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Abstract—We consider a relay node that stochastically receives
packets from two opposing flows. Whenever opportunities exist,
the relay performs network coding to efficiently transmit packets.
However, on one hand, because of the stochastic nature as well as
possible asymmetry between the opposing flows, it would not be
possible to always code packets. On the other hand, waiting for a
coding opportunity could result in excessive latency, and one may
be better off transmitting packets without coding. Thus, one needs
to decide at each transmission opportunity whether to transmit
a packet uncoded or wait for a future transmission opportunity.
To enable us to optimally make that decision, we consider costs
for transmission and delay, and formulate our problem as a
Markov decision process. We show that the optimal policy is
threshold type under a sufficient condition, and we compute it
by modeling the resulting system as a Markov chain. Through
numerical analysis, we show the effectiveness of the threshold
policy in the relay node network as well as in a line network
scenario. Further, we compare the threshold policy against a
number of simple heuristic policies and identify situations where
these policies can be effective.

Index Terms—Network coding, energy-delay trade-off, Markov
decision processes

I. INTRODUCTION

Over recent years, there has been an increasing interest
in the applications of network coding in multihop wireless
networks (see [1] for important application areas). Network
coding techniques can significantly reduce the transmission
load in wireless networks [2]. For example, consider the two-
way relay network shown in Fig. 1(a). Here nodes 1 and 2
want to exchange a pair of packets x1 and x2 through node 3
which works as a relay node. In the conventional store-and-
forward approach, node 1 sends its packet x1 to node 3 which
then forwards it to node 2. Similarly packet x2 is sent from
node 2 to node 1 via node 3 in two transmissions. However,
in the network coding approach, once the two packets x1 and
x2 are received at node 3, they are combined by a bit-wise
XOR operation, and then the coded packet x1⊕x2 is broadcast
to nodes 1 and 2 simultaneously. Now nodes 1 and 2 can get
their required packets by decoding the coded packet. Note that,
in this case, a total of 3 transmissions are required compared
to 4 transmissions in the conventional approach. In another
example, consider a line network with two information flows
in opposite directions (see Fig. 1(b)). In this case, network
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Fig. 1. Wireless network coding in (a) two-way relay network (b) line
network

coding at successive nodes (known as “reverse carpooling”
[3]) allows both flows to share one common path and achieves
significant reduction in the number of transmissions in the
network.

Given the ability of network coding to reduce transmission
load greatly, high energy savings are possible by using this
technique. However, in most wireless networks, data flows on
different links vary significantly. Hence, coding opportunities
are not always available, and waiting for such opportunities
can cause substantial delay in transmission. In fact, the energy
savings achieved through network coding may be offset by
delays incurred by waiting for coding opportunities. Therefore,
though the system needs to take advantage of network coding,
it must also ensure an acceptable delay for the packets. For
this, it is required to decide whether to transmit a packet
without network coding or to wait for a future coding oppor-
tunity. To make such decisions, we aim to develop a model to
optimally trade-off between low energy consumption and high
quality-of-service (i.e. low delay).

In this paper, we consider the energy-delay trade-off issue
in network coding in a two-way relay network (see Fig. 1(a)),
which is a basic component of larger networks. Our objective
is to make network coding decisions at the relay node in such
a way that the average energy and delay costs are minimized
over the long-run. To achieve this, we formulate our problem
as a Markov decision process (MDP) which takes into account
the energy and delay costs as well as the uncertainty in
packet arrival processes. A policy for this MDP specifies how
many coded and uncoded transmissions are to be made at a
transmission opportunity based on the queue backlogs at the
relay node. We aim to find the optimal policy in this MDP
and develop insights into other simpler policies that can be
effective. We will also apply these policies in other network
settings such as the one in Fig. 1(b).
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A. Related Work

Network coding has attracted significant interest from the
research community since its introduction in the seminal work
of Ahlswede et al. [4]. However, the energy-delay trade-
off issue in network coding has received attention only very
recently. He and Yener [5] analyzed this performance trade-
off in a two-way relay under a simple a first-come-first-
serve (FCFS) policy. Among other similar works that use
different models and analyses, Abdelrahman and Gelenbe
[6], and Gunasekara et al. [7] analyzed the energy-delay
performance using waiting-time based policies while Chen et
al. [8] and Goseling et al. [9] considered policies that make
uncoded transmissions using certain probabilities. Note that
most of these works analyze the energy-delay trade-off under
an assumed operating policy and then tune the parameters
of the policy to achieve the best performance. There have
been very few attempts to derive the operating policy itself to
achieve the optimal trade-off. Ciftcioglu et al. [10] developed
game-based distributed policies to optimize the energy-delay
performance in a different relay network setup. In our earlier
work [11], we developed an MDP based energy-delay trade-off
model in a simpler case with a maximum transmission capacity
of one packet per time-slot at the relay node. Compared to
[11], we consider in this paper a more general problem with
different packet arrival and transmission models, which results
in significantly different analysis and algorithms.

Markov decision processes (MDP) serve as efficient meth-
ods to optimize cost-performance trade-off in a stochastic
environment in different applications [12]. Arapostathis et al.
[13] provide an extensive survey of works on discrete-time
average cost MDPs. In particular, as in our case, it is usually
difficult to find an optimal stationary policy (which may
also not exist) in average cost MDPs with countably infinite
number of states (hereafter we will say ‘countable’ to mean
countably infinite) and unbounded costs. The works by Borkar
[14], Cavazos-Cadena [15], Cavasoz-Cadena and Sennott [16],
Sennott [17], [18], and Schäl [19] are major contributions to
the theory of MDPs with countable state space.

B. Contribution

The main focus of this paper is to make efficient “transmit
or wait” decisions for packets at the relay node at every
transmission opportunity. The problem that we consider is new
as compared to the related works in the literature. The structure
of our MDP is also uncommon, and the two-dimensional
countable state space makes it quite challenging to solve for
the optimal policy. We exploit the structure of the problem
and use certain convexity concepts in a novel way to derive
structural properties of the optimal policy. We prove that,
under a sufficient condition, the optimal network coding policy
for the relay node is a threshold based policy. We develop
an analytical approach to compute this threshold policy. We
also show the effectiveness of this policy in situations where
our model assumptions are not satisfied. Moreover, we show
that some simple policies (e.g. see “transmit-all” and “rate-
based” policies in Section V) can be as efficient as the
threshold policy in particular situations. These policies are
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Fig. 2. Two-way relay network

easy to implement, and there is no computational overhead
when system parameters change. This makes these policies
particularly attractive for practical implementation.

The remainder of the paper is organized as follows. In
Section II, we provide MDP formulations of our problem and
show that an optimal stationary policy exists for the average
cost MDP. In Section III, we derive important structural
properties of the optimal policy. In Section IV, we develop
an approach to compute the threshold policy which is optimal
in certain cases and is effective (and possibly optimal) in
other cases. We report our computational results in Section V.
In Section VI, we present our concluding remarks and some
future research directions.

II. MODEL FORMULATION

We consider network coding in a two-way relay network
shown in Fig. 2. The relay node R forwards packets or their
combinations that belong to two opposite flows. The relay
node maintains queues 1 and 2 to store packets received
from nodes 1 and 2 respectively (i.e. intended for nodes
2 and 1 respectively). Packets arrive at queues 1 and 2
according to independent Poisson processes with rates λ1 and
λ2 respectively. The relay node gets opportunities to transmit
at fixed time intervals. Let T be the fixed time gap between two
consecutive transmission opportunities. The relay node can
send any number of packets during a transmission opportunity.
We assume low to medium load conditions for this network,
i.e. λ1 and λ2 values are not very large (note that the relay
usually shares the channel resources with the two source
nodes, which creates a challenging situation at high loads
[20]). We also assume that there is no interaction between
the relay and the sources to regulate transmissions. This is
reasonable since there is not a lot of competition between the
relay and the sources for medium access given the low load
conditions and the periodic scheduling of transmissions from
the relay.

To save energy, the relay node tries to reduce the number
of packet transmissions through network coding. As long as
the queues 1 and 2 are nonempty, it sends as many number of
coded packets as possible by combining packets from both the
queues. When a packet cannot be coded (due to the shortage
of a packet in the other queue), the relay can transmit it
uncoded or hold it for transmission in the future. To make this
decision, we consider some costs associated with transmission
and delay. Let ct be the cost of transmitting a coded or uncoded
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packet, and let c̄h be the cost of holding a packet per unit
time. The cost of holding a packet from one transmission
opportunity to the next is ch := c̄hT . We will consider only
the case ch < ct since holding will not be a cost-effective
option otherwise. However, our analytical results are derived
without this assumption.

When each of the queues 1 and 2 has n packets at a
transmission opportunity, it is optimal to transmit n coded
packets. When queue 1 has n1 packets and queue 2 has
n2 (6= n1) packets, min(n1, n2) coded packets will be sent.
However, in this case, since the remaining |n1 − n2| packets
(that are left in one of the queues) cannot be coded, it is
required to decide whether to transmit some of them uncoded.
Therefore, our objective is to develop a strategy for the relay
to decide how many uncoded packets to transmit (note that the
number of coded packets to be sent is already known) at every
transmission opportunity so that the average transmission and
holding cost is minimized over the long-run. To develop such
a strategy, we formulate our problem as a Markov decision
process (MDP) which we describe next.

In our MDP setup, the state of the system is described by
a two-dimensional vector (s1n, s

2
n), where s1n and s2n are the

number of packets in queues 1 and 2 respectively just before
the n-th (n = 0, 1, · · · ) transmission opportunity. The state
space is S = {(i, j) : i = 0, 1, · · · , j = 0, 1, · · · }. Based
on the state of the system at every stage of the MDP (i.e.
at every transmission opportunity), a certain number of coded
and uncoded packets are transmitted. Here, the total number of
packets transmitted is defined as the action which is denoted
by an in the n-th stage. Note that the action space in state (i, j)
is Ai,j = {min(i, j), · · · ,max(i, j)}. The complete action
space is A = ∪(i,j)∈S Ai,j . When an action a is taken in
state (i, j), the number of coded and uncoded transmissions
are min(i, j) and a−min(i, j) respectively. Let pzy be the prob-
ability of y packet arrivals to queue z (z = 1, 2) between two
transmission opportunities. Note that p1y and p2y (y = 0, 1, · · · )
are probability distributions of Poisson random variables with
means λ1T and λ2T respectively. Hence, if an action a is taken
in state (i, j), the system will be in state (k, l) in the next stage
with probability p(i,j)(k,l)(a) := p1k−(i−a)+ p2l−(j−a)+ , where
(x)+ = max(x, 0).

In every stage of the MDP, a transmission cost is incurred
depending on the action selected. Further, there is a cost
for holding the remaining packets (after transmission) as
well as the new arriving packets until the next transmission
opportunity. When an action a is taken in state (i, j), the total
cost, denoted by c′(i, j, a), is computed as

c′(i, j, a) = cta+ c̄hT
(
(i− a)+ + (j − a)+

)
+c̄hE

 2∑
z=1

Nz(T )∑
y=1

(T − ξzy)

 , (1)

where T is the time between the current and next transmission
opportunities, Nz(T ) is the random variable indicating the
number of new packet arrivals to queue z (z = 1, 2) in
time T , and ξzy is the time of arrival (measured from the
current transmission opportunity) of the y-th packet (y =
1, · · · , Nz(T )) to queue z (z = 1, 2). Conditional on Nz(T ) =

m (z = 1, 2), the arrival times ξz1 , · · · , ξzm are distributed as
the order statistics of m independent random variables, each
uniformly distributed over (0, T ) [21]. Using this property
of Poisson arrivals, the expression in (1) is simplified as
c′(i, j, a) = cta + ch ((i− a)+ + (j − a)+) + chT

2 (λ1 + λ2).
Note that the cost component chT

2 (λ1 + λ2) is a constant and
will not have any effect on deciding the action in any state.
Hence, we will ignore it in our model and use the following
function for cost per stage:

c(i, j, a) = cta+ ch
(
(i− a)+ + (j − a)+

)
. (2)

Having described the components of the MDP, we need to
find a policy that will decide the action at every stage in such a
way that the average cost over an infinite time horizon will be
minimized. A stationary policy for our MDP is a mapping θ :
S → A, where θ(i, j) is the action selected when the state of
the system is (i, j). Given the countable state space and infinite
time horizon in our MDP, we consider only stationary policies.
The long-run average cost under any policy θ is defined as

g(θ) =

lim
N→∞

1

N + 1
Eθ

[
N∑
n=0

c(S1
n, S

2
n, an)

∣∣∣∣∣(S1
0 , S

2
0) = (0, 0)

]
, (3)

where (S1
n, S

2
n) is the random state in the n-th stage. Note that,

though we start the system in state (0, 0), the average cost
is independent of this choice [12]. Our objective is to find
a stationary policy that minimizes the average cost function
g(θ). However, given the countable state space and unbounded
costs in our problem, such a policy would exist only under
specific conditions.

In the following subsections, we present our analysis to
show that an optimal stationary policy exists for our MDP.
We now introduce the discounted cost formulation which will
later be used to derive results for the average cost problem.

A. Discounted Cost Formulation

In our MDP setup, when a discount factor of β (0 < β < 1)
is considered, the total expected discounted cost incurred under
a policy θ is given by

vβ,θ(i, j) = Eθ

[ ∞∑
n=0

βnc(S1
n, S

2
n, an)

∣∣∣∣∣(S1
0 , S

2
0) = (i, j)

]
, (4)

where the initial state of the system is (i, j). The optimal
discounted cost in an initial state (i, j) is given by the
discounted cost function vβ(i, j) := infθ vβ,θ(i, j). As per the
following proposition, vβ(i, j) values are finite.

Proposition 1. The discounted cost function vβ(i, j) is finite
for every state (i, j) ∈ S and discount factor β (0 < β < 1).

Proof: See Appendix I-A.
Proposition 1 implies that the discounted cost function

vβ(i, j), for (i, j) ∈ S, satisfies the discounted cost optimality
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equation [18]:

vβ(i, j) = min
a∈Ai,j

{
c(i, j, a)

+β
∑
k,l

p1kp
2
l vβ

(
(i− a)+ + k, (j − a)+ + l

)}
. (5)

Any stationary policy that realizes the minimum in the right
side of (5) is discounted cost optimal. We will use properties
of the discounted cost optimal stationary policy to characterize
the optimal stationary policy in the average cost case.

B. Average Cost Formulation

Recall that our objective is to find a stationary policy that
minimizes the long-run average cost defined in (3). In this
subsection, we show that an average cost optimal stationary
policy exists in our MDP, and it can be computed as the limit
of discounted cost optimal stationary policies. We will need
the following propositions to prove this main result in Theorem
1.

Proposition 2. The discounted cost function vβ(i, j) is non-
decreasing in i and j.

Proof: See Appendix I-B.

Proposition 3. The MDP has a stationary policy inducing an
irreducible, ergodic Markov chain with a finite average cost.

Proof: See Appendix I-C.

Theorem 1. (a) There exist a constant g = limβ↑1 (1 −
β)vβ(i, j) for every (i, j) ∈ S, and a function h(i, j) satisfying
the average cost optimality inequality:

g + h(i, j) ≥ min
a∈Ai,j

{
c(i, j, a)

+
∑
k,l

p1kp
2
l h
(
(i− a)+ + k, (j − a)+ + l

)}
. (6)

The constant g is the optimal average cost, and any stationary
policy that realizes the minimum in the right side of (6) is
average cost optimal.
(b) There exists an average cost optimal stationary policy θ∗

that is a limit point of a sequence of discounted cost optimal
stationary policies {θβk

}k≥1, where βk → 1.

Proof: To prove (a) and (b), we will first show that the
following conditions (provided by Sennott [18]) are satisfied.

1) The discounted cost function vβ(i, j) is finite for every
state (i, j) and discount factor β.

2) There exists a nonnegative number N such that −N ≤
hβ(i, j) for all (i, j) and β, where hβ(i, j) = vβ(i, j)−
vβ(0, 0).

3) There exist nonnegative numbers Mij such that
hβ(i, j) ≤ Mij for every (i, j) and β. For every
state (i, j), there exists an action a(i, j) such that∑

(k,l)∈S p(i,j)(k,l)(a(i, j)) Mkl <∞.
Condition 1 is satisfied through Proposition 1. Condition 2 is
implied by Proposition 2 and is therefore satisfied. Based on

Proposition 5 in [18], Proposition 3 satisfies Condition 3. Now
that Conditions 1-3 are satisfied, the result in (a) follows from
Theorem 7.2.3 (and its proof) in [22].

Now, let {βn}n≥1 be any sequence of discount factors
converging to 1, and let {θβn}n≥1 be the corresponding
sequence of discounted cost optimal stationary policies. By
Lemma 1 in [18], there exists a subsequence of discount
factors {βnk

}k≥1 (also converging to 1) and a stationary policy
θ∗ that is a limit point of the subsequence {θβnk

}k≥1. Further,
as Conditions 1-3 are satisfied, the stationary policy θ∗ is
average cost optimal by Theorem 1 in [18].

III. STRUCTURAL PROPERTIES OF OPTIMAL POLICY

In this section, we derive structural properties of the optimal
policy in both discounted cost and average cost problems.
In Theorem 1, we showed that an average cost optimal
stationary policy in our MDP can be found as a limit point
of discounted cost optimal stationary policies. Therefore, the
structural properties of the discounted cost optimal stationary
policies will remain the same in this average cost optimal
stationary policy.

Before formalizing our main results, we would like to
introduce certain concepts of convexity of a function defined
over discrete points. First, we define a univariate “discrete
convex function” for our purpose (hereafter we will use
the word “convex” instead of “discrete convex” for discrete
functions).

Definition 1. The function f : Z+ → R is defined to be convex
if and only if f(i+ 1)− f(i) is nondecreasing in i.

If f : Z+ → R is convex (by Definition 1), a point i
in the domain of f is a global minimum if it is a local
minimum in the sense that f(i) ≤ min{f(i−1), f(i+1)}. This
function will also satisfy other natural properties of a convex
function [23]. Now we extend the idea in Definition 1 to a
bivariate discrete function in which we are primarily interested
in analyzing convexity in the direction of one variable.

Definition 2. The function f : Z2
+ → R is defined to be convex

in i if and only if f(i + 1, j) − f(i, j) is nondecreasing in i
for every j. Similarly, f is defined to be convex in j if and
only if f(i, j + 1)− f(i, j) is nondecreasing in j for every i.

Note that, if f(i, j) is convex in i (by Definition 2), then
for a fixed j (say j1), the function f ′(i) := f(i, j1) is convex.
Similarly, if f(i, j) is convex in j, then for a fixed i (say
i1), the function f ′′(j) := f(i1, j) is convex. Additionally,
if f(i, j) and g(i, j) are convex in i (resp. in j), the function
c1f(i, j)+c2g(i, j) is convex in i (resp. in j) for c1 ≥ 0, c2 ≥
0. We will use these properties in the proofs of various results
presented in this section.

Remark 1. Definition 2 helps check convexity of a bivariate
discrete function in only one variable (while the other is fixed),
which is useful for deriving our results. However, note that,
even if a function is convex in each variable separately, it is
not sufficient to identify the function as convex unless it is
additively separable.
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Now we present in the following Lemma 1 and Proposition
4 which are required to prove the main result of this section
in Theorem 2.

Lemma 1. Suppose f(i, j) : Z2
+ → R is convex in i and j. For

c > 0, the function g(i, j) = mina∈{min(i,j),··· ,max(i,j)}{ca+
f ((i− a)+, (j − a)+)} is convex in i and j if

min{f(1, 0)− f(0, 0), c}+ min{f(0, 1)− f(0, 0), c} ≥ c.
(7)

Proof: See Appendix I-D.

Proposition 4. If ch ≥ ct/2, the discounted cost function
vβ(i, j) is convex in i and j.

Proof: See Appendix I-E.

Theorem 2. If ch ≥ ct/2, then (a) there exist constants
Lβ1 , L

β
2 ≥ 0 such that the optimal action in state (i, j) ∈ S in

the β-discounted cost problem is given by

a∗(i, j) = min(i, j) +
(
i−min(i, j)− Lβ1

)+
+
(
j −min(i, j)− Lβ2

)+
. (8)

(b) There is an average cost optimal policy θ(L∗1, L
∗
2) such

that θ(Lβ1 , L
β
2 ) → θ(L∗1, L

∗
2) as β → 1, where θ(Lβ1 , L

β
2 ) is

the β-discounted cost optimal policy described in (8).

Proof: Since a ∈ Ai,j = {min(i, j), · · · ,max(i, j)}, we
can write a = max(i, j) − (i − a)+ − (j − a)+. Using this
in the expression for c(i, j, a) (see (2)), (5) can be written for
every (i, j) ∈ S as

vβ(i, j) = ct max(i, j)

+ min
a∈Ai,j

{
− (ct − ch)

[
(i− a)+ + (j − a)+

]
+β
∑
k,l

p1kp
2
l vβ

(
(i− a)+ + k, (j − a)+ + l

)}
. (9)

Since ch ≥ ct/2, the discounted cost function vβ(i, j) is
convex in i and j by Proposition 4. Therefore the function
f(i, j) :=

∑
k,l p

1
kp

2
l vβ(i + k, j + l) is convex in i and j.

Also, it follows from definition that −(ct−ch)(i+j) is convex
in i and j. Now we can write (9) as

vβ(i, j) = ct max(i, j) + min
a∈Ai,j

{
g
(
(i− a)+, (j − a)+

)}
,

(10)

where g(i, j) = −(ct− ch)(i+ j) +βf(i, j). Note that g(i, j)
is convex in i and j.

Now, we will prove result (a) by considering the following
cases: (i) i ≥ j, and (ii) i ≤ j. In case (i) i ≥ j, (10) can be
written as

vβ(i, j) = ct max(i, j) + min
a∈{j,··· ,i}

g(i− a, 0)

= ct max(i, j) + min
b∈{0,··· ,i−j}

g1(b), (11)

where b = i−a, and g1(b) = g(b, 0). Note that g1(b) is convex.
Let Lβ1 = arg min{g1(b) : b ≥ 0} be a global minimum of

g1(b). Hence, the value of b that minimizes g1(b) in (11) is
given by

b∗(i, j) =

{
i− j if 0 ≤ i− j < Lβ1 ,

Lβ1 if i− j ≥ Lβ1 .
Therefore, in case (i) i ≥ j, the optimal action in state (i, j)
can be found as

a∗(i, j) = i− b∗(i, j) =

{
j if 0 ≤ i− j < Lβ1 ,

i− Lβ1 if i− j ≥ Lβ1 .
(12)

Similarly, in case (ii) i ≤ j, it can be shown that there exists
a constant Lβ2 ≥ 0 such that the optimal action in state (i, j)
is given by

a∗(i, j) =

{
i if 0 ≤ j − i < Lβ2 ,

j − Lβ2 if j − i ≥ Lβ2 .
(13)

Note that (12) and (13) can be combined into one expression
as presented in (8). This completes the proof of the result (a).
Result (b) follows from Theorem 1(b).

Theorem 2 shows that, if ch ≥ ct/2, the optimal trans-
mission policy for the relay node is a threshold based policy.
Observe that, under such a policy, min(i, j) coded packets
are sent in state (i, j) as in any other policy. However, once
the coded packets are sent, packets from the nonempty queue
are sent uncoded until the number of remaining packets in
the queue reaches an optimal threshold level (which is L∗1 for
queue 1 and L∗2 for queue 2 in the average cost case).

Notice that the condition ch ≥ ct/2 is only sufficient, but
not necessary, for the optimal policy to be threshold-based.
We have not shown whether such threshold policy is optimal
when ch < ct/2. However, in this case, we conjecture that the
threshold policy will be very effective, if not optimal. In fact,
some heuristic strategies such as the “transmit-all” and “rate-
based” policies that we show to be very effective in specific
situations even under the condition ch < ct/2 are actually
similar threshold based policies (see Section V) .

Remark 2. If transmission and holding costs are charged to
individual packets, a packet would incur a transmission cost of
ct/2 if it is coded, and ct if it is sent uncoded. Note that, in this
situation, a packet cannot reduce its own cost by waiting for a
coding opportunity if ch + ct/2 ≥ ct or ch ≥ ct/2. Therefore,
under the condition ch ≥ ct/2, the “individually optimal”
average cost policy is to always transmit (coded if possible,
else uncoded) at a transmission opportunity. However, it is
clear from Theorem 2 that this policy may not be optimal at
the system level.

IV. COMPUTATION OF THRESHOLD POLICY

Given the countable state space in our MDP, computing the
optimal stationary policy (in both discounted cost and average
cost problems) by standard value iteration or policy iteration
procedures is intractable. However, we know that the average
cost optimal policy is threshold-based if ch ≥ ct/2. Also, such
a threshold policy will be efficient (and possibly optimal) in
the case ch < ct/2. Therefore, we are primarily interested in
computing the threshold policy in all cases. Here, by threshold
policy, we mean the best threshold policy, i.e. optimal values of
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the thresholds are used. In this section, we develop an approach
to compute the optimal threshold values L∗1 and L∗2 which
completely characterize the threshold policy.

Consider in our MDP an arbitrary threshold policy with
threshold values L1 and L2 (where L1 ≥ 0, L2 ≥ 0). Under
this (L1, L2) threshold policy, the action in state (i, j) ∈ S is
given as

a(i, j) = min(i, j) + (i−min(i, j)− L1)
+

+ (j −min(i, j)− L2)
+
. (14)

Under this policy, let Z1
n and Z2

n denote the number of
packets in queues 1 and 2 respectively just after all trans-
missions are completed in the n-th transmission opportu-
nity. Note that the stochastic process {(Z1

n, Z
2
n), n ≥ 0} is

an irreducible discrete-time Markov chain with state space
S ′ = {(0, L2), (0, L2−1), · · · , (0, 1), (0, 0), (1, 0), · · · , (L1−
1, 0), (L1, 0)}. The transition probabilities in this Markov
chain are given by

p̄(i,0)(k,0) = q(k−i), 0 ≤ i ≤ L1, 0 ≤ k < L1,

p̄(i,0)(L1,0) =
∑

m≥L1−i

qm, 0 ≤ i ≤ L1,

p̄(i,0)(0,l) = q−(i+l), 0 ≤ i ≤ L1, 0 ≤ l < L2,

p̄(i,0)(0,L2) =
∑

m≤−(i+L2)

qm, 0 ≤ i ≤ L1,

p̄(0,j)(0,l) = q−(l−j), 0 ≤ j ≤ L2, 0 ≤ l < L2,

p̄(0,j)(0,L2) =
∑

m≤−(L2−j)

qm, 0 ≤ j ≤ L2,

p̄(0,j)(k,0) = q(j+k), 0 ≤ k < L1, 0 ≤ j ≤ L2,

p̄(0,j)(L1,0) =
∑

m≥j+L1

qm, 0 ≤ j ≤ L2,

where qm is the probability of queue 1 receiving m (where
m is an integer in (−∞,∞)) more packets than queue 2
between two transmission opportunities. Note that qm is the
probability distribution of the difference of two independent
Poisson random variables, and it is specified by the Skellam
distribution [24]:

qm = e−(λ1+λ2)T

(
λ1
λ2

)m/2
I|m|(2T

√
λ1λ2),

where I(·)(·) is the modified Bessel function of the first kind.
Note that the long-run average cost incurred in the consid-

ered Markov chain is precisely the average cost under (L1, L2)
threshold policy in our MDP. The expected cost incurred in
state (i, j) ∈ S ′ of the Markov chain is given by

cij(L1, L2) =
∑
k,l

p1kp
2
l

{
ch(i+ j) + ct

[
min(i+ k, j + l)

+ (i+ k −min(i+ k, j + l)− L1)
+

+ (j + l −min(i+ k, j + l)− L2)
+

]}
. (15)

Now the long-run average cost under (L1, L2) threshold policy
can be calculated as

ḡ(L1, L2) :=
∑

(i,j)∈S′

π̄ijcij(L1, L2), (16)

where {π̄ij : (i, j) ∈ S ′} is the set of stationary
probabilities of the Markov chain satisfying the equations∑

(k,l)∈S′ π̄klp̄(k,l)(i,j) = π̄ij , for all (i, j) ∈ S ′, and∑
(i,j)∈S π̄ij = 1.
Now the optimal values of the thresholds, L∗1 and L∗2, can

be found by minimizing the discrete function ḡ(L1, L2) in
(16). As a simple approximation method, the global minimum
of ḡ(L1, L2) can be found by evaluating this function over
a finite set {0, 1, · · · , N1} × {0, 1, · · · , N2}, where N1 and
N2 are suitably large integers. However, in our numerical
experiments, a local minimum of ḡ(L1, L2) was found to be
the global minimum in all cases. Assuming that ḡ(L1, L2)
has this property, any discrete gradient search method can be
applied to find the minimum (L∗1, L

∗
2) more efficiently.

V. NUMERICAL RESULTS

In this section, we present our numerical results to demon-
strate the effectiveness of the threshold policy in network cod-
ing decisions. Most of the results presented in this section are
based on our MATLAB simulations of node/network operation
covering a large number of transmission opportunities. The
objective in these experiments is to compare the threshold
policy against other simple policies, and test these policies
in situations where assumptions do not hold. We mainly study
the performance of the following policies:

1) Transmit-all policy: Under this policy, the relay node
transmits all the queued packets at every transmission
opportunity. In this case, like every other policy, when
the relay has i and j packets in queues 1 and 2
respectively, min(i, j) coded packets are sent. Then all
the remaining packets (that are left in one of the queues)
are sent uncoded. Note that this policy is expected to be
effective when the holding cost ch is high.

2) Rate-based policy: This policy is based on λ1 and λ2
which are the rates of packet arrivals (Poisson dis-
tributed) to queues 1 and 2 respectively. Under this
policy, upon transmission of coded packets, all the

TABLE I
COMPUTED THRESHOLD POLICY

λ1 λ2 ch ct L∗
1 L∗

2 Avg. cost
5 5 0.05 1 8 8 5.4931
5 5 0.1 1 5 5 5.6875
5 5 0.2 1 3 3 5.9439
5 5 0.4 1 1 1 6.2138
5 5 0.6 1 0 0 6.2455
5 5.5 0.05 1 14 4 5.7952
5 5.5 0.1 1 8 3 5.9814
5 5.5 0.2 1 4 2 6.2331
5 5.5 0.4 1 1 0 6.4996
5 5.5 0.6 1 0 0 6.5422
5 6 0.05 1 21 2 6.1750
5 6 0.1 1 11 1 6.3270
5 6 0.2 1 6 1 6.5510
5 6 0.4 1 2 0 6.7908
5 6 0.6 1 0 0 6.8669
5 7.5 0.05 1 48 0 7.5480
5 7.5 0.1 1 23 0 7.5960
5 7.5 0.2 1 11 0 7.6908
5 7.5 0.4 1 4 0 7.8520
5 7.5 0.6 1 2 0 7.9542
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Fig. 3. Comparison of long-run average costs of policies in single relay-node network (ct = 1 and T = 1 in all cases)

remaining packets in queue 1 (if it is nonempty) are sent
uncoded if λ1 > λ2, and are held if λ1 < λ2. Similarly,
if queue 2 is nonempty following transmission of coded
packets, all its remaining packets are sent unocoded if
λ1 < λ2, and are held if λ1 > λ2. We will not use
this policy when λ1 = λ2. Notice that this policy is
particularly attractive when λ1 << λ2 or λ1 >> λ2.

3) Threshold policy: Here we mean the best (L1, L2)
threshold policy, i.e. optimal values of the thresholds
(L∗1 and L∗2) are used. Recall that this is the optimal
transmission policy for the relay node if ch ≥ ct/2.

Note that both “transmit-all” and “rate-based” policies are
special instances of the (L1, L2) threshold policy (see (14)).
In the “transmit-all” policy, we have (L1, L2) = (0, 0). In
the “rate-based” policy, (L1, L2) = (0,∞) if λ1 > λ2,
and (L1, L2) = (∞, 0) if λ1 < λ2. Since these policies
are specific threshold policies, they will not perform any
better than the best threshold policy (which we call just the
“threshold policy”). However, since these policies are easy to
implement (as the values of the thresholds L1 and L2 are
already known), we would like to find out how efficient they
are.

We computed the threshold policy for a relay node using
our approach described in Section IV. Table I presents the
threshold values (L∗1 and L∗2) in the computed threshold policy
for different values of arrival rates λ1 and λ2, and cost
parameters ct and ch. We use ct = 1 and T = 1 in all
our results. Notice that L∗1 > L∗2 whenever λ1 < λ2. This
is because, when λ1 < λ2, packets in queue 1 have higher
chances of being coded than those in queue 2, and therefore
the holding option is more appealing to queue 1 than queue
2. Likewise we have L∗1 < L∗2 if λ1 > λ2, though instances
of this case are not shown. Observe that, for fixed values of
ct and ch, as λ2 increases over λ1, value of L∗1 increases,
and value of L∗2 decreases. Similarly, if λ1 increases over λ2,
value of L∗1 will decrease, and value of L∗2 will increase. This
trend suggests that the threshold policy will be close to the
“rate-based” policy when λ1 << λ2 or λ1 >> λ2. Also
observe that, when values of λ1 and λ2 are fixed, both L∗1 and
L∗2 values decrease as the holding cost quantity ch increases.
This is expected since fewer packets will be held when the
holding cost is more. When ch is considerably high, we have
L∗1 = L∗2 = 0. In this case, the threshold policy is precisely
the “transmit-all” policy.
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Fig. 4. Comparison of coding ratios of policies in single relay-node network (ct = 1 and T = 1 in all cases)

Based on our simulation results, Fig. 3 presents comparison
of the long-run average costs of the policies in different
instances of λ1 and λ2. Since the holding cost quantity ch is
usually not known explicitly, we compare the average costs of
the policies over different possible values of ch/ct. Notice that,
as expected, the threshold policy always achieves the minimum
average cost among the considered policies. However, the
“transmit-all” and “rate-based” policies perform as well as the
threshold policy in certain situations. When both arrival rates
λ1 and λ2 are very small, the “transmit-all” policy is very
effective at almost all values of ch (see Fig. 3(a)). When the
difference between λ1 and λ2 is large, the “rate-based” policy
performs very close to the threshold policy at most values of
ch (see Fig. 3(d)). In all other cases of λ1 and λ2, the “rate-
based” policy is effective at very low values of ch, and the
“transmit-all” policy is very effective at higher values of ch
(see Fig. 3(b) and Fig. 3(c)). Further, when either λ1 or λ2 is
very large, the overall holding costs are insignificant compared
to the transmission costs. Therefore, in such a case (e.g. see
Fig. 3(d)), there is little difference in the performances of the
considered policies.

It is also important to see how effective our policies are
in availing of network coding opportunities. We measure this
performance by the “coding ratio”, which we define as the
long-run proportion of coded packets in the total number
packet transmissions. Fig. 4 presents comparison of the coding
ratios attained by our policies over different possible values
of ch/ct in a single relay node network. Notice that the
coding ratio of the threshold policy always lies between the
coding ratios of the “transmit-all” and “rate-based” policies.
The “transmit-all” policy has the lowest coding ratio since it
never holds packets for possible network coding opportunities.

Remark 3. In case of “rate-based” policy, if λ1 < λ2, the
total number of coded packets over the long-run is equal to
the total number of packet arrivals to queue 1. Also, the total
number of packet transmissions is equal to the total number
of packet arrivals to queue 2. Hence, the coding ratio in this
case is expected to be λ1/λ2, which can be observed in Fig.

4. Similarly, if λ1 > λ2, the coding ratio in the “rate-based”
policy will again be a constant and is equal to λ2/λ1. It is also
important to note that any other policy that tries to achieve
a coding ratio higher than the “rate-based” policy will make
the system unstable by building up at least one of the queues.

Finally, to study the performance of our policies at a
network level, we used them separately in a 4-node line
network (see Fig. 1(b)). In this case, packets in the input flows
f1 and f2 (to queue 1 of node 1, and queue 2 of node 4
respectively) arrive as per independent Poisson processes with
rates λ1 and λ2 respectively. Note that the rates of packet
arrivals to queues 1 and 2 of each node are also λ1 and
λ2 respectively. However, the corresponding arrival processes
(except for queue 1 of node 1, and queue 2 of node 4) are not
Poisson anymore. Now we consider a transmission schedule in
which nodes 1 and 3 transmit together during a transmission
opportunity, nodes 2 and 4 transmit together during the next
opportunity, and this cycle repeats. In this case, if the time
period between consecutive transmission opportunities is T for
the network, the corresponding time period for an individual
node is 2T . Therefore, the holding cost quantity is 2ch for
each node. In this network setup, Fig. 5 presents comparison
of the long-run average costs of our considered policies at the
network level when they are used locally at each node (e.g.
in case of the threshold policy, threshold values are computed
at each node assuming it as a single relay node network).
Notice that the threshold policy achieves the minimum average
cost among the considered policies in most cases. Further, the
‘transmit-all” and “rate-based” policies perform as well as the
threshold policy in specific situations, and these observations
are similar to those we discussed in the single node network
case. Notice that the effect of holding cost quantity ch on
the average cost is significantly higher at the network level as
compared to the single node case (see Fig. 3). This is primarily
because the proportion of the holding costs in the total costs
is more in the network level in our considered network case
as compared to the single node case.
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Fig. 5. Comparison of long-run average costs of policies in 4-node line network (ct = 1 and T = 1 in all cases)

VI. CONCLUSION

In this paper, we developed a Markov decision process
(MDP) based model to manage energy-delay trade-off in net-
work coding decisions in a two-way relay network. We proved
that an optimal stationary policy exists in our average cost
MDP. But computing this policy is difficult due to countably
infinite number of states in the MDP. However, we showed
that, in a certain case, an optimal stationary policy in our
MDP is a threshold based policy. We developed a method to
compute this threshold policy. We also found such threshold
policy to be very effective in other possible cases. Further,
based on the structure of the threshold policy, we developed
insights into other simple policies which we showed to be
efficient in particular situations.

As our numerical results indicate, the threshold policy
performs the best among our considered policies in all situa-
tions. However, note that the “transmit-all” and “rate-based”
policies provide near optimal performance in two different
operating regions. These policies are also attractive due to
their simplicity and ease in implementation. Therefore, one
can consider only the given two heuristic policies and use
the one that provides the lower long-run average cost (which

can be computed using (16)). This approach would eliminate
the need for additional resources for the computation of
the threshold policy and is particularly suitable for practical
systems. Further, the threshold policy may not be suitable
when exact values of the arrival rates (λ1 and λ2) and the
cost parameters (ch and ct) are not known. In this case, based
on the learnings from our numerical results, the “transmit-all”
or “rate-based” policy can be used when we have some rough
information about these parameters. The “transmit-all” policy
is mostly effective when the difference between λ1 and λ2
is small, and the “rate-based” policy is effective when this
difference is considerably large. In other cases of λ1 and λ2,
the “rate-based” policy performs well when the holding cost
ch is very small compared to the transmission cost ct, and the
“transmit-all” policy performs very well at higher values of
ch.

Many extensions of this work can be considered for future
research. The time period T between consecutive transmission
opportunities can be considered as a random variable, which is
possible in certain applications. It would be also worthwhile
to see if our results can be extended to the case of a relay
which serves as a connection between multiple pairs of nodes.
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Finally, more effective distributed policies can be explored
for managing the energy-delay trade-off in network coding
in large wireless networks.
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APPENDIX I

A. Proof of Proposition 1

Consider a policy θ where the decision is to transmit all the
queued packets at every transmission opportunity. Note that,
under this policy, a total number of max(i, j) packets will be
transmitted in state (i, j). As per (4), the total discounted cost
under this policy θ is given by

vβ,θ(i, j) = ct max(i, j) + E

[ ∞∑
n=1

βnct max(A1
n, A

2
n)

]
,

where A1
n and A2

n are the number of packet arrivals to queues 1
and 2 respectively between the (n−1)-st and n-th transmission
opportunities. Note that

vβ(i, j) ≤ vβ,θ(i, j)

≤ ct max(i, j) + E

[ ∞∑
n=1

βnct(A
n
1 +An2 )

]

= ct max(i, j) +
βctT (λ1 + λ2)

1− β <∞.

Since initial state (i, j) and discount factor β are arbitrary,
vβ(i, j) <∞ for every (i, j) and β.

B. Proof of Proposition 2

We will prove this result by using induction on the steps of
the value iteration algorithm [12]. Based on (5), the discounted
cost function in the n-th step of value iteration is given as

vβ,n(i, j) = min
a∈Ai,j

{
c(i, j, a)

+β
∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
,

(i, j) ∈ S. (17)

At the start of value iteration, vβ,0(i, j) = 0 for every state
(i, j). Hence, for n = 0 case, vβ,n(i, j) is nondecreasing in i
and j.

Now, suppose the result is true for n − 1, i.e. vβ,n−1(i, j)
is nondecreasing in i and j. Using (17), select an action a ∈
Ai+1,j such that

vβ,n(i+ 1, j) = c(i+ 1, j, a)

+β
∑
k,l

p1kp
2
l vβ,n−1

(
(i+ 1− a)+ + k, (j − a)+ + l

)
. (18)

For the same action a, we must have from (17):

vβ,n(i, j) ≤ c(i, j, a)

+β
∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)
. (19)

Note that a /∈ Ai,j when a = i+1 > j, but (19) will still hold.
Since vβ,n−1(i, j) and c(i, j, a) (see (2)) are nondecreasing in
i, we use (18) and (19) to show that

vβ,n(i+ 1, j)− vβ,n(i, j)

≥ c(i+ 1, j, a)− c(i, j, a)

+β
∑
k,l

p1kp
2
l

{
vβ,n−1

(
(i+ 1− a)+ + k, (j − a)+ + l

)
−vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
≥ 0.

Hence vβ,n(i, j) is nondecreasing in i for any fixed j.
Similarly we can show that vβ,n(i, j) is nondecreasing in
j for any fixed i. Thus vβ,n(i, j) is nondecreasing in both
i and j. Therefore the discounted cost function vβ(i, j) is
nondecreasing in i and j, as vβ,n(i, j)→ vβ(i, j).

C. Proof of Proposition 3

Consider again the policy θ where the decision is to transmit
all the queued packets at every transmission opportunity. Un-
der this policy, the state of the system {(S1

n, S
2
n), n ≥ 0} can

be described by an irreducible and ergodic Markov chain with
transition probabilities p(i,j)(k,l) := p1kp

2
l for (i, j), (k, l) ∈ S.

Note that the stationary distribution of this Markov chain is
πi,j := p1i p

2
j for (i, j) ∈ S . Therefore the long-run average

cost under policy θ is given by

g(θ) =
∑

(i,j)∈S

πi,j ct max(i, j)

≤ ct

∞∑
i=0

∞∑
j=0

p1i p
2
j (i+ j) = ct(λ1 + λ2)T <∞.

This shows that the average cost in the considered policy is
finite.

D. Proof of Lemma 1

When i ≥ j, we have

g(i, j) = min
a∈{j,··· ,i}

{ca+ f(i− a, 0)}

= ci+ min
k∈{0,··· ,i−j}

f1(k),

where f1(k) = −ck + f(k, 0). Since the functions −ck and
f(k, 0) are convex (by Definition 1), f1(k) is convex. Let
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k∗1 = arg min{f1(k) : k ≥ 0} be a global minimum of the
function f1. Using convexity of f1, we have

g(i, j) =

{
ci+ f1(i− j) if 0 ≤ i− j < k∗1 ,
ci+ f1(k∗1) if i− j ≥ k∗1 .

(20)

Similarly, when i ≤ j, we can show that there exists a k∗2 ≥ 0
such that

g(i, j) =

{
cj + f2(j − i) if − k∗2 < i− j ≤ 0,
cj + f2(k∗2) if i− j ≤ −k∗2 ,

(21)

where f2(k) = −ck+f(0, k). Also note that f1(0) = f2(0) =
f(0, 0).

Now, by Definition 2, the function g(i, j) will be convex in
i, if

g(i+ 1, j)− g(i, j) ≥ g(i, j)− g(i− 1, j), i ≥ 1, j ≥ 0. (22)

Similarly g(i, j) will be convex in j, if

g(i, j + 1)− g(i, j) ≥ g(i, j)− g(i, j − 1), i ≥ 0, j ≥ 1. (23)

We will show that (22) and (23) hold in all the following cases:
(a) i > j, (b) i < j, and (c) i = j.

First, in case (a) i > j, we consider two sub-cases: (a1)
0 < i − j < k∗1 , and (a2) i − j ≥ k∗1 . In sub-case (a1) 0 <
i − j < k∗1 , using (20) and convexity of f1, we show in the
following that (22) and (23) are satisfied.

g(i+ 1, j)− g(i, j)

= c(i+ 1) + f1(i− j + 1)− ci− f1(i− j)
≥ [ci+ f1(i− j)]− [c(i− 1) + f1(i− j − 1)]

= g(i, j)− g(i− 1, j).

g(i, j + 1)− g(i, j)

= ci+ f1(i− j − 1)− ci− f1(i− j)
≥ [ci+ f1(i− j)]− [ci+ f1(i− j + 1)]

= g(i, j)− g(i, j − 1).

Also, in sub-case (a2) i − j ≥ k∗1 , we show in the following
that (22) and (23) are satisfied.

g(i+ 1, j)− g(i, j) = c(i+ 1) + f1(k∗1)− ci− f1(k∗1)

= [ci+ f1(k∗)]− [c(i− 1) + f1(k∗1)]

≥ g(i, j)− g(i− 1, j).

g(i, j + 1)− g(i, j) ≥ [ci+ f1(k∗)]− [ci+ f1(k∗1)]

= g(i, j)− g(i, j − 1).

Thus both (22) and (23) are satisfied in case (a) i > j.
Similarly, by using (21) and convexity of f2, we can show
that these conditions are also satisfied in case (b) i < j. In
case (c) i = j, note that (22) will hold if

g(i+ 1, i)− g(i, i) ≥ g(i, i)− g(i− 1, i),

i.e. min{ci+ f(1, 0), c(i+ 1) + f(0, 0)} − ci− f(0, 0)

≥ ci+ f(0, 0)−min{c(i− 1) + f(0, 1), ci+ f(0, 0)},
i.e.

min{f(1, 0)− f(0, 0), c}+ min{f(0, 1)− f(0, 0), c} ≥ c,

which is the condition specified in (7). Similarly it can be
shown that, when this condition holds, we also have g(i, i +
1)− g(i, i) ≥ g(i, i)− g(i, i− 1).

Thus, given that (7) holds, g(i, j) satisfies (22) and (23) at
all points. Therefore g(i, j) is convex in i and j.

E. Proof of Proposition 4

We will prove this result by induction on the steps of the
value iteration algorithm. The discounted cost function in the
n-th step of value iteration is given by

vβ,n(i, j) = min
a∈Ai,j

{
cta+ ch

[
(i− a)+ + (j − a)+

]
+β
∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
,

s(i, j) ∈ S. (24)

At the start of value iteration, vβ,0(i, j) = 0 for every state
(i, j). Hence, for n = 0 case, vβ,n(i, j) is convex in i and j.

Now, suppose the result is true for n − 1, i.e. vβ,n−1(i, j)
is convex in i and j. Therefore, the function fn−1(i, j) :=∑
k,l p

1
kp

2
l vβ,n−1(i+ k, j + l) is convex in i and j. Now we

can write (24) as

vβ,n(i, j) = min
a∈Ai,j

{
cta+ gn−1

(
(i− a)+, (j − a)+

)}
, (25)

where gn−1(i, j) = ch(i + j) + βfn−1(i, j). Since ch(i + j)
and fn−1(i, j) are convex in i and j, gn−1(i, j) is convex in
i and j. Therefore by Lemma 1, in (25), vβ,n(i, j) is convex
in i and j if

min{gn−1(1, 0)− gn−1(0, 0), ct}
+ min{gn−1(0, 1)− gn−1(0, 0), ct} ≥ ct. (26)

Since vβ,n(i, j) is nondecreasing in i and j in every stage of
value iteration (see proof of Proposition 2), we have

gn−1(1, 0)− gn−1(0, 0)

= ch + β
∑
k,l

p1kp
2
l [vβ,n−1(k + 1, l)− vβ,n−1(k, l)] ≥ ch,

(27)
gn−1(0, 1)− gn−1(0, 0)

= ch + β
∑
k,l

p1kp
2
l [vβ,n−1(k, l + 1)− vβ,n−1(k, l)] ≥ ch.

(28)

Using (27) and (28), the sufficient condition for (26) to hold
is 2ch ≥ ct. However, this is the necessary condition in case
n = 1 where (27) and (28) are satisfied at equality. Thus
vβ,n(i, j) is convex in i and j if ch ≥ ct/2. Therefore, under
the same condition, the discounted cost function vβ(i, j) is
convex in i and j, as vβ,n(i, j)→ vβ(i, j).
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