrieving a document, E(T) is (see Appendix 1 for
definitions and analysis):

E (T) = (1 /((1-(1-p) co) p)){2q l ∑
=

I

i 1

µi (n, a, s) pi

 + pdmco/I ∑
=

I

i 1

pi (i-1) + 0.5dmco(i/n + 1/I)∑
=

I

i 1

pi

 + (q l + E (B) l) ∑
=

I

i 1

αi (n, a, s) pi}.

where

Page 9 of 13

 pi = P (Code location is found in index I) For i = 1, 2, …,I

 = ∑
=

i

k 1

((i-1) C (k-1) * (I-c) C (k-1) / (I C (k-1)) * pk * (1-p) i-k

 * min[co/I-k+1),1]
 (with the understanding that (i) C (k) = 0 if i < k) and

p0 = Probability that all the indices with the code are down

 = 1- ∑
=

I

j 1

pj = 1-(1-p) co

(b) The variance in delay (which is the square of the jitter) is given by

Var (T) = E (T2) – {E (T)} 2

where the expression for E (T2) can be obtained from Appendix 2.

(c) Proportion of requests lost or loss probability

L = 1 – p [1 – (1-p) co]

4.2 QoS measures: Finite time-out

 The above three models assume that the time-out value is infinite. This
means that a request is lost only if the index node or the destination node with
the document is down. If the time-out value was finite, then requests would also
be lost if the time to get a response exceeds the time-out value. Since the delay
is a sum of a large number of independent random variables, we can
approximate using central limit theorem that T ~ Normal [E (T), Var (T)]. Now
the probability that time-out occurs even when the document is available will be

 P (T > θ) = ε = 1 - Φ [(θ - E (T)) / √ Var (T)]

Then, the response time given that document is retrieved before time-out will be

E (Tθ) = ∫
∞−

θ

x f (x) dx / (1 - ε)

where f(x) is the normal probability distribution function. The variance will be

 Var (Tθ) = {(1 - ε) ∫
∞−

θ

x2 f (x) dx - ε [E (Tθ)] 2} / (1 - ε) 2

The loss probability will be Lθ = 1 – p [1 – (1-p) co](1 - ε)

5 Results

5.1 Comparison of analytical and simulation models

The delay, jitter and loss probability for the three networks were
determined using both the analytical model as well as simulation models to
verify the results. For all the 3 networks, the number of nodes are 100, average
arc degree as 3.00 and the number of indices as 4. Also 10 replications were
taken for all the simulation runs (this comparison is for infinite time-out value
without considering node failure). The results are summarized in Table 1(for 1
copy) and Table 2 (for 3 copies):

Type of Network Analytical Model Simulation Model

 Delay Jitter Loss prob. Delay Jitter Loss prob.
Random Graph 18.9582 5.7169 0.1477 17.0031 7.4065 0.2141

Scale-free 17.8171 5.9683 0.1279 16.8547 7.3984 0.1652
Small-world 21.9941 4.5980 0.2108 17.4444 7.6001 0.2917

Table 1: Analytical and Simulation results for 1 copy

Type of Network Analytical Model Simulation Model

 Delay Jitter Loss prob. Delay Jitter Loss prob.
Random Graph 20.8487 7.6610 0.3947 15.6902 7.2839 0.3236

Scale-free 19.4134 7.9690 0.3522 15.2349 7.1359 0.2876
Small-world 22.3077 7.9237 0.4554 15.6423 7.4876 0.3481

Table 2: Analytical and Simulation results for 3 copies

From the above two tables it can be seen that results from analytical

and simulation models are fairly close. The difference in the two results is due to
two approximations that we made in deriving the analytical models. One
approximation is the Central Limit Theorem we used to incorporate finite time-
out value and the other approximation we made was for the mean and variance
of the number of hops.

Page 10 of 13

5.2 Optimal number of indices and time-out value

 Out of the three controllable input parameters that we have, we chose to
optimize only the number of indices and the time-out value but not the number
of copies. The number of copies can be decided based on the storage capacity of
the P2P network. For our objective we used only 1 copy of a document. The
number of indices was varied from 1 to n (centralized to completely distributed
network) to determine the optimal number of indices in a P2P network. Also the
time-out value was varied from infinite to a certain value so that not more that
10% of the requests were lost. The optimization problem can be written in terms
of θ and I, (the decision variables) as:

Minimize: Delay (Tθ) + Jitter (√ Var (Tθ))
Subject to: Loss probability (Lθ) ≤ 10%

 Time-out (θ) < ∞
 Number of indexes (I) ≥ 1

(a)

 (b)

Figure 11: The optimal solution. (a) Delay + Jitter vs. Number of indices and
Time-out value. (b) Loss probability vs. Number of indices and Time-out value.

In our scenario, there is a trade-off between loss probability and
delay+jitter. With number of indexes and time-out value, the loss probability
decreases and the average time increases. The optimal value for indexes and
time-out for our set of input parameters were 9 indexes and 30 time units
respectively. Nine indexes are better than having only one as now there is not a
single point of failure in the P2P network. It is also better than having all the
nodes as indexes as the traffic along the network will not be high. The time-out
value of 30 is neither too large nor too small.

6 Conclusion and Future work

We studied the effect of various input parameters (such as number of
nodes, number of copies, number of arcs, number of indices, time-out value, and
probability of node being up) on three different network types: Random graph,
Small world and Scale-free. We found that the QoS measures varied
significantly only with the inputs and not with the network type. We derived
analytical expression for the number of hops in a network. We used the mean
and variance in the number of hops in a stochastic model to derive the QoS
measures. These were used in a mathematical programming problem to
determine the optimal number of indexes and time-out value in a P2P network
for an acceptable loss probability and minimum response time plus jitter.

Page 11 of 13

In this paper we considered a scenario where only one request was
processed at a time. But in reality the number of requests per second is usually
more than one. This complicates the problem further, but it would be interesting
to study how the P2P network would behave in such a situation. Another
interesting issue would be to do a cost analysis of a P2P network. Cost of storing
and maintaining data in the network would play an important role when
determining the optimum number of indexes.

Acknowledgement and Disclaimer

For Drs. Brooks and Gautam, this material is based upon work
supported by the Office of Naval Research under Award No.N00014-01-1-0859.
Any opinions, findings, and conclusions in this publication are those of the
authors and do not necessarily reflect the views of the Office of Naval Research.
For Dr. Rai, this material is based upon work supported in part by US Army
Research Office under Award No.C-DAAD19 01-1-0646 and NSF grant CCR
0073429. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and does not necessarily
reflect the view of the sponsoring agencies.

References:

[1] R. Albert, and A. -L. Barabási, �Statistical Mechanics of complex networks,�
arXiv: cond-mat/0106096v1, June 2001.
[2] B. Bollobás, �Random Graphs�, Cambridge University Press, Cambridge,
UK, 2001.
[3] R. R. Brooks, E. Grele, W. Kliemkiwicz, J. Moore, C. Griffin, B. Kovak, and
J. Koch �Reactive Sensor Networks: Mobile Code Support for Autonomous
Sensor Networks,� Distributed Autonomous Robotic Systems DARS 2000, Pp.
471-472. Springer Verlag, Tokyo, October 2000.
[4] S. N. Dorogovtsev, and J. F. F. Mendes, �Evolution of Networks,� arxiv:
cond-mat/0106144v2, September 2001.
[5] T. Hong, �Chapter 14: Performance,� in Peer-to-Peer Harnessing the Power
of Disruptive Technologies, A. Oram, ed. pp. 203-241, O�Reilly, Beijing, 2001.
[6] M. Jovanovic, �Modeling large-scale peer-to-peer networks and a case study
of Gnutella,� Master�s thesis, University of Cincinnati, 2001.
[7] G. Kan, �Chapter 8: Gnutella� in Peer-to-Peer Harnessing the Power of
Disruptive Technologies, A. Oram, ed. pp. 94-122, O�Reilly, Beijing, 2001.
[8] A. Langley, �Freenet�, pp. 123 � 132b, Orielly �Peer-to-Peer�, 2001

[9] D. Milojičić, F. Douglis, and R. Wheeler, �Mobility: Processes, Computers,
and Agents�, ACM Press, Reading, MA, 1999.
[10] M. E. J. Newmann, S. H. Strogatz, and D. J. Watts, �Random Graphs with
arbitrary degree distributions and their applications,� arXiv: cond-mat/007235,
May 7, 2001.
[11] M. E. J. Newmann, �Ego-centered networks and the ripple effect or Why
all your friends are weird,� Working Papers, Santa Fe Institute, Santa Fe, NM,
2001 http://www.santafe.edu/sfi/publications/workingpapers/01-11-066.pdf.
[12] A. Oram, ed. Peer-to-Peer Harnessing the Power of Disruptive
Technologies, O�Reilly, Beijing, 2001.
[13] J. Ritter, �Why Gnutella Can�t Scale. No, Really�, 2001
http://www.darkridge.com/~jpr5/doc/gnutella.html
[14] D. J. Watts, Small Worlds, Princeton University Press, Princeton, NJ, 1999.

Appendix 1: Analytical expression for delay

 The analytical expression for delay is determined by conditioning on
where the document is, using the information in index nodes, and computing the
time to reach the document and retrieving it. The expected delay would be:

E (T) = ∑
=

I

i 1

E (T/ document available in index i)* P (document

 available in index i).

 = (1 /((1-(1-p) co) p)) ∑
=

I

i 1

{2E (Time to travel from source

 to index i)+ E (time to search (I-1) indexes, some possibly
 down) +E (Time to find code in ith index)} pi

 +(1 /((1-(1-p) c) p))∑
=

I

i 1

{E (Time required to reach

 destination node in region i) + E (Time to search node
 in region i) + E (Time to respond)} pi.

E (T) = (1 /((1-(1-p) co) p)) {∑
=

I

i 1

[2µi (n, a, s) qlpi

 + p (i-1) dmco/Ipi + 0.5dmco/Ipi+ αi (n, a, s) qlpi
 + 0.5dmco/npi + αi (n, a, s) E (B) l pi]}.

http://www.santafe.edu/sfi/publications/workingpapers/01-11-066.pdf
http://www.darkridge.com/~jpr5/doc/gnutella.html

Page 12 of 13

Summing over will yield the result. Note that αi (n, a, s) = Average
number of hops from a node to ith farthest index (or a node in that region) when
there are n nodes, a arcs and s standard deviation in the network. This is
obtained from the analytical model of hop count described in Section 2.3.

µi (n, a, s) = ∑
=

i

k 1

αk (n, a, s)

 q = Average query size (usually a query size is 60 bytes).
 B = Average code size (100 Kb).
Special Cases:
! If co = 1 and p = 1 (Number of copies is one and nodes do not fail)

pi = 1 / I for 1 ≤ i ≤ I and p0 = 0
! If co = 1 (Number of copies is one)

pi = p / I for 1 ≤ i ≤ I and p0 = 1-p
! If p = 1 (Nodes do not fail),
 for j ≤ I � c + 1, pj = (I-co) C (j-1) * I C (j-1) * co/I-j+1

for j > I � co + 1 and j = 0, pj = 0

Appendix 2: Analytical model for jitter

 Jitter is defined as the square root of the variance of T, the response
time. The variance is calculated similar to E (T) by conditioning on the location
of the document�s index.

Var (T) = E (T2) – {E (T)} 2

 E (T2) = (1 /((1-(1-p) co) p)) ∑
=

I

i 1

E (T 2 / document available in the

 vicinity of index i) pi
 E (T 2 / document available in the vicinity of index i)
 = Variance (T 2 / document available in the vicinity of index i)
 + E (T / document available in the vicinity of index i) 2
 E (T / document available in the vicinity of index i)
 = {2qlµi (n, a, s) + p (i-1) d m co /I + 0.5 d m c /I
 + αi (n, a, s) q l + 0.5 d mco/n + αi (n, a, s) E (B) l}.
 = E (Ti)

 Var (Ti) = Variance (T 2 / document available in the vicinity of index i)

In order to complete the derivation, we need some notations.

Let Hi be the number of hops to a node in region i.
E (Hi) = αi (n, a, s)
Var (Hi) =βi 2(n, a, s)
Let Yi = H1 + H2 + H3 +… Hi

Therefore,
 E (Yi) = µi (n, a, s)

 Variance (Yi) = σi 2(n, a, s) = ∑
=

i

j 1

βj 2(n, a, s)

Variance (Ti) will be
Var (Ti) = 4q2l2σi 2(n, a, s) + (d mco/I) 2(I-1) p (1-p) + 1/12(dmco/I) 2

 + βi 2(n, a, s) q2 l2 + 0.5(dmco/n) 2 + l2 {Var (B)βi 2(n, a, s)
 + Var (B)αi 2(n, a, s) + E (B) 2βi 2(n, a, s)}

Therefore,

 E (T2) = (1 /((1-(1-p) co) p)) ∑
=

i

j 1

{Var (Ti) + [E (Ti)] 2} pi

and
 Var (T) = E (T2) – {E (T)} 2

Biography

Amit Kapur is a Graduate Student in the Harold and Inge Marcus Department of Industrial and
Manufacturing at the Pennsylvania State University. He received his Bachelors degree in
Mechanical Engineering from the University of Pune, India. He is currently pursuing his MS in
Industrial Engineering and Operations Research at Penn State University. His research involves
Quality of Service analysis and optimal design of peer-to-peer networks by building and testing
analytical models against simulations.

Dr. Gautam is an Assistant Professor in the Harold and Inge Marcus Department of Industrial and
Manufacturing Engineering at the Pennsylvania State University. He received his B.Tech. degree in
Mechanical Engineering from the Indian Institute of Technology, Madras, and his M.S. and Ph.D. in
Operations Research from the University of North Carolina at Chapel Hill. He is a member of IEEE,
INFORMS and MAA, and a senior member of IIE. He is an Associate Editor for the INFORMS
Journal on Computing and the Newsletter Editor as well as Website Editor for the INFORMS
Applied Probability Society. His research interests are in the areas of modeling, analysis and
performance evaluation of computer, telecommunication and information systems.

Dr. Brooks is head of the Distributed Systems Department of the Applied Research Laboratory of
the Pennsylvania State University. His areas of research expertise include: sensor networks, critical
infrastructure protection, mobile code, and emergent behaviors.

Dr. Brooks received a Ph. D. in Computer Science from Louisiana State University in
1996. He has a B.A. in Mathematical Sciences from the Johns Hopkins University, and performed

Page 13 of 13

graduate studies in computer science and operations research at the Conservatoire National des Arts
et Metiers in Paris, France.

His work experience includes being Manager of Systems and Applications Programming
for Radio Free Europe / Radio Liberty in Munich, Germany. Consulting tasks Dr. Brooks has
performed include: the implementation of a stock trading network for the French stock exchange
authority, and expansion of the World Bank's internal computer network to Africa and the Former
Soviet Union.

Dr. Rai is a Professor with the Department of Electrical and Computer Engineering at Louisiana
State University, Baton Rouge, Louisiana. Dr. Rai has taught and researched in the area of reliability
engineering, fault diagnosis, parallel and distributed processing, Internet, and ATM. He is a co-
author of the book Wave Shaping and Digital Circuits, and tutorial texts Distributed Computing
Network Reliability and Advances in Distributed System Reliability; last two published from IEEE
Computer Society Press. He has guest edited a special issue of IEEE Transactions on Reliability on
the topic Reliability of Parallel and Distributed Computing Networks. For last 11 years, he is
working as an Associate Editor for IEEE Transactions on Reliability. Dr. Rai has worked as
program committee member for several international conferences.
 Dr. Rai has published about 100 technical papers in the refereed journals and conference
proceedings. He received the best paper award at the 1998 IEEE International Performance,
Computing, & Communication Conference (Feb. 16-18, Tempe, Arizona; paper title: S. Rai and Y.
C. Oh, Analyzing packetized voice and video traffic in an ATM multiplexer).

Dr. Rai is a senior member of the IEEE and member of the ACM.

	Abstract
	
	1 Introduction
	2 Preliminaries
	3 Scenario: Platform for Simulation and Analytical models for QoS
	4 Analytical Models
	5 Results
	6 Conclusion and Future work
	Acknowledgement and Disclaimer

	Appendix 1: Analytical expression for delay
	Appendix 2: Analytical model for jitter
	Biography

