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Abstract 

 
 With the advent of web applications such as Napster, Gnutella and 
Freenet, peer-to-peer (P2P) networks have gained unprecedented importance in 
the networking world. In this paper we study the effect of different network 
parameters on the performance of P2P networks supporting mobile code 
applications, and analyze various quality of service (QoS) issues such as 
response times, jitter and loss probability. We derive analytic expressions for (a) 
the number of hops using graph-theoretic techniques and, (b) the QoS measures 
using probabilistic models. For our studies, we have used three types of network 
models, namely Erdös-Rényi graph, small world graph, and scale free graph. 
Further, we formulate and solve an optimization problem to design the number 
of indexes and time out value, where an index refers to a database that maps 
mobile codes to nodes that contain them. 
 

1 Introduction 
 

This paper looks at the intersection of two current technologies for 
creating distributed adaptive systems: mobile code [9] and peer-to-peer (P2P) 
networking [12].  We are interested in creating a network infrastructure that is 
capable of adapting to malicious, possibly catastrophic events. Mobile code 
technology enables transmission and execution of programs between networked 
nodes. It supports adaptation by allowing nodes to reconfigure their software 
and change roles dynamically. P2P networks distinguish themselves from 
traditional client/server or master/slave networks in that there is neither a central 
point of control nor centralization of data. They could potentially support 
adaptation by allowing the network structure to evolve. To realize our goal of 
creating adaptive network services, we are creating a P2P infrastructure from 
existing mobile code daemons [3].  

As described in [12], many technologies can be classified as P2P. The 
two most widely known implementations are Napster and Gnutella. Napster is a 
file-sharing network with only one central index. This index contains a database 
of users and their files. When a user connects to Napster, a list of available files 
on their machine is added to a central index. When the user requests a specific 
file, a list of participating machines containing the file is returned. The file can 
be retrieved from any machine on the list. This is an efficient architecture. File 
names and machine addresses contain tens of bytes. Files being exchanged 
contain megabytes of data. The large data transfers occur between machines 
chosen virtually at random. This tends to spread data traffic evenly throughout 
the Internet. On the other hand, its survivability is poor as a single failure or a 
court order can stop the entire network by switching off the central index. 

Gnutella offers a radically different approach [7]. It is fully distributed 
with no single point of failure. Each node has an index of its own files. File 
discovery is performed by flooding the network with request packets. There 
appears to be serious scalability issues with this approach [Hong 2001, Ritter 
2001]. Another application, Freenet [8] addresses this scalability issue. On the 
other hand, Gnutella has interesting survivability characteristics. To stop the 
Gnutella service, it would be necessary to stop every node on the Internet from 
running Gnutella. 

This paper studies the question: what is an appropriate number of 
indexes for a P2P network? We analyze this problem in terms of Quality of 
Service (QoS), scalability, and survivability. Recall that Napster has 1 index. It 
is efficient, but has a single point of failure. Gnutella provides n indexes for n 
nodes. It, thus, lacks single points of failure, but does not scale well. We 
consider Napster and Gnutella as the extreme cases of a continuum. The number 
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of indexes could vary in the range of 1 to n. Before designing and implementing 
an optimal network, it is necessary that the network�s performance and 
dependability be thoroughly analyzed. These two issues are critical in P2P 
networks because of their complex topologies and the unreliable environments 
they operate in. In P2P networks it is of interest to know how long it will take to 
retrieve a file and what portion of the requests are lost. These issues become 
more critical with each additional hop a request needs to travel and nodes going 
down due to random failures or attacks.  

The layout of the paper is as follows: In Section 2, we provide some 
preliminary results such as network topology and hop count, which form the 
building block of our QoS analysis. The scenario under consideration is 
described in Section 3 with results for QoS measures calculated against different 
input parameters. Section 4 develops an analytical model for the QoS measures. 
We formulate and solve an optimization problem to select appropriate number 
of indexes and time-out value in Section 5. Section 6 concludes the paper and 
also gives the direction for future work. 

 
2 Preliminaries 
 

P2P networks are characterized by a lack of central authority. 
Implementations generally allow nodes to join and leave the infrastructure at 
will. We characterize the network as a graph consisting of n nodes and a bi-
directional arcs connecting them. Each node has an associated degree k, which is 
the number of edges incident on the node. The length of each edge of the 
network is one, so if two nodes are connected by one edge then the shortest path 
between them is 1. We are interested in the general class of P2P networks and 
not a particular instance. For P2P systems, no central control exists to enforce a 
specific topology. In the case of Napster, file transfers are initiated at random 
among participants. These considerations support analysis of the problem with 
various graph formalisms [2]. 

 
2.1 Types of networks  
 

In the following, we consider three classes of randomly generated 
graphs: 

 
Random Graphs or Erdös-Rényi graphs � Consider a set of n nodes and a 
uniform probability p that an edge exists between any two nodes. The node 
degree distribution follows a Poisson distribution [2]. When these graphs have a 

single connected component, the average path length of these graphs grows as 
the logarithm of the number of nodes [1]. 
 
Small world graphs � They are a class of graphs with two properties: (i) average 
path length increases with the number of nodes in the same order of magnitude 
as random graphs, and (ii) there is a significant clustering of nodes (i.e. many 
nodes have multiple neighbors in common). For this class, we use the connected 
caveman model described in [14]. A set of fully connected components is 
constructed. One edge at random is rewired in each fully connected component 
so that the set of components is connected in a cycle. A small set of edges in the 
resulting structure is rewired at random. The node degree distribution depends 
on the number of edges re-wired. 
 
Scale-free graphs – A class of graphs where the probability p (k) that a node has 
degree k follows a power law distribution kkp γ−∝)( , where γ  is a constant. 
Empirical studies have shown that many real-world systems including the 
Internet [1,4] and Gnutella [6] have this property. The average path length of 
scale-free networks grows more slowly with respect to the number of nodes than 
the path length of random networks. 

The generality and applicability of these three models to many potential 
applications is attractive. They all scale well. The number of hops increases at 
most logarithmically with respect to the number of nodes. Due to the higher 
probability of having some nodes with very large degrees in scale-free networks, 
failure of those nodes could cause serious concerns while designing survivable 
systems. However, random (or Erdös-Rényi) graphs and small-world graphs that 
have very low probability of having nodes with high degrees are more suitable 
for survivable systems. Also, the clustered nature of small world graphs could be 
useful for detecting and containing system intrusions.  

 
2.2 Comparison of the network types 
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                  (c) 

Figure 1: Histograms of degree. (a) Random graph. (b) Small world. 
(c) Scale-free. 

We now compare the three types of networks: Random graph, small 
world and scale-free. We considered networks with 100 nodes and average 
degree of 5. In Figures 1 and 2, we illustrate histograms of the degree and 
number of hops, respectively, for the three network types. From these 
histograms it can be seen that the variance in degree of nodes is highest for 
scale-free and lowest for small world. Also, there is not a very significant 
difference in the mean and the variance of the number of hops for all the three 
network models.  
 

             (a)                                                           (b) 
 
 
 
 
 
 
 
 
 

             (c) 
Figure 2: Histogram of hops. (a) Random graph. (b) Small world. (c) Scale-free. 

 
2.3 Analytical model of hop count 
 
 We would like to analytically investigate the hop count characteristics 
against the number of nodes, n, average degree, kave, and network type. A simple 
estimator for the average number of hops (lave) between any two nodes in a 
random graph is [Dorogovtsec 2001]: 
 

lave ~ ln [n] / ln [kave] 
 
Empirical results from [14] indicate that the relationship between graph size and 
average number of hops is similar for random and small world graphs. Scale-
free graphs appear to grow even more slowly [1]. To analyze further, we define 
the clustering coefficient, which expresses the cliquishness of the network (C = 
1 for a complete graph, C = 0 for a tree). From [11]: 
 
  C = 3 * (Number of triangles in network) / (Number of connected 
triples of vertices) 
 
  C = 6 * (Number of triangles in network) / (Number of paths of length 
two) 

As an example, the clustering coefficient C for 1-lattice is given as  
 

C = 3
4

× k − 2
k −1

 
  

 
  +

i(i +1)
k(k −1)

                                         (1)

where i =

3k
2

−n +1;  k +1 ≤ n ≤ 3k
2

0              ;  n > 3k
2

 

 
  

 
 
 

 

The expression for C contains an extra 
i(i +1)
k(k −1)

term that applies to all 

nodes n such that k +1 ≤ n ≤
3k
2

.  Thus, if k = 100 then the expressions in [14] 

fails to give correct value for the clustering coefficient C in 1-lattice for nodes 
101<n<151. The expression (1) helps fix the anomaly. Also in [11] there is a 
factor mutuality M for the mean number of paths of length two leading to the 
nodes two hops away (squares in the network): 
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M= ave [k / [1+ C2 (k-1)]] / kave 

 
 As noted in [11], mutuality M provides the density of �squares� as 
against clustering coefficient C, which refers to the �fraction of transitive 
triples� in the network. Mathematically  
 

M =
mean number of vertices two steps away, N2
mean paths of length two to those vertices,  P2

  (2) 

 
In 1-lattice network, we have from equation (2) 

M =

0;                 n = k +1
1

2k −n + 2
;  k +1 < n < 2k

4(k −1)
k(k + 2)

;     n = 2k

4
k + 2

;          n > 2k

 

 

 
 
 
 

 

 
 
 
 

                             (3) 

 
Best estimator of q2 = M (1-C) * (Average [k2] – Average [k]), where q2 is 

the expected number of nodes 2 hops away from a node. M accounts for the 
possible over count of nodes two hops away relying solely on C. [11] provides a 
derivation using generating functions approach, which shows that the number of 
nodes h hops away can be approximated using only two factors: the number of 
nodes one hop away and the number of nodes two hops away. Results are 
approximated since detailed graph structures may cause specific graph instances 
to deviate, and they assume single fully connected component in the graph. 
According to them (zi = mean number of nodes h hops away): 

 
zm = (z2 / z1) m-h * z1 

 
Based on the above literature study, we now derive a simple estimate of 

the number of nodes reachable after exactly h hops as: 
 

qh = (kave – 1) * qh-1 (1-C) * M [h]  and  q1 = kave 

For h > 1 qh = (1-C) h-1 * (kave – 1) h-1 kave∏
=

h

i 2

]h[M  

The average number of nodes reachable after one hop is by definition 
kave. For the second hop, every node reached by one hop has (kave – 1) degrees 
free. C of those kave*(kave – 1) degrees are the percentage on the average already 
reachable by one hop. M [2] compensates for the over count due to 
quadrilaterals. M [h] generalizes this. A more accurate estimate of the number of 
nodes reachable in h hops can be given by taking into account the greater 
likelihood of connecting to a node with a higher degree [11] (again h > 1, for h 
= 1 it remains the same): 

 qh = (1-C) h-1 ∏
=

h

i 2

]h[M [∑
−

=

1

1

n

k
(k-1) h-1 * k * pk]                           

This would yield the expected number of hops between any two nodes 
chosen at random as: 

 
α (n, a, s) = (0 + q1 + 2 (q2 – q1) + …) / n 

                                = (1 / n){ kave+2 [(1 – C) M[2] (∑
−

=

1

1

n

k
(k-1) h-1 k  pk ) - kave ] 

                                 + ∑
=

maxhops

3h

h   {[(1 – C) h-1 ∏
=

h

i 2

]h[M (∑
−

=

1

1

n

k
(k-1) h-1 k pk)] –   

                                   [(1 – C) h-2 ∏
=

h

i 2

]h[M (∑
−

=

1

1

n

k
(k-1) h-1k pk)]}}                                      

where α (n, a, s) is the expected number of hops for n nodes, a arcs and s 
standard deviation of degree.  
 
3 Scenario: Platform for Simulation and Analytical models for 
QoS 
 
3.1 Problem Description 
 

This paper addresses the issue of finding out the optimum number of 
indexes that should be there in a P2P network. Each index carries with it the 
information regarding who in its vicinity has what document or file. The various 
inputs that will be used to study the QoS issues are number of nodes n, number 
of arcs a, type of network (random graph, small world, and scale-free), 
communication speeds (link speeds) l, processing speeds d, number of different 
documents (modules) m, and number of replicas of documents c.  
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                 Number of indexes       Time-out value 
 
 
        
       Number of nodes 
 
 
       Number of arcs 
 
       Type of network                                                                                                                     
                                                                                                QoS 
       Link speeds                                                                
                                                                          (Delay, Jitter                     
                                                                                         and Loss probability) 
       Computing Speeds                                                     
                             
       Number of modules 
         
 
 

Figure 3: Problem description 
We also assume that the nodes go up and down from time to time 

independent of other nodes. Nodes go down due to several reasons including 
denial-of-service attacks. The QoS issues considered include: average response 
time, jitter and loss probability.  

We consider a scenario where a node (called the source node) makes a 
request for a document and starts a timer. If the source node does not receive the 
document before time θt (called the time-out value), the request is dropped. We 
compare the effect of varying the number of indices (I ranging from1 to n) and 
the time-out value, θt, on the QoS of the three networks types.  Figure 3 
illustrates the variables that are in our control to design (top of the box) and that 
are not in our control (left of the box).    

 
3.2 Request-response process 
 

If we divide the entire network into as many groups as there are number 
of indices each index node has a database of only those nodes that are in its 
group. The entire request-response process is described in Figure 4. 

 
Figure 4: Flowchart of request-response process 

 
3.3 Preliminary Results 
 
 Several simulations were run to study the effect of varying input 
parameters on the three QoS issues. It was observed that all the three network 
types (Random graph, Small world, and Scale-free) reacted similar to the 
variations in the parameters. The parameters that were varied (Figure 3) were: 
number of nodes, average arc degree, number of indices I, number of copies of a 
document co, the time-out value and the probability of nodes being up p. We 
considered our base model with n = 25, kave = 3, I = 1, m = 25000, co = 1, p = 
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0.95 and infinite time-out value, θinf. The reason for choosing one index and 
infinite time-out is that it then resembles the structure in Napster. The results for 
varying different input parameters are summarized in Figures 5-10. Due to space 
restrictions only Scale-free network results are depicted with the understanding 
that the other networks, Random graph and Small world, do not produce 
significantly different results. 
! Varying the number of nodes: Figure 5 shows the effect of increasing the 
number of nodes from 25 to 50 and 100 on the QoS. Notice from Figure 5 that 
the delay, jitter and loss probability do not change significantly as the number of 
nodes increase. This shows that the network is very scalable. The reason for the 
scalability is that with nodes the number of edges also increases in the same 
proportion. However the loss probability will increase if the time-out value is 
small (Figure 9 c).  

 
             (a)                                                                    (b) 
 

 
            (c) 

Figure 5: Scale-free QoS. (a) Delay vs. Number of nodes. (b) Jitter vs. Number 
of nodes. (c) Loss probability vs. Number of nodes 

! Varying the average arc degree: We compared the QoS for three average 
arc degrees: 3, 5 and 7. The results are in Figure 6. Increasing the average arc 
degree means that on an average the nodes will have more edges and hence the 
number of hops from one node to another will decrease. Decrease in hops means 
that it will take less time for a source node to get to the index node and the 
destination node. Hence the delay and the jitter will drop with increasing 
average degree. The loss probability will only be affected if there is a finite 
time-out value. In that case the loss probability will decrease with average arc 
degree.  

 
(a) (b)                                                   

(c) 
 

Figure 6: Scale-free QoS. (a) Delay vs. Average degree. (b) Jitter vs. Average 
degree. (c) Loss probability vs. Average degree. 

! Varying the number of index nodes: We considered several indexing 
schemes from a centralized (Napster) to a fully distributed (Gnutella) 
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mechanism. Figure 7 shows the results that were obtained on varying the 
number of indices. Intuitively delay and jitter will increase with number of 
indices, I, as the time to search a document increases with I. The loss probability 
will remain more or less the same if there is only one copy of the document as 
nodes fail independent of each other. But if we increased the probability of an 
index node being up as the number of nodes increases, the loss probability 
decreases as shown in Figure 7(c).   
 

(a) (b)             
 

                       
                 (c) 

Figure 7: Scale-free QoS. (a) Delay vs. Number of indices. (b) Jitter vs. 
Number of indices. (c) Loss probability vs. Number of indices. 

! Varying the number of copies: Figure 8 shows how increasing the number 
of copies influences the QoS measures. Increasing the number of copies means 
that even if an index node or destination node with a particular document is 
down, the source node might get it from some other node (provided the other 
index node and destination node are up). With more number of copies, the time 

to fulfill a request increases as all the indexes are searched. Hence, the average 
time and jitter increase with number of copies but the probability of loosing a 
request drops down.  
 

(a)                                                        (b) 

 
                             (c) 

 
Figure 8: Scale-free QoS. (a) Delay vs. Number of copies. (b) Jitter vs. Number 

of copies. (c) Loss probability vs. Number of copies. 
! Varying the time-out value: When a source makes a request, it sets a time 
out value which if it expires, the source assumes the request is lost. Decreasing 
the time-out value from there would decrease the delay and jitter as they are 
measured for only requests that are completed. On the other hand, the loss 
probability will increase on decreasing the time-out value, as more requests 
would be dropped. Figure 9 shows the effect of time-out value on the three QoS 
measures.  
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(a)   (b) 

                              (c) 
Figure 9: Scale-free QoS. (a) Delay vs. Time-out value. (b) Jitter vs. Time-out 

value. (c) Loss probability vs. Time-out value. 
 
! Varying the probability of nodes being up: Increasing the probability of 
nodes being up will affect only the percentage of requests being lost. The loss 
probability decreases if the nodes are up for a longer time. However, increasing 
the probability of nodes being up does not affect the delay and the jitter. The 
affect of varying the probability on QoS measures is summarized in Figure 10. 
 
 
                       
 
 
 
 
 
 
  
 

                             (a)                                                                (b) 
 
                             (c) 
 
Figure 10: Scale-free QoS. (a) Delay vs. Probability of nodes being up. (b) Jitter 

vs. Probability of nodes being up. (c) Loss probability vs. Probability of nodes 
being up. 

 
4 Analytical Models 
 
 Since the number of copies, number of indexes and the time-out values 
are under our control, we would like to select them in an optimal manner. In 
order to do that, we first build analytical models that relate QoS measures to the 
design parameters. We initially assumed time-out is infinite and then use an 
appropriate model to include time-outs. The analytical models are then 
compared (in Section 5) with the simulation results. 
 
4.1 QoS measures: Infinite time out 
 
(a) The expected delay in retrieving a document, E(T) is (see Appendix 1 for 
definitions and analysis):  

E (T) = (1 /((1-(1-p) co) p)){2q l ∑
=

I

i 1

µi (n, a, s) pi   

         + pdmco/I ∑
=

I

i 1

pi (i-1)  + 0.5dmco(i/n + 1/I)∑
=

I

i 1

pi  

         + (q l + E (B) l) ∑
=

I

i 1

αi (n, a, s) pi}. 

where  
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 pi = P (Code location is found in index I)    For i = 1, 2, …,I 

     = ∑
=

i

k 1

((i-1) C (k-1)  * (I-c) C (k-1) / (I C (k-1)) * pk * (1-p) i-k  

                       * min[co/I-k+1),1] 
          (with the understanding that (i) C (k) = 0 if i < k) and  

p0 = Probability that all the indices with the code are down 

                   = 1- ∑
=

I

j 1

pj = 1-(1-p) co 

(b) The variance in delay (which is the square of the jitter) is given by 
 

Var (T) = E (T2) – {E (T)} 2 
 
where the expression for E (T2) can be obtained from Appendix 2. 
 
(c) Proportion of requests lost or loss probability  

L = 1 – p [1 – (1-p) co] 
 

4.2 QoS measures: Finite time-out 
 
 The above three models assume that the time-out value is infinite. This 
means that a request is lost only if the index node or the destination node with 
the document is down. If the time-out value was finite, then requests would also 
be lost if the time to get a response exceeds the time-out value. Since the delay 
is a sum of a large number of independent random variables, we can 
approximate using central limit theorem that T ~ Normal [E (T), Var (T)]. Now 
the probability that time-out occurs even when the document is available will be 
 
 P (T > θ) = ε = 1 - Φ [(θ - E (T)) / √ Var (T)] 
 
Then, the response time given that document is retrieved before time-out will be  

E (Tθ) = ∫
∞−

θ

x f (x) dx / (1 - ε) 

where f(x) is the normal probability distribution function. The variance will be 

 Var (Tθ) = {(1 - ε) ∫
∞−

θ

x2 f (x) dx - ε [E (Tθ)] 2} / (1 - ε) 2 

The loss probability will be Lθ = 1 – p [1 – (1-p) co](1 - ε) 
 
5 Results 
 
5.1 Comparison of analytical and simulation models 
 

The delay, jitter and loss probability for the three networks were 
determined using both the analytical model as well as simulation models to 
verify the results. For all the 3 networks, the number of nodes are 100, average 
arc degree as 3.00 and the number of indices as 4. Also 10 replications were 
taken for all the simulation runs (this comparison is for infinite time-out value 
without considering node failure). The results are summarized in Table 1(for 1 
copy) and Table 2 (for 3 copies): 

 
Type of Network Analytical Model Simulation Model 

 Delay Jitter Loss prob. Delay Jitter Loss prob.
Random Graph 18.9582 5.7169 0.1477 17.0031 7.4065 0.2141 

Scale-free 17.8171 5.9683 0.1279 16.8547 7.3984 0.1652 
Small-world 21.9941 4.5980 0.2108 17.4444 7.6001 0.2917 

 
Table 1: Analytical and Simulation results for 1 copy 

 
Type of Network Analytical Model Simulation Model 

 Delay Jitter Loss prob. Delay Jitter Loss prob.
Random Graph 20.8487 7.6610 0.3947 15.6902 7.2839 0.3236 

Scale-free 19.4134 7.9690 0.3522 15.2349 7.1359 0.2876 
Small-world 22.3077 7.9237 0.4554 15.6423 7.4876 0.3481 

 
Table 2: Analytical and Simulation results for 3 copies 

  
From the above two tables it can be seen that results from analytical 

and simulation models are fairly close. The difference in the two results is due to 
two approximations that we made in deriving the analytical models. One 
approximation is the Central Limit Theorem we used to incorporate finite time-
out value and the other approximation we made was for the mean and variance 
of the number of hops. 
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5.2 Optimal number of indices and time-out value 
 
 Out of the three controllable input parameters that we have, we chose to 
optimize only the number of indices and the time-out value but not the number 
of copies. The number of copies can be decided based on the storage capacity of 
the P2P network. For our objective we used only 1 copy of a document. The 
number of indices was varied from 1 to n (centralized to completely distributed 
network) to determine the optimal number of indices in a P2P network. Also the 
time-out value was varied from infinite to a certain value so that not more that 
10% of the requests were lost. The optimization problem can be written in terms 
of θ and I, (the decision variables) as: 

 
 
 
Minimize: Delay (Tθ) + Jitter (√ Var (Tθ)) 
Subject to:  Loss probability (Lθ ) ≤ 10% 

   Time-out (θ ) < ∞ 
   Number of indexes (I) ≥ 1 
                                                     

 
 

(a)  
 
 
 

 
                                                         (b) 

Figure 11: The optimal solution. (a) Delay + Jitter vs. Number of indices and 
Time-out value. (b) Loss probability vs. Number of indices and Time-out value. 

In our scenario, there is a trade-off between loss probability and 
delay+jitter. With number of indexes and time-out value, the loss probability 
decreases and the average time increases. The optimal value for indexes and 
time-out for our set of input parameters were 9 indexes and 30 time units 
respectively. Nine indexes are better than having only one as now there is not a 
single point of failure in the P2P network. It is also better than having all the 
nodes as indexes as the traffic along the network will not be high. The time-out 
value of 30 is neither too large nor too small.   

 
6 Conclusion and Future work 
 

We studied the effect of various input parameters (such as number of 
nodes, number of copies, number of arcs, number of indices, time-out value, and 
probability of node being up) on three different network types: Random graph, 
Small world and Scale-free. We found that the QoS measures varied 
significantly only with the inputs and not with the network type. We derived 
analytical expression for the number of hops in a network. We used the mean 
and variance in the number of hops in a stochastic model to derive the QoS 
measures. These were used in a mathematical programming problem to 
determine the optimal number of indexes and time-out value in a P2P network 
for an acceptable loss probability and minimum response time plus jitter. 
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In this paper we considered a scenario where only one request was 
processed at a time. But in reality the number of requests per second is usually 
more than one. This complicates the problem further, but it would be interesting 
to study how the P2P network would behave in such a situation. Another 
interesting issue would be to do a cost analysis of a P2P network. Cost of storing 
and maintaining data in the network would play an important role when 
determining the optimum number of indexes. 
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Appendix 1: Analytical expression for delay 
 
 The analytical expression for delay is determined by conditioning on 
where the document is, using the information in index nodes, and computing the 
time to reach the document and retrieving it. The expected delay would be: 

E (T) = ∑
=

I

i 1

E (T/ document available in index i)* P (document  

              available in index i). 

                   = (1 /((1-(1-p) co) p)) ∑
=

I

i 1

{2E (Time to travel from source  

                            to  index i)+ E (time to search (I-1) indexes, some possibly  
                           down) +E (Time to find code in ith index)} pi 

                                      +(1 /((1-(1-p) c) p))∑
=

I

i 1

{E (Time required to reach 

                           destination node in region i) + E (Time to search node 
                           in region i)  + E (Time to respond)} pi. 

E (T) = (1 /((1-(1-p) co) p)) {∑
=

I

i 1

[2µi (n, a, s) qlpi   

          + p (i-1) dmco/Ipi + 0.5dmco/Ipi+ αi (n, a, s) qlpi  
          + 0.5dmco/npi  + αi (n, a, s) E (B) l pi]}. 
 

http://www.santafe.edu/sfi/publications/workingpapers/01-11-066.pdf
http://www.darkridge.com/~jpr5/doc/gnutella.html
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Summing over will yield the result. Note that αi (n, a, s) = Average 
number of hops from a node to ith farthest index (or a node in that region) when 
there are n nodes, a arcs and s standard deviation in the network. This is 
obtained from the analytical model of hop count described in Section 2.3. 

µi (n, a, s) = ∑
=

i

k 1

αk (n, a, s) 

 q               = Average query size (usually a query size is 60 bytes). 
      B    = Average code size (100 Kb). 
Special Cases: 
! If co = 1 and p = 1 (Number of copies is one and nodes do not fail) 

pi = 1 / I    for 1 ≤ i ≤ I  and p0 = 0 
! If co = 1 (Number of copies is one) 

pi = p / I    for 1 ≤ i ≤ I and p0 = 1-p 
! If p = 1 (Nodes do not fail),  
  for j ≤ I � c + 1, pj = (I-co) C (j-1) * I C (j-1) * co/I-j+1 

for j > I � co + 1 and j = 0, pj = 0 
 
Appendix 2: Analytical model for jitter 
 
 Jitter is defined as the square root of the variance of T, the response 
time. The variance is calculated similar to E (T) by conditioning on the location 
of the document�s index. 
 

Var (T) = E (T2) – {E (T)} 2 

 E (T2)   = (1 /((1-(1-p) co) p)) ∑
=

I

i 1

E (T 2 / document available in the 

                               vicinity of index i) pi 
 E (T 2 / document available in the vicinity of index i) 
                        = Variance (T 2 / document available in the vicinity of index i) 
                        + E (T / document available in the vicinity of index i) 2 
 E (T / document available in the vicinity of index i) 
  = {2qlµi (n, a, s)  + p (i-1) d m co /I  + 0.5 d m c /I 
                             + αi (n, a, s) q l + 0.5 d mco/n + αi (n, a, s) E (B) l}. 
  = E (Ti) 
 
 Var (Ti) = Variance (T 2 / document available in the vicinity of index i) 
 
In order to complete the derivation, we need some notations. 

Let Hi be the number of hops to a node in region i. 
E (Hi) = αi (n, a, s) 
Var (Hi) =βi 2(n, a, s) 
Let Yi = H1 + H2 + H3 +… Hi 

Therefore, 
 E (Yi) = µi (n, a, s) 

 Variance (Yi) = σi 2(n, a, s) = ∑
=

i

j 1

βj 2(n, a, s) 

Variance (Ti) will be 
Var (Ti) = 4q2l2σi 2(n, a, s) + (d mco/I) 2(I-1) p (1-p) + 1/12(dmco/I) 2  

                      + βi 2(n, a, s) q2 l2 + 0.5(dmco/n) 2   + l2 {Var (B)βi 2(n, a, s)  
              + Var (B)αi 2(n, a, s) + E (B) 2βi 2(n, a, s)} 

Therefore, 

 E (T2)   = (1 /((1-(1-p) co) p)) ∑
=

i

j 1

{Var (Ti) + [E (Ti)] 2} pi 

and 
 Var (T) = E (T2) – {E (T)} 2 
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