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Abstract—It has been well established that wireless network
coding can significantly improve the efficiency of multi-hop
wireless networks. However, in a stochastic environment some
of the packets might not have coding pairs, which limits the
number of available coding opportunities. In this context, an
important decision is whether to delay packet transmission in
hope that a coding pair will be available in the future or transmit
a packet without coding. The paper addresses this problem by
establishing a stochastic dynamic framework whose objective is
to minimize a long-run average cost. We identify an optimal
control policy that minimizes the costs due to a combination of
transmissions and packet delays. We show that the optimal policy
would be stationary, deterministic, and threshold type based on
queue lengths. Our analytical approach is applicable for many
cases of interest such as time-varying ON/OFF channels. We
further substantiate our results with simulation experiments for
more generalized settings.

I. INTRODUCTION

In recent years, there has been a growing interest in the ap-
plications of network coding techniques in wireless networks.
It was shown that network coding can result in significant
improvements in the performance in terms of delay and
transmission count. For example, consider a wireless network
coding scheme depicted in Fig. 1(a). Here, wireless nodes 1
and 2 need to exchange packets x1 and x2 through a relay node
(node 3). A simple store-and-forward approach needs four
transmissions. In contrast, the network coding solution uses
a store-code-and-forward approach in which the two packets
x1 and x2 are combined by means of a bitwise XOR operation
at the relay and are broadcast to nodes 1 and 2 simultaneously.
Nodes 1 and 2 can then decode the packets they need from
the coded packet and the packets available at these nodes in
the beginning of data exchange.

Fig. 1. (a) Wireless Network Coding (b) Reverse carpooling.
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Effros et al. [1] introduced the strategy of reverse carpooling
that allows two opposite information flows share bandwidth
along a shared path. Fig. 1(b) shows an example of two
connections, from n1 to n4 and from n4 to n1 that share a
common path (n1, n2, n3, n4). The wireless network coding
approach results in a significant (up to 50%) reduction in
the number of transmissions for two connections that use
reverse carpooling. In particular, once the first connection is
established, the second connection (of the same rate) can be
established in the opposite direction with little additional cost.

In this paper, we focus on the design and analysis of
scheduling protocols that exploit the fundamental trade-off
between the number of transmissions and delay in the reverse
carpooling schemes. In particular, to cater to delay-sensitive
applications, the network must be aware that savings achieved
by coding may be offset by delays incurred in waiting for such
opportunities. Accordingly, we design delay-aware controllers
that use local information to decide whether or not to wait
for a coding opportunity, or to go ahead with an uncoded
transmission. By sending uncoded packets we do not take
advantage of network coding, resulting in a penalty in terms
of transmission count, and, as a result, energy-inefficiency.
However, by waiting for a coding opportunity, we might be
able to achieve energy efficiency at the cost of a delay increase.

Consider a relay node that transmits packets between two of
its adjacent nodes with flows in opposite directions, as depicted
in Fig. 2. The relay maintains two queues, q1 and q2, such that
q1 and q2 store packets that need to be delivered to node 2
and node 1, respectively. If both queues are not empty, then
it can relay two packets from both queues by performing an
XOR operation. However, what should the relay do if one of
the queues has packets to transmit, while the other queue is
empty? Should the relay wait for a coding opportunity or just
transmit a packet from a non-empty queue without coding?
This is the fundamental question we seek to answer.
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Fig. 2. 3-Node Relay Network.



2

A. Related Work

Network coding research was initiated by the seminal work
of Ahlswede et al. [2] and since then attracted major interest
from the research community. Network coding technique for
wireless networks has been considered by Katti et al. [3]. They
propose an architecture, referred to as COPE, which contains a
special network coding layer between the IP and MAC layers.
In [4], an opportunistic routing protocol is proposed, referred
to as MORE, that randomly mixes packets that belong to the
same flow before forwarding them to the next hop. Sagduyu
et al. [5] characterize the capacity region for the similar
broadcast networks with erasure channels. In addition, several
works, e.g., [6–11], investigate the scheduling and/or routing
problems in the network coding enabled networks. Sagduyu
and Ephremides [6] focus on the network coding in the tan-
dem networks and formulate related cross-layer optimization
problems, while Khreishah et al. [7] devise a joint coding-
scheduling-rate controller when the pairwise intersession net-
work coding is allowed. Reddy et al. [8] have showed how to
design coding-aware routing controllers that would maximize
coding opportunities in multihop networks. References [9] and
[10] attempt to schedule the network coding between multiple-
session flows. Xi and Yeh [11] propose a distributed algorithm
that minimizes the transmission cost of a multicast session.

References [12–14] analyze the similar trade-off between
power consumption and packet delays from different per-
spectives. Ciftcioglu et al. [12] propose a threshold policy
using the Lyapunov technique. The threshold policy in [12] is
an approximate solution with some performance guarantees.
Nguyen and Yang [13] present a basic Markov decision
process (MDP) framework for the problem at hand. Huang et
al. [14] analyze the performance of the transport protocols over
meshed networks as well as several implementation issues. In
contrast, we focus on the detailed theoretical analysis of the
problem at hand, present a provably optimal control policy,
and identify its structure.

In this paper, we consider a stochastic arrival process and
address the decision problem of whether or not a packet should
wait for a coding opportunity. Our objective is therefore to
study the delicate trade-off between the energy consumption
and the queueing delay when network coding is an option. We
use the MDP framework to model this problem and formulate
a stochastic dynamic program that determines the optimal
control actions in various states. While there exists a large
body of literature on the analysis of MDPs (see, e.g., [15–
18]), there is no clear methodology to find optimal policies for
the problems that possess the proprieties of infinite horizon,
average cost optimization, and have a countably infinite state
space. Indeed, reference [18] remarks that it is difficult to
analyze and obtain optimal policies for such problems. The
works in [19–22] contribute to the analysis of MDPs with
countably infinite state space. Moreover, reference [23] that
surveys the recent results on the monotonic structure of
optimal policy, states that while one dimensional MDP with
convex cost functions has been extensively studied, limited
models for multi-dimensional spaces are dealt with due to
the correlations between dimensions. In many high-dimension
cases, one usually directly investigates the properties of the
cost function. As we will see later, this paper poses precisely

such a problem, and showing the properties of optimal solution
is one of our main contributions.

B. Main Results

We first consider the case illustrated in Fig. 2, in which
we have a single relay node with two queues that contain
packets traversing in opposite directions. We assume that time
is slotted, and the relay can transmit at most one packet via
noiseless broadcast channels during each time slot. We also
assume that the arrivals into each queue are independent and
identically distributed. Each transmission by the relay incurs
a cost, and similarly, each time slot when a packet waits in
the queue incurs a certain cost. Our goal is to minimize the
weighted sum of the transmission and waiting costs.

We can think of the system state as the two queue lengths.
We find that the optimal policy is a simple queue-length
threshold policy with one threshold for each queue at the relay,
and whose action is simply: if a coding opportunity exists,
code and transmit; else transmit a packet if the threshold for
that queue is reached. We then show how to find the optimal
thresholds.

We examine three general models afterward. In the first
model, the service capacity of the relay is not restricted to one
packet per time slot. Then, if the relay can serve a batch of
packets, we find that the optimal controller is of the threshold
type for one queue, when the queue length of the other queue
is fixed. Secondly, we study an arrival process with memory,
i.e., Markov modulated arrival process. Here, we discover that
the optimal policy has multiple thresholds. Finally, we extend
our results for time-varying channels.

We then perform a numerical study of a number of policies
that are based on waiting time and queue length, waiting
time only, as well as the optimal deterministic queue-length
threshold policy to indicate the potential of our approach. We
also evaluate the performance of a deterministic queue length
based policy in the line network topology via simulations.

Contributions. Our contributions can be summarized as
follows. We consider the problem of delay versus coding
efficiency trade-off, as well as formulate it as an MDP problem
and obtain the structure of the optimal policy. It turns out that
the optimal policy does not use the waiting time information.
Moreover, we prove that the optimal policy is stationary and
based on the queue-length threshold, and therefore is easy
to implement. While it is easy to analyze MDPs that have
a finite number of states, or involve a discounted total cost
optimization with a single communicating class, our problem
does not possess any of these properties. Hence, although our
policy is simple, the proof is extremely intricate. Furthermore,
our policy and proof techniques can be extended to other
scenarios such as batched service and Markov-modulated
arrival process.

II. SYSTEM OVERVIEW

A. System model

Our first focus is on the case of a single relay node of
interest, which has the potential for network coding packets
from flows in opposing directions. Consider Fig. 2 again. We
assume that there is a flow f1 that goes from node 1 to 2 and
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another flow f2 from node 2 to 1, both of which are through
the relay under consideration. The packets from both flows are
stored at separate queues, q1 and q2, at relay node R.

For clarity of presentation, we assume a simple time division
multiple access (TDMA) scheme, however or results are easy
to generalize to more involved settings. We assume that time
is divided into slots and each slot is further divided into three
mini-slots. In each slot, each node is allowed to transmit in
its assigned mini-slot: node 1 uses the first mini-slot and
node 2 uses the second mini-slot, while the last mini-slot
in a slot is used by the relay. In particular, the time period
between transmission opportunities for the relay is precisely
one slot. Our model is consistent with the scheduled and time
synchronized scheme such as LTE. Moreover, we use slot as
the unit of packet delays. We assume if a packet is transmitted
in the same slot when it arrived at the relay, its latency is zero.

The number of arrivals between consecutive slots to both
flows is assumed to be independent of each other and also
independent and identically distributed (i.i.d.) over time, with
the random variables Ai for i = 1, 2 respectively. In each slot,
n packets arrive at qi with the probability P(Ai = n) = p

(i)
n

for n ∈ N ∪ {0}. Afterward, the relay gets an opportunity
to transmit. Initially we assume that the relay can transmit a
maximum of one packet in each time slot.

B. Markov Decision Process Model

We use a Markov decision process (MDP) model to develop
a strategy for the relay to decide its best course of action at ev-
ery transmission opportunity. For i = 1, 2 and t = 0, 1, 2, · · · ,
let Q(i)

t be the number of packets in qi at the tth time slot
just before an opportunity to transmit. Let at be the action
chosen at the end of the tth time slot with at = 0 implying
the action is to do nothing and at = 1 implying the action is
to transmit. Clearly, if Q(1)

t +Q
(2)
t = 0, then at = 0 because

that is the only feasible action. Also, if Q(1)
t Q

(2)
t > 0, then

at = 1 because the best option is to transmit as a coded XOR
packet as it reduces both the number of transmissions as well
as latency. However, when exactly one of Q(1)

t and Q
(2)
t is

non-zero, it is unclear what the best action is.
To develop a strategy for that, we first define the costs for

latency and transmission. Let CT be the cost for transmitting
a packet and CH be the cost of holding a packet for a length
of time equal to one slot. The power for transmitting a packet
is much higher than the processing energy for network coding
because of the simple XOR operation. We therefore ignore
the effect of the processing cost. However, to include the
processing cost is a small extension and will not change
the analytical approach. Hence we assume that the cost of
transmitting a coded packet is the same as that of a uncoded
packet.

We define the MDP{(Qt, at), t ≥ 0} where Qt =

(Q
(1)
t , Q

(2)
t ) is the state of the system and at is the control

action chosen by the relay at the tth slot. The state space (i.e.,
all possible values of Qt) is the set {(i, j) : i = 0, 1, · · · ; j =
0, 1, · · · }.

Let C(Qt, at) be the immediate cost if action at is taken
at time t when the system is in state Qt = (Q

(1)
t , Q

(2)
t ).

Therefore,

C(Qt, at) = CH([Q
(1)
t − at]+ + [Q

(2)
t − at]+) + CTat, (1)

where [x]+ = max(x, 0).

C. Average-optimal policy

A policy θ specifies the decisions at all decision epoch, i.e.,
θ = {a0, a1, · · · }. A policy is history dependent if at depends
on a0, · · · at−1 and Q0 · · · , Qt, while that is Markov if at
only depends on Qt. A policy is stationary if at1 = at2 when
Qt1 = Qt2 for some t1, t2. In general, a policy belongs to one
of the following sets [15]:
• ΠHR: a set of randomized history dependent policies;
• ΠMR: a set of randomized Markov policies;
• ΠSR: a set of randomized stationary policies;
• ΠSD: a set of deterministic stationary policies.
The long-run average cost for some policy θ ∈ ΠHR is given

by

V (θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(Qt, at)|Q0 = (0, 0)

]
, (2)

where Eθ is the expectation operator taken for the system
under policy θ. We consider our initial state to be an empty
system, since if we view our system as an ad-hoc network with
some initial energy, then the initial state of all queue would
be zero to begin with.

Our goal is to characterize and obtain the average-optimal
policy, i.e., the policy that minimizes V (θ). It is not hard to
see (as shown in [15]) that

ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR.

As in [15, 17] there might not exist a SR or SD policy that is
optimal, in what regime does the average-optimal policy lie?

We first describe the probability law for our MDP and then
in subsequent sections develop a methodology to obtain the
average-optimal policy. For the MDP{(Qt, at), t ≥ 0}, let
Pat(Qt, Qt+1) be the transition probability from state Qt to
Qt+1 associated with action at ∈ {0, 1}. Then the probability
law can be derived as P0 ((i, j), (k, l)) = p

(1)
k−ip

(2)
l−j for all

k ≥ i and l ≥ j; otherwise, P0 ((i, j), (k, l)) = 0. Also,
P1 ((i, j), (k, l)) = p

(1)
k−[i−1]+p

(2)
l−[j−1]+ for all k ≥ [i − 1]+

and l ≥ [j − 1]+; otherwise, P1 ((i, j), (k, l)) = 0.
A list of important notation used in this paper is summarized

in Table I.

D. Waiting time information

Intuition tells us that if a packet has not been waiting for
a long time then perhaps it could afford to wait a little more,
but if a packet has waited for long, it might be better to just
transmit it. That seems logical considering that we try our
best to code but we cannot wait too long because it hurts in
terms of holding costs. It is easy to keep track of waiting
time information using time-stamps on packets when they are
issued. Let T (i) be the arrival time of ith packet and D(i)

θ be
its delay (i.e., the waiting time before it is transmitted) while
policy θ is applied. We also denote by Tt,θ the number of
transmissions by time t under policy θ. Then Eq. (2) can be
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TABLE I
NOTATION TABLE

Ai Random variable that represents the num-
ber of packets that arrives at qi for each
time slot

p
(i)
n Probability that n packets arrive at qi, i.e.,

P(Ai = n)

Q
(i)
t The number of packets in qi at time t
Qt System state, i.e., (Q

(1)
t , Q

(2)
t )

at Action chosen by relay at time t
CT Cost of transmitting one packet
CH Cost of holding a packet for one time slot

C(Qt, at) Immediate cost if action at is taken at time
t when the system is in state Qt

V (θ) Time average cost under the policy θ
Pat(Qt, Qt+1) Transition probability from state Qt to

Qt+1 when action at is chosen
Vα(i, j, θ) Total expected discounted cost under the

policy θ when the initial state is (i, j)
Vα(i, j) Minimum total expected discounted cost

when the initial state is (i, j), i.e.,
minθ Vα(i, j, θ)

vα(i, j) Difference of the minimum total expected
discounted cost between the states (i, j)
and (0, 0), i.e., Vα(i, j)− Vα(0, 0)

Vα,n(i, j) Iterative definition for the optimality equa-
tion of Vα(i, j)

Vα(i, j, a) Vα(i, j) = mina∈{0,1} Vα(i, j, a), which is
the optimality equation of Vα(i, j)

∆V(i, j) Vα(i, j, 1)− Vα(i, j, 0)

written as

V (θ) = lim
K→∞

1

K + 1
Eθ

 ∑
i:T (i)≤K

CHD(i)
θ + CTTK,θ

 . (3)

Would we be making better decisions by also keeping track
of waiting times of each packet? We can answer this question
by applying [15, Theorem 5.5.3].

Proposition 1.
(i) For the MDP{(Qt, at), t ≥ 0}, if there exists a random-

ized history dependent policy that is average-optimal then
there exists a randomized Markov policy θ∗ ∈ ΠMR that
minimizes V (θ).

(ii) Further, one cannot find a policy which also uses waiting
time information that would yield a better solution than
V (θ∗).

E. Remarks

To inform nodes 1 and 2 whether the transmitted packet is
coded or not, we can just put one bit in front of each packet,
where 0 for a uncoded packet and 1 for a coded packet. See
[3] for more implementation issues.

In Sections III and IV, we prove that there exists an
optimal policy that is stationary, deterministic, and queue-
length threshold for the system model of this section. The

result will be generalized in Section VII.
• In Subsection VII-A, we consider the batched service,

where more than one packet can be served for each time.
• In Subsection VII-B, instead of i.i.d. arrivals, we consider

the Markov-modulated arrival process.
• In Subsection VII-C, we consider time-varying channels.

III. STRUCTURE OF THE AVERAGE-OPTIMAL POLICY -
STATIONARY AND DETERMINISTIC PROPERTY

In the previous section, we showed that there exists an
average-optimal policy that does not include the waiting time
in the state of the system. Next, we focus on queue length
based and randomized Markov policies, as well as determine
the structure of the average-optimal policy. In this section, we
will show that there exists an average-optimal policy that is
stationary and deterministic.

We begin by considering the infinite horizon α-discounted
cost case, where 0 < α < 1, which we then tie to the
average cost case. This method is typically used in the
MDP literature (e.g., [22]), where the conditions for the
structure of the average-optimal policy usually rely on the
results of the infinite horizon α-discounted cost case. For
our MDP{(Qt, at), t ≥ 0}, the total expected discounted cost
incurred by a policy θ ∈ ΠHR is

Vα(i, j, θ) = lim
K→∞

Eθ

[
K∑
t=0

αtC(Qt, at)|Q0 = (i, j)

]
. (4)

In addition, we define Vα(i, j) = minθ Vα(i, j, θ) as well as
vα(i, j) = Vα(i, j)− Vα(0, 0). Define the α-optimal policy as
the policy θ that minimizes Vα(i, j, θ).

A. Preliminary results

In this subsection, we introduce the important properties of
Vα(i, j), which are mostly based on the literature [22]. We first
show that Vα(i, j) is finite (Proposition 2) and then introduce
the optimality equation of Vα(i, j) (Lemma 3).

Proposition 2. If E[Ai] <∞ for i = 1, 2, then Vα(i, j) <∞
for every state (i, j) and α.

Proof: Let θ̃ be a stationary policy of waiting (i.e.,
at = 0 for all t) in each time slot. By definition of optimality,
Vα(i, j) ≤ Vα(i, j, θ̃). Hence, if Vα(i, j, θ̃) < ∞, then
Vα(i, j) <∞. Note that

Vα(i, j, θ̃) = lim
K→∞

Eθ̃
[ K∑
t=0

αtC(Qt, at)|Q0 = (i, j)
]

=

∞∑
t=0

αtCH (i+ j + tE[A1 +A2])

=
CH(i+ j)

1− α +
αCH

(1− α)2
E[A1 +A2] <∞.

The next lemma follows from Propositions 1 in [22] and
the fact that Vα(i, j) is finite (by Proposition 2).

Lemma 3 ([22], Proposition 1). If E[Ai] <∞ for i = 1, 2,
then the optimal expected discounted cost Vα(i, j) satisfies the
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following optimality equation:

Vα(i, j) = min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α

∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα(k, l)].(5)

Moreover, the stationary policy that realizes the minimum of
right hand side of (5) will be an α-optimal policy.

We define Vα,0(i, j) = 0 and for n ≥ 0,

Vα,n+1(i, j) = min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α

∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα,n(k, l)]. (6)

Lemma 4 below follows from Proposition 3 in [22].

Lemma 4 ([22], Proposition 3). Vα,n(i, j)→ Vα(i, j) as n→
∞ for every i, j, and α.

Eq. (6) will be helpful for identifying the properties of
Vα(i, j), e.g., to prove that Vα(i, j) is a non-decreasing
function.

Lemma 5. Vα(i, j) is a non-decreasing function with respect
to (w.r.t.) i for fixed j, and vice versa.

Proof: The proof is by induction on n in Eq. (6). The
result clearly holds for Vα,0(i, j). Now, assume that Vα,n(i, j)
is non-decreasing. First, note that CH([i−a]++[j−a]+)+CTa
is a non-decreasing function of i and j (since CH is non-
negative). Next, we note that

α

∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα,n(k, l)

=α

∞∑
r=0

∞∑
s=0

p(1)r p(2)s Vα,n([i− a]+ + r, [j − a]+ + s),

which is also a non-decreasing function in i and j separately
due to the inductive assumption. Since the sum and the
minimum (in Eq. (6)) of non-decreasing functions are a non-
decreasing function, we conclude that Vα,n+1(i, j) is a non-
decreasing function as well.

B. Main result
Using the α-discounted cost and the optimality equation,

we show that the MDP defined in this paper has an average-
optimal policy that is stationary and deterministic.

Theorem 6. For the MDP{(Qt, at), t ≥ 0}, there exists a
stationary and deterministic policy θ∗ that minimizes V (θ) if
E[A2

i ] <∞ and E[Ai] < 1 for i = 1, 2.

Proof: See Appendix A.
According to Borkar [24], it is possible to find the random-

ized policy that is closed to the average-optimal by applying
linear programming methods for an MDP of a very generic
setting, where randomized stationary policies are average-
optimal. However, since the average-optimal policy has further
been shown in Theorem 6 to be deterministic, in the next
section we investigate the structural properties of the average-
optimal policy and using a Markov-chain based enumeration
to find the average-optimal polity that would be deterministic
stationary.

IV. STRUCTURE OF THE AVERAGE-OPTIMAL POLICY -
THRESHOLD BASED

Now that we know the average-optimal policy is stationary
and deterministic, the question is how do we find it? If we
know that the average-optimal policy satisfies the structural
properties, then it is possible to search through the space of
stationary deterministic policies and obtain the optimal one.
We will study the α-optimal policy first and then discuss
how to correlate it with the average-optimal policy. Before
investigating the general i.i.d. arrival model, we study a special
case, namely Bernoulli process. Our objective is to determine
the α-optimal policy for the Bernoulli arrival process.

Lemma 7. For the i.i.d. Bernoulli arrival process and the
system starting with the empty queues, the α-optimal policy is
of threshold type. In particular, there exist optimal thresholds
L∗α,1 and L∗α,2 so that the optimal deterministic action in state
(i, 0) is to wait if i ≤ L∗α,1, and to transmit without coding if
i > L∗α,1; while in state (0, j) is to wait if j ≤ L∗α,2, and to
transmit without coding if j > L∗α,2.

Proof: We define

Vα(i, 0, a)

= CH([i− a]+) + CTa+ α
∑
k,l

Pa
(
(i, 0), (k, l)

)
Vα(k, l).

According to Eq. (5),

Vα(i, 0) = min
a∈{0,1}

Vα(i, 0, a).

Let L∗α,1 = min{i ∈ N∪{0} : Vα(i, 0, 1) > Vα(i, 0, 0)}−1.
Then the α-optimal policy is at = 0 for the states (i, 0) with
i ≤ L∗α,1, and at = 1 for the state (L∗α,1 + 1, 0). However, the
system starts with empty queues; as such, the states (i, 0) for
i > L∗α,1 + 1 are not accessible as (L∗α,1 + 1, 0) only transits
to (L∗α,1, 0), (L∗α,1 +1, 0), (L∗α,1, 1), and (L∗α,1 +1, 1). Hence,
we do not need to define the policy of the states (i, 0) for
i > L∗α,1 +1. The similar argument is applicable for the states
(0, j). Consequently, there exists a policy of threshold type
that is α-optimal.

Here we are providing an intuition of the threshold policy. If
a packet is transmitted immediately without coding, the system
cost increases significantly due to a large transmission cost. To
wait at present for a coding opportunity in the future incurs a
smaller waiting cost. Therefore, the packet might be delayed
until the delay cost cannot be compensated by the saving from
coding. An optimal policy might be as follows: to increase as
time goes the probability to transmit the packet. Moreover, we
have shown in Section III that there is an optimal policy that is
stationary and deterministic; as such the optimal policy could
be threshold type.

A. General i.i.d. arrival process
For the i.i.d. Bernoulli arrival process, we have just shown

that the α-optimal policy is threshold based. Our next ob-
jective is to extend this result to any i.i.d. arrival process.
We define that Vα(i, j, a) = CH ([i− a]+ + [j − a]+) +
CT · a + αE[Vα ([i− a]+ +A1, [j − a]+ +A2)]. Moreover,
let Vα,n(i, j, a) = CH ([i− a]+ + [j − a]+) + CTa +
αE[Vα,n ([i− a]+ +A1, [j − a]+ +A2)]. Then Eq. (5) can
be written as Vα(i, j) = mina∈{0,1} Vα(i, j, a), while Eq.
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(6) can be written as Vα,n+1(i, j) = mina∈{0,1} Vα,n(i, j, a).
For every discount factor α, we want to show that there
exists an α-optimal policy that is of threshold type. To be
precise, let the α-optimal policy for the first dimension be
a∗α,i = min {a′ ∈ arg mina∈{0,1} Vα(i, 0, a)},1 and we will
show that a∗α,i is non-decreasing as i increases, and so is the
second dimension. We start with a number of definitions.

Definition 8 ([23], Submodularity). A function f : (N ∪
{0})2 → R is submodular if for all i, j ∈ N ∪ {0}
f(i, j) + f(i+ 1, j + 1) ≤ f(i+ 1, j) + f(i, j + 1).

Definition 9 (K-Convexity). A function f : (N ∪ {0})2 → R
is K-convex (where K ∈ N) if for every i, j ∈ N ∪ {0}
f(i+K, j)− f(i, j) ≤ f(i+K + 1, j)− f(i+ 1, j);

f(i, j +K)− f(i, j) ≤ f(i, j +K + 1)− f(i, j + 1).

Definition 10 (K-Subconvexity). A function f : (N∪{0})2 →
R is K-subconvex (where K ∈ N) if for all i, j ∈ N ∪ {0}
f(i+K, j +K)− f(i, j) ≤ f(i+K + 1, j +K)− f(i+ 1, j);

f(i+K, j +K)− f(i, j) ≤ f(i+K, j +K + 1)− f(i, j + 1).

Remark 11. If a function f : (N∪{0})2 → R is submodular
and K-subconvex, then it is K-convex, and for every r ∈ N
with 1 ≤ r < K,

f(i+K, j + r)− f(i, j) ≤ f(i+K + 1, j + r)− f(i+ 1, j);

f(i+ r, j +K)− f(i, j) ≤ f(i+ r, j +K + 1)− f(i, j + 1).

For simplicity, we will ignore K in definitions 9 and 10
when K = 1. We will show in Subsection IV-C that Vα(i, j)
is non-decreasing, submodular, and subconvex, that result in
the threshold base of α-optimal policy. Note that the definition
of K-Convexity (Definition 9) is dimension-wise, which is
different from the definition of convexity for the continuous
function in two dimensions.

B. Proof overview

Before the technical proofs in Subsection IV-C, in this
subsection, we overview why submodularity and subconvexity
of Vα(i, j) lead to the α-optimality of the threshold based
policy.
• We claim that to show that α-optimal policy is monotonic

w.r.t. state (i, 0), it suffices to show that Vα(i, 0, 1) −
Vα(i, 0, 0) is a non-increasing function w.r.t. i: Suppose
that Vα(i, 0, 1)−Vα(i, 0, 0) is non-increasing, i.e., Vα(i+
1, 0, 1) − Vα(i + 1, 0, 0) ≤ Vα(i, 0, 1) − Vα(i, 0, 0). If
the α-optimal policy for state (i, 0) is a∗α,i = 1, i.e.,
Vα(i, 0, 1) − Vα(i, 0, 0) ≤ 0, then the α-optimal policy
for state (i+1, 0) is also a∗α,i+1 = 1 according to Vα(i+
1, 0, 1) − Vα(i + 1, 0, 0) ≤ Vα(i, 0, 1) − Vα(i, 0, 0) ≤ 0.
Similarly, if the α-optimal policy for state (i + 1, 0) is
a∗α,i+1 = 0 then the α-optimal policy for state (i, 0) is
a∗α,i = 0. Hence, the α-optimal policy is monotonic in i.

• We claim that to prove that Vα(i, 0, 1)−Vα(i, 0, 0) is non-
increasing, it is sufficient to show that Vα(i, j) is convex:

1This notation also used in [15] combines two operations: First we let
Λ = {a ∈ {0, 1} : minVα,n(i, 0, a)}, and then do min Λ. In other words,
we choose a = 0 when both a = 0 and a = 1 result in the same Vα,n(i, j, a).

When i ≥ 1, the claim is true since

Vα(i, 0, 1)− Vα(i, 0, 0)

=CT − CH + αE[Vα(i− 1 +A1,A2)− Vα(i+A1,A2)].

• Similarly, to show that α-optimal policy of state (i, j) is
monotonic w.r.t. i for fixed j and vice versa, it suffices
to show that Vα(i, j) is subconvex: When i, j ≥ 1, we
observe that

Vα(i, j, 1)− Vα(i, j, 0)

=Ct − 2Ch + αE[Vα(i− 1 +A1, j − 1 +A2)−
Vα(i+A1, j +A2)].

• We claim that Vα(i, j) is submodular: We intend to prove
the convexity and subconvexity of Vα(i, j) by induction,
which will require the relation between Vα(i, j)+Vα(i+
1, j + 1) and Vα(i + 1, j) + Vα(i, j + 1). There will be
two choices: (i) Vα(i, j) + Vα(i + 1, j + 1) ≤ Vα(i +
1, j) + Vα(i, j + 1), or (ii) Vα(i, j) + Vα(i+ 1, j + 1) ≥
Vα(i+ 1, j) + Vα(i, j + 1). First, We might assume that
Vα(i, j) satisfies (i). Then (i) and the subconvexity of
Vα(i, j) implies the convexity of Vα(i, j). In the contrary,
the convexity of Vα(i, j) and (ii) lead to the subconvexity
of Vα(i, j). In other words, both choices are possible
since they do not violate the convexity and subconvexity
of Vα(i, j). However, we are going to argue that the
choice (ii) is wrong as follows. Suppose that the actions of
α-optimal policy for the states (i, j), (i+1, j), (i, j+1),
(i+ 1, j + 1) are 0, 0, 1, 1 respectively. If the choice (ii)
is true, then when i ≥ 1, we have

CH(i+ j) + E[Vα,n(i+A1, j +A2)]+

CT + CH(i+ j) + E[Vα,n(i+A1, j +A2)]

≥CH(i+ 1 + j) + E[Vα,n(i+ 1 +A1, j +A2)]+

CT + CH(i− 1 + j) + E[Vα,n(i− 1 +A1, j +A2)].

By simplifying the above inequality, we can observe
the contradiction to the fact that Vα,n(i, j) is convex.
Therefore, Vα(i, j) is submodular.

Based on the above discussion, we understand that if we
show Vα(i, j) is submodular and subconvex, then the α-
optimal policy of state (i, j) is non-decreasing separately
in the direction of i and j (i.e., threshold type). Next, we
briefly discuss how Lemmas 12-15 and Theorem 16 in the
next subsection work together. Theorem 16 states that the α-
optimal policy is of threshold type, while the proof is based
on an induction on n in Eq. (6). First, when n = 0 we
observe that Vα,0(i, j) is non-decreasing, submodular, and
subconvex. Second, based on Lemma 12 and Corollary 13,
min{a′ ∈ arg mina∈{0,1} Vα,0(i, j, a)} is non-decreasing w.r.t.
i for fixed j, and vice versa. Third, according to Lemmas
5, 14, and 15, we know that Vα,1(i, j) is non-decreasing,
submodular, and subconvex. Therefore, as n goes to infinity,
we conclude that Vα(i, j) is non-decreasing, submodular, and
subconvex, as well as min{a′ ∈ arg mina∈{0,1} Vα(i, j, a)} is
non-decreasing w.r.t. i for fixed j, and vice versa.

C. Main results

Lemma 12. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j) is
non-decreasing, submodular, and subconvex, then Vα,n(i, j, a)
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is submodular for i and a when j is fixed, and so is for j and
a when i is fixed.

Proof: See Appendix B.
Submodularity of Vα,n(i, j, a) implies the monotonicity of

the optimal minimizing policy [15, Lemma 4.7.1] as described
in the following Corollary. This property will simplify the
proofs of Lemmas 14 and 15.

Corollary 13. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j)
is non-decreasing, submodular, and subconvex, then min{a′ ∈
arg mina∈{0,1} Vα,n(i, j, a)} is non-decreasing w.r.t. i for fixed
j, and vice versa.

Lemma 14. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j) is
non-decreasing, submodular, and subconvex, then Vα,n+1(i, j)
is submodular.

Proof: See Appendix C.

Lemma 15. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j) is
non-decreasing, submodular, and subconvex, then Vα,n+1(i, j)
is subconvex.

Proof: See Appendix D.
Based on the properties of Vα(i, j), we are ready to state

the optimality of the threshold type policy in terms of the total
expected discounted cost.

Theorem 16. For the MDP{(Qt, at), t ≥ 0} with any i.i.d.
arrival processes to both queues, there exists an α-optimal
policy that is of threshold type. Given Q

(2)
t , the α-optimal

policy is monotone w.r.t. Q(1)
t , and vice versa.

Proof: We prove by induction. Vα,0(i, j) = 0 is non-
decreasing, submodular, and subconvex, that leads to the non-
decreasing min{a′ ∈ arg mina∈{0,1} Vα,0(i, j, a)} based on
Corollary 13. These properties propagate as n goes to infinity
according to lemmas 5, 14, 15, and Corollary 13.

Thus far, the α-optimal policy is characterized. A useful
relation between the average-optimal policy and the α-optimal
policy is described in the following lemma.

Lemma 17 ([22], Lemma and Theorem (i)). Consider
MDP{(Qt, at), t ≥ 0}. Let {αn} converging to 1 be any
sequence of discount factors associated with the α-optimal
policy {θαn

(i, j)}. There exists a subsequence {βn} and a
stationary policy θ∗(i, j) that is the limit point of {θβn(i, j)}.
If the three conditions in Lemma 27 are satisfied, θ∗(i, j) is
the average-optimal policy for Eq. (2).

Theorem 18. Consider any i.i.d. arrival processes to both
queues. For the MDP{(Qt, at), t ≥ 0}, the average-optimal
policy is of threshold type. There exist the optimal thresholds
L∗1 and L∗2 so that the optimal deterministic action in states
(i, 0) is to wait if i ≤ L∗1, and to transmit without coding if
i > L∗1; while in state (0, j) is to wait if j ≤ L∗2, and to
transmit without coding if j > L∗2.

Proof: Let (̃i, 0) be any state which average-optimal
policy is to transmit, i.e., θ∗(̃i, 0) = 1 in Lemma 17.
Since there is a sequence of discount factors {βn} such
that θβn(i, j) → θ∗(i, j), then there exists N > 0 so that
θβn (̃i, 0) = 1 for all n ≥ N . Due to the monotonicity of α-
optimal policy in Theorem 16, θβn

(i, 0) = 1 for all i ≥ ĩ and

n ≥ N . Therefore, θ∗(i, 0) = 1 for all i ≥ ĩ. To conclude, the
average-optimal policy is of threshold type.

V. OBTAINING THE OPTIMAL DETERMINISTIC
STATIONARY POLICY

We have shown in the previous sections that the average-
optimal policy is stationary, deterministic and of threshold
type, so we only need to consider the subset of deterministic
stationary policies. Given the thresholds of the both queues,
the MDP is reduced to a Markov chain. The next step is to find
the optimal threshold. First note that the condition E[Ai] < 1
might not be sufficient for the stability of the queues since the
threshold based policy leads to an average service rate lower
than 1 packet per time slot. In the following theorem, we claim
that the conditions E[A2

i ] < ∞ and E[Ai] < 1 for i = 1, 2
are enough for the stability of the queues.

Theorem 19. For the MDP{(Qt, at), t ≥ 0} with E[A2
i ] <∞

and E[Ai] < 1 for i = 1, 2. The Markov chain obtained by
applying the stationary and deterministic threshold policy to
the MDP is positive recurrent, i.e., the stationary distribution
exists.

Proof: (Sketch) The proof is based on Foster-Lyapunov
theorem [25] associated with the Lyapunov function L(x, y) =
x2 + y2.

We realize that if E[A2
i ] < ∞ and E[Ai] < 1 for i =

1, 2, then there exists a stationary threshold type policy that is
average-optimal and can be obtained from the reduced Markov
chain. The following theorem gives an example of how to
compute the optimal thresholds.

Theorem 20. Consider the Bernoulli arrival process. The
optimal thresholds L∗1 and L∗2 are

(L∗1, L
∗
2) = arg min

L1,L2

CTT (L1, L2) + CHH(L1, L2),

where

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

L1∑
i=1

πi,0 + p
(1)
1

L2∑
j=1

π0,j +

p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2

;

H(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j ,

for which

π0,0 =
1(

1−ζL1+1

1−ζ

)
+
(

1−1/ζL2+1

1−1/ζ

)
− 1

;

πi,0 = ζiπ0,0;

π0,j = π0,0/ζ
j ;

ζ =
p
(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Proof: Let Y (i)
t be the number of type i packets at the tth

slot after transmission. It is crucial to note that this observation
time is different from when the MDP is observed. Then the
bivariate stochastic process {(Y (1)

t , Y
(2)
t ), t ≥ 0} is a discrete-

time Markov chain which state space is smaller than the
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original MDP, i.e., (0, 0), (1, 0), (2, 0), · · · , (L1, 0), (0, 1),
(0, 2), · · · , (0, L2). Define ζ as a parameter such that

ζ =
p
(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Then, the balance equations for 0 < i ≤ L1 and 0 < j ≤ L2

are:

πi,0 = ζπi−1,0;

ζπ0,j = π0,j−1.

Since π0,0 +
∑
i,j πi,0 + π0,j = 1, we have

π0,0 =
1(

1−ζL1+1

1−ζ

)
+
(

1−1/ζL2+1

1−1/ζ

)
− 1

.

The expected number of transmissions per slot is

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

L1∑
i=1

πi,0 + p
(1)
1

L2∑
j=1

π0,j +

p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2

.

The average number of packets in the system at the beginning
of each slot is

H(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j .

Thus upon minimizing we get the optimal thresholds L∗1 and
L∗2.

Whenever CH > 0, it is relatively straightforward to obtain
L∗1 and L∗2. Since it costs CT to transmit a packet and CH
for a packet to wait for a slot, it would be better to transmit a
packet than make a packet wait for more than CT /CH slots.
Thus L∗1 and L∗2 would always be less than CT /CH . Hence,
by completely enumerating between 0 and CT /CH for both
L1 and L2, we can obtain L∗1 and L∗2. One could perhaps find
faster techniques than complete enumeration, but it certainly
serves the purpose.

Subsequently, we study a special case, p(1)1 = p
(2)
1 , p, in

Theorem 20. Then L1 = L2 , L as both arrival processes are
identical. It can be calculated that ζ = 1 and πi,j = 1/(2L+1)
for all i, j, and

T (L) =
2pL+ 2p− p2

2L+ 1
;

H(L) =
L2 + L

2L+ 1
.

Define ν = CT /CH . The optimal threshold is

L∗(p, ν) = arg min
L

ν(2pL+ 2p− p2) + L+ L2

2L+ 1
.

By taking the derivative, we obtain that L∗ = 0 if ν < 1/(2p−
2p2) and otherwise,

L∗(p, ν) =
−1 +

√
1− 2(1− 2νp+ 2νp2)

2
.

We can observe that L∗(p, ν) is a concave function w.r.t.
p. Given ν fixed, L∗(1/2, ν) = (

√
ν − 1− 1)/2 is the largest

optimal threshold among various values of p. When p < 1/2,
the optimal-threshold decreases as there is a relatively lower
probability for packets in one queue to wait for a coding pair
in another queue. When p > 1/2, there will be a coding

pair already in the relay node with a higher probability,
and therefore the optimal-threshold also decreases. Moreover,
L∗(1/2, ν) = O(

√
ν), so the maximum optimal threshold

grows with the square root of ν, but not linearly. When
p is very small, L∗(p, ν) = O(

√
νp) grows slower than

L∗(1/2, ν). Figure 3 depicts the optimal threshold L∗(p, ν)
for various values of arrival rate p, and ν = CT /CH .

VI. NUMERICAL STUDIES

In this section we present several numerical results to
compare the performance of different policies in the single
relay setting as well as in a line network. We analyzed the
following policies:

1) Opportunistic Coding (OC): this policy does not waste
any opportunities for transmitting the packets. That is
when a packet arrives, coding is performed if a coding
opportunity exists, otherwise transmission takes place
immediately.

2) Queue-length based threshold (QLT): this stationary
deterministic policy applies the thresholds, proposed by
Theorem 20, on the queue lengths.

3) Queue-length-plus-Waiting-time-based (QL+WT)
thresholds: this is a history dependent policy which
takes into account the waiting time of the packets in the
queues as well as the queue lengths. That is a packet
will be transmitted (without coding), if the queue length
hits the threshold or the head-of-queue packet has been
waiting for at least some pre-determined amount of
time. The optimal waiting-time thresholds are found
using exhaustive search through stochastic simulations
for the given arrival distributions.

4) Waiting-time (WT) based threshold: this is another his-
tory dependent policy that only considers the waiting
times of the packets, in order to schedule the transmis-
sions. The optimum waiting times of the packets are
found through exhaustive search.

We simulate these policies on two different cases: (i) the
single relay network with Bernoulli arrivals (Fig. 4, 5, and 6)
and (ii) a line network with 4 nodes, in which the sources
are Bernoulli (Fig. 7, and 8). Note that in case (ii), since the
departures from one queue determine the arrivals into the other
queue, the arrival processes are significantly different from
Bernoulli. As expected, for the single relay network, the QLT
policy has the optimal performance and the QL+WT policy
does not have any advantage.

Moreover, there are results (see [26]) that indicate that the
independent arrivals model is accurate under heavy traffic
for multi-hop networks. Hence, our characterization of the
optimal policy does have value in a more general case. Our
simulation results indicate that QLT policy also exhibits a near
optimal performance for the line network. We also observe,
from the simulation results for the waiting-time-based policy,
that making decisions based on waiting time alone leads to a
suboptimal performance. In all experiments, the opportunistic
policy has the worst possible performance.

The results are intriguing as they suggest that achieving a
near-perfect trade-off between waiting and transmission costs
is possible using simple policies; moreover, coupled with
optimal network-coding aware routing policies like the one in
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Fig. 3. Optimal queue length threshold for a
single relay with symmetric Bernoulli arrivals.
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Fig. 5. Comparison of the minimum average
cost (per slot) in a single relay with Bernoulli
arrival rates (0.5, 0.5), for different policies,
where the costs are normalized by the trans-
mission cost.
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Fig. 7. Comparison of different policies in
a line network with two intermediate nodes
and two Bernoulli flows with mean arrival rates
(0.5, 0.5).
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Fig. 8. Achievable arrival rate versus average
budget (per slot) in a line network with two
intermediate nodes and two Bernoulli flows.

our earlier work [8], have the potential to exploit the positive
externalities that network coding offers.

VII. EXTENSIONS

We have known that the average-optimal policy is stationary
and threshold based for the i.i.d. arrival process and the perfect
channels with at most one packet served per time slot. Three
more general models are discussed here. We focus on the
characterization of the optimality equation, which results in
the structure of the average-optimal policy.

A. Batched service

Assume that the relay R can serve a group of packets with
the size ofM at end of the time slot. At the end of every time
slot, relay R decides to transmit, at = 1, or to wait at = 0.
The holding cost per unit time for a packet is CH , while CT
is the cost to transmit a batched packet. Then the immediate
cost is

C(M)(Qt, at)

= CH([Q
(1)
t − atM]+ + [Q

(2)
t − atM]+) + CTat.

We also want to find the optimal policy θ∗ that minimizes the
long-run average cost V (M)(θ), calledM-MDP{(Qt, at), t ≥

0} problem,

V (M)(θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(M)(Qt, at)|Q0 = (0, 0)

]
.

Notice that the best policy might not just transmit when both
queues are non-empty. When M > 1, R might also want
to wait even if Q(1)

t Q
(2)
t > 0 because the batched service

of size less than M has the same transmission cost CT .
The optimality equation of the expected α-discounted cost is
revised as

V (M)
α (i, j) = min

a∈{0,1}

[
CH([i− aM]+ + [j − aM]+) + CTa+

E[V (M)
α ([i− aM]+ +A1, [j − aM]+ +A2)]

]
.

We can get the following results.

Theorem 21. Given α andM, V (M)
α (i, j) is non-decreasing,

submodular, and M-subconvex. Moreover, there is an α-
optimal policy that is of threshold type. Fixed j, the α-optimal
policy is monotone w.r.t. i, and vice versa.

Theorem 22. Consider any i.i.d. arrival processes to both
queues. For the M-MDP{(Qt, at), t ≥ 0}, the average-
optimal policy is of threshold type. Given j = j̃ fixed, there
exists the optimal threshold L∗

j̃
such that the optimal stationary

and deterministic policy in state (i, j̃) is to wait if i ≤ L∗
j̃
, and
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to transmit if i > L∗
j̃
. Similar argument holds for the other

queue.

B. Markov-Modulated Arrival Process

While the i.i.d. arrival process is examined so far, a specific
arrival process with memory is studied here, i.e., Markov-
modulated arrival process (MMAP). The service capacity of
R is focused on M = 1 packet. Let N (i) = {0, 1, · · · , N (i)}
be the state space of MMAP at node i, with the transition
probability p

(i)
k,l where k, l ∈ N (i). Then the number of

packets generated by the node i at time t is N (i)
t ∈ N (i).

Then the decision of R is made based on the observation
of (Q

(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t ). Similarly, the objective is to find

the optimal policy that minimizes the long-run average cost,
named MMAP-MDP{((Q(1)

t , Q
(2)
t ,N (1)

t ,N (2)
t ), at) : t ≥

0} problem. The optimality equation of the expected α-
discounted cost becomes

V MMAP
α (i, j, n1, n2)

= min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α

N(1)∑
k=0

N(2)∑
l=0

p
(1)
n1,k

p
(2)
n2,l

V MMAP
α ([i− a]+ + k, [j − a]+ + l, k, l)].

Then we conclude the following results.

Theorem 23. Given n1 ∈ N (1) and n2 ∈ N (2),
V MMAP
α (i, j, n1, n2) is non-decreasing, submodular, and sub-

convex w.r.t. i and j. Moreover, there is an α-optimal policy
that is of threshold type. Fixed n1 and n2, the α-optimal policy
is monotone w.r.t. i when j is fixed, and vice versa.

Theorem 24. Consider any MMAP arrival process. For the
MMAP-MDP{((Q(1)

t , Q
(2)
t ,N (1)

t ,N (2)
t ), at) : t ≥ 0}, the

average-optimal policy is of multiple thresholds type. There
exists a set of optimal thresholds {L∗1,n1,n2

} and {L∗2,n1,n2
},

where n1 ∈ N (1) and n2 ∈ N (2), so that the optimal station-
ary decision in states (i, 0, n1, n2) is to wait if i ≤ L∗1,n1,n2

,
and to transmit without coding if i > L∗1,n1,n2

; while in state
(0, j, n1, n2) is to wait if j ≤ L∗2,n1,n2

, and to transmit without
coding if j > L∗2,n1,n2

.

C. Time-varying channel

In this subsection, we examine the scenario in which the
relay transmits packets over time-varying ON/OFF channels,
while we assume that the arrivals are i.i.d. and the re-
lay can serve at most one packet for each time slot. Let
St = (S

(1)
t , S

(2)
t ) be the channel state at time t, where

S
(i)
t ∈ {0(OFF), 1(ON)} indicates the channel condition from

the relay to node i. We assume that the channel states are i.i.d.
over time. Moreover, when S(i)

t = 1, to transmit a packet from
the relay to node i takes the cost of C(i)

T . Then the immediate
cost C(Qt, St, at) is

C(Qt, St, at) =CH([i− atS(1)
t ]+ + [j − atS(2)

t ]+)+

max(atS
(1)
t C

(1)
T , atS

(2)
t C

(2)
T ).

The objective is also to find the optimal policy that minimizes
the long-run average cost. The optimality equation of the

expected α-discounted cost becomes

Vα(i, j, s1, s2)

= min
a∈{0,1}

[
CH([i− as1]+ + [j − as2]+)+

max(as1C
(1)
T , as2C

(2)
T )+

αE[Vα([i− as1]+ +A1, [j − as2]+ +A2), S
(1)
t , S

(2)
t ]
]
.

Then we conclude the following results.

Theorem 25. Vα(i, j, 1, 1) is non-decreasing, submodular,
and subconvex. Vα(i, j, 1, 0) is convex in i for any fixed j and
Vα(i, j, 0, 1) is convex in j for any fixed i. Moreover, there is
an α-optimal policy that is of threshold type. For each channel
state, the α-optimal policy is monotone in i for fixed j, and
vice versa.

Theorem 26. Consider any i.i.d. arrivals to both queues
and time-varying ON/OFF channels. The average-optimal
policy is of threshold type. For state (s1, s2), there exist the
optimal thresholds L∗1,s1,s2 and L∗2,s1,s2 so that the optimal
deterministic action in states (i, 0) is to wait if i ≤ L∗1,s1,s2 ,
and to transmit without coding if i > L∗1,s1,s2 ; while in state
(0, j) is to wait if j ≤ L∗2,s1,s2 , and to transmit without coding
if j > L∗2,s1,s2 .

VIII. CONCLUSION

In this paper we investigate the delicate trade-off between
waiting and transmitting using network coding. We started
with the idea of exploring the whole space of history de-
pendent policies, but showed step-by-step how we could
move to simpler regimes, finally culminating in a stationary
deterministic queue-length threshold based policy. The policy
is attractive because its simplicity enables us to characterize
the thresholds completely, and we can easily illustrate its
performance on multiple networks. We showed by simulation
how the performance of the policy is optimal in the Bernoulli
arrival scenario, and how it also does well in other situations
such as for line networks. Moreover, our policy can be applied
for real-time applications. In our work, we explicitly model the
cost of packet delays; as such, we can compute the probability
of meeting the deadline, and then tune our holding cost so that
the probability is met.
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APPENDIX A
PROOF OF THEOREM 6

The next two lemmas, which can be proven via the similar
arguments in [22], specify the conditions for the existence of
the optimal stationary and deterministic policy.

Lemma 27 ([22], Theorem (i)). There exists a station-
ary and deterministic policy that is average-optimal for the
MDP{(Qt, at), t ≥ 0} if the following conditions are satisfied:
(i) Vα(i, j) is finite for all i, j, and α;

(ii) There exists a nonnegative N such that vα(i, j) ≥ −N
for all i, j, and α;
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(iii) There exists a nonnegative Mi,j such that vα(i, j) ≤
Mi,j for every i, j, and α. Moreover, for each
state (i, j) there is an action a(i, j) such that∑∞
k=0

∑∞
l=0 Pa(i,j)

(
(i, j), (k, l)

)
Mk,l <∞.

Lemma 28 ([22], Proposition 5). Assume there exists a sta-
tionary policy θ inducing an irreducible and ergodic Markov
chain with the following properties: there exists a nonnegative
function F (i, j) and a finite nonempty subset G ⊆ (N∪{0})2
such that for (i, j) ∈ (N ∪ {0})2 −G it holds that
∞∑
k=0

∞∑
l=0

Pa(θ)((i, j), (k, l))F (k, l)− F (i, j) ≤ −C((i, j), a(θ)),

(7)
where a(θ) is the action when the policy θ is applied.
Moreover, for (i, j) ∈ G it holds that

∞∑
k=0

∞∑
l=0

Pa(θ)((i, j), (k, l))F (k, l) <∞.

Then, the condition (iii) in Lemma 27 holds.

proof to Theorem 6 : As described earlier it is sufficient
to show that the three conditions in Lemma 27 are satisfied.
Proposition 2 implies that the condition (i) holds, while the
condition (ii) is satisfied due to Lemma 5 (i.e., N = 0
in Lemma 27). We denote by θ̃ the stationary policy of
transmitting at each time slot. We use this policy for each
of the three cases described below and show that condition
(iii) of Lemma 27 holds.

Case (i): p(i)0 + p
(i)
1 < 1 for i = 1, 2, i.e., the probability

that two or more packets arrive for each time slot is non-zero.
This policy θ̃ results in an irreducible and ergodic Markov
chain, and therefore Lemma 28 can be applied. Let F (i, j) =
B(i2 + j2) for some positive B. Then, for all states (i, j) ∈
(N ∪ {0})2 − {(0, 0), (0, 1), (1, 0)}, it holds that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l)) [F (k, l)− F (i, j)]

=

∞∑
r=0

∞∑
s=0

P1

(
(i, j), ([i− 1]+ + r, [j − 1]+ + s)

)
·[

F ([i− 1]+ + r, [j − 1]+ + s)− F (i, j)
]

=

∞∑
r=0

∞∑
s=0

p(1)r p(2)s B
[
2i(r − 1) + (r − 1)2+

2j(s− 1) + (s− 1)2
]

=2B
(
i(E[A1]− 1) + j(E[A2]− 1)

)
+

B
(
E[(A1 − 1)2] + E[(A2 − 1)2]

)
.

Note that E[Ai] < 1, hence 2B(E[Ai] − 1) < −CH for
sufficiently large B. Moreover, since E[A2

i ] < ∞, it holds
that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l)) [F (k, l)− F (i, j)]

≤ −C((i, j), a(θ̃)),

when i, j are large enough, where

C((i, j), a(θ̃)) = CH([i− 1]+ + [j − 1]+) + CT .

We observe that there exists a finite set G that contains

states {(0, 0), (0, 1), (1, 0)} such that Eq. (7) is satisfied for
(i, j) ∈ (N ∪ {0})2 −G. Then, for (i, j) ∈ G, it holds that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l))F (k, l)

=B

∞∑
r=0

∞∑
s=0

p(1)r p(2)s
[
([i− 1]+ + r)2 + ([j − 1]+ + s)2

]
=B

{
(i− 1)2 + 2[i− 1]+E[A1] + E[A2

1]+

(j − 1)2 + 2[j − 1]+E[A2] + E[A2
2]
}
<∞.

Therefore, the condition of Lemma 28 is satisfied, which
implies, in turn, that condition (iii) in Lemma 27 is satisfied
as well.

q1

q2

CS1

CS2

CSi−1

CSi

(i, j)

i− 1

i

0

1

2

Fig. 9. Case (ii) in the proof of Theorem 6: state (i, j) can only transit to
the states in the CSi and CSi−1.

Case (ii): p(1)0 + p
(1)
1 = 1 and p(2)0 + p

(2)
1 < 1. Note that θ̃

results in a reducible Markov chain. That is, there are several
communicating classes [27]. We define the classes CS1 =
{(a, b) : a = 0, 1 and b ∈ N ∪ {0}} and CSi = {(a, b) : a =
i, b ∈ N∪{0}} for i ≥ 2, as shown in Fig. 9. Then each CSi is
a communicating class under the policy θ̃. The states in CS1

are positive-recurrent, and each CSi for i ≥ 2 is a transient
class (see [27]).

For i ≥ 2, let Ci,j be the expected cost of the first passage
from state (i, j) (in class CSi) to a state in class CSi−1.
Moreover, we denote the expected cost of a first passage from
state (i, j) to (k, l) by C(i,j),(k,l). Let T0 = min{t ≥ 1 :

(Q
(1)
t , Q

(2)
t ) = (0, 0)} and for i ≥ 1, Ti = min{t ≥ 1 :

Q
(1)
t = i}. Then we can express the expected cost of the first

passage from state (i, j) to (0, 0) as follows.

C(i,j),(0,0) = Ci,j +

i−2∑
k=1

C
i−k,Q(2)

Ti−k

+ C
(1,Q

(2)
T1

),(0,0)
.

Note that state (i, j) has the probability of p(1)0 to escape to
class CSi−1 and p(1)1 to remain in class CSi. By considering
all the possible paths, we compute Ci,j as follows.

Ci,j =E

[ ∞∑
k=0

(p
(1)
1 )kp

(1)
0

k∑
t=0

C((i, Q
(2)
t ), 1)|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]

=p
(1)
0 E

[ ∞∑
t=0

C((i, Q
(2)
t ), 1)

∞∑
k=t

(p
(1)
1 )k|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]

=E

[ ∞∑
t=0

(p
(1)
1 )tC((i, Q

(2)
t ), 1)|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]
,
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where C((i, Q
(2)
t ), 1) = CT + CH([i − 1]+ + [Q

(2)
t − 1]+).

Following the similar argument to the proof of Proposition 2,
we conclude that Ci,j <∞. Moreover, Proposition 4 in [22]
implies that C(1,j),(0,0) < ∞ for any j, where the intuition
is that the expected traveling time from state (1, j) to (0, 0)
is finite due to the positive recurrence of CS1. Therefore, we
conclude that C(i,j),(0,0) <∞.

Let θ̂, be a policy that always transmits until time slot T0
after which the α-optimal policy is employed. Then, Vα(i, j)
can be bounded by

Vα(i, j) ≤ Eθ̂

[
T0−1∑
t=0

αtC(Qt, at)|Q0 = (i, j)

]
+

Eθ̂

[ ∞∑
t=T0

αtC(Qt, at)|QT0 = (0, 0)

]
≤ C(i,j),(0,0) + Vα(0, 0).

Then the condition (iii) of Lemma 27 is satisfied by
choosing Mi,j = C(i,j),(0,0). In particular, it holds
that vα(i, j) = Vα(i, j) − Vα(0, 0) ≤ Mi,j and
Mi,j < ∞. Moreover,

∑∞
k=0

∑∞
l=0 P1

(
(i, j), (k, l)

)
Mk,l =∑∞

k=0

∑∞
l=0 P1

(
(i, j), (k, l)

)
C(k,l),(0,0) ≤ C(i,j),(0,0) <∞.

Case (iii): p(i)0 + p
(i)
1 = 1 for i = 1, 2, i.e., Bernoulli

arrivals to both queues. Note that in this case θ̃ also results
in a reducible Markov chain. The proof is similar to case (ii);
we can define Mi,j = C(i,j),(0,0), and show that C(i,j),(0,0) is
finite for this case.

APPENDIX B
PROOF TO LEMMA 12

Proof: We define ∆Vα,n(i, j) = Vα,n(i, j, 1) −
Vα,n(i, j, 0). We claim that ∆Vα,n(i, j) is non-increasing, i.e.,
∆Vα,n(i, j) is a non-increasing function w.r.t. i while j is
fixed, and vice versa (we will focus on the former part). Notice
that

∆Vα,n(i, j) = CH([i− 1]+ + (j − 1)+) + CT +

αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]−
CH(i+ j)− αE[Vα,n(i+A1, j +A2)].

To be precise, when i ≥ 1,

∆Vα,n(i, j) =CT − 2CH + αE[Vα,n(i− 1 +A1, j − 1 +A2)−
Vα,n(i+A1, j +A2)] for j ≥ 1; (8)

∆Vα,n(i, j) =CT − CH + αE[Vα,n(i− 1 +A1,A2)−
Vα,n(i+A1,A2)] for j = 0. (9)

Because of the subconvexity of Vα,n(i, j) in Eq. (8), when
i ≥ 1 and j ≥ 1, ∆Vα,n(i, j) does not increase as i increases.
The same is for i ≥ 1 and j = 0 in Eq. (9) due to the convexity
of Vα,n(i, j).

We proceed to establish the boundary conditions. When j ≥
1,

∆Vα,n(1, j) = CT − 2CH + αE[Vα,n(A1, j − 1 +A2)−
Vα,n(1 +A1, j +A2)];

∆Vα,n(0, j) = CT − CH + αE[Vα,n(A1, j − 1 +A2)−
Vα,n(A1, j +A2)].

Note that E[Vα,n(1 +A1, j+A2)] ≥ E[Vα,n(A1, j+A2)] ac-
cording to non-decreasing Vα,n(i, j) and then ∆Vα,n(1, j) ≤

∆Vα,n(0, j) when j ≥ 1. Finally, when j = 0 we have

∆Vα,n(1, 0) = CT − CH + αE[Vα,n(A1,A2)−
Vα,n(1 +A1,A2)];

∆Vα,n(0, 0) = CT .

Here, ∆Vα,n(1, 0) ≤ ∆Vα,n(0, 0) since E[Vα,n(A1,A2) −
Vα,n(1 + A1,A2)] ≤ 0 as Vα,n(i, j) is non-decreasing.
Consequently, ∆Vα,n(i, j) is a non-increasing function w.r.t.
i while j is fixed.

APPENDIX C
PROOF TO LEMMA 14

Proof: We intend to show that Vα,n+1(i + 1, j + 1) −
Vα,n+1(i + 1, j) ≤ Vα,n+1(i, j + 1) − Vα,n+1(i, j) for all
i, j ∈ N ∪ {0}. According to Corollary 13, only 6 cases of
(a∗i,j , a

∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) are considered, where a∗i,j =

min{a′ ∈ arg mina∈{0,1} Vα,n(i, j, a)}.
Case (i): if (a∗i,j , a

∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (1, 1, 1, 1), we

claim that

E[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤ E[Vα,n([i− 1]+ +A1, j +A2)−
Vα,n([i− 1]+ +A1, [j − 1]+ +A2)].

When i, j 6= 0, it is true according to submodularity of
Vα,n(i, j). Otherwise, both sides of the inequality are 0.

Case (ii): if (a∗i,j , a
∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 0), we

claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤E[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].

This is obvious from the submodularity of Vα,n(i, j).
Case (iii): if (a∗i,j , a

∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 1),

we claim that

CT − CH + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+ 1 +A1, j +A2)]

≤CH + αE[Vα,n(i+A1, j + 1 +A2)−
Vα,n(i+A1, j +A2)].

From the submodularity of Vα,n(i, j), it is obtained that

Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i, j)− Vα,n(i, j + 1)

≤Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i+ 1, j)−
Vα,n(i+ 1, j + 1)

=Vα,n(i, j)− Vα,n(i+ 1, j + 1).

Since a∗i+1,j+1 = 1, we have ∆Vα,n(i+ 1, j + 1) ≤ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+ 1 +A1, j + 1 +A2)] ≤ 0.

The claim follows from the following equation:

CT − 2CH + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+ 1 +A1, j +A2)+

Vn(i+A1, j +A2)−
Vα,n(i+A1, j + 1 +A2)]

≤∆Vα,n(i+ 1, j + 1) ≤ 0.

Case (iv): if (a∗i,j , a
∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 1, 1),
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we claim that

−CH + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+ 1 +A1, j +A2)]

≤ CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)−
Vα,n(i+A1, j +A2)]

When i 6= 0, it is satisfied because Vα,n(i, j) is convex.
Otherwise, it is true since Vα,n(i, j) is non-decreasing.

Case (v): if (a∗i,j , a
∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 0, 1), we

claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+A1, [j − 1]+ +A2)]

≤CH + αE[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].

When j 6= 0, it holds since Vα,n(i, j) is convex. It is true for
other cases because of the non-decreasing Vα,n(i, j).

Case (vi): if (a∗i,j , a
∗
i+1,j , a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 1, 1),

we claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+A1, [j − 1]+ +A2)]

≤CT + CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)−
Vα,n(i+A1, j +A2)].

Based on the submodularity of Vα,n(i, j), we have

Vα,n([i− 1]+, j)− Vα,n(i, j) + Vα,n(i, [j − 1]+)− Vα,n(i, j)

≥Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, [j − 1]+)+

Vα,n(i, [j − 1]+)− Vα,n(i, j)

=Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, j).

It is noted that a∗i,j = 0 and hence ∆Vα,n(i, j) ≥ 0, i.e.,

CT + CH([i− 1]+ + [j − 1]+ − i− j)+
αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A1)−
Vα,n(i+A1, j +A1)] ≥ 0.

Therefore, it can be concluded that

CT + CH([i− 1]+ + [j − 1]+ − i− j)+
αE[Vα,n([i− 1]+ +A1, j +A2)−

Vα,n(i+A1, j +A2) + Vα,n(i+A1, [j − 1]+ +A2)−
Vα,n(i+A1, j +A2)]

≥∆Vα,n(i, j) ≥ 0.

APPENDIX D
PROOF TO LEMMA 15

Proof: We want to show that Vα,n+1(i + 1, j +
1) − Vα,n+1(i, j) ≤ Vα,n+1(i + 2, j + 1) − Vα,n+1(i +
1, j) for all i and j. There will be 5 cases of
(a∗i,j , a

∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) that need to be considered.

Case (i): if (a∗i,j , a
∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) = (1, 1, 1, 1),

we claim that

CH(i− [i− 1]+) + αE[Vα,n(i+A1, j +A2)−
Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]

≤CH + αE[Vα,n(i+ 1 +A1, j +A2)−
Vα,n(i+A1, [j − 1]+ +A2)].

When i, j 6= 0, it is true according to the subconvexity of
Vα,n(i, j). The argument is satisfied for i = 0, j 6= 0 due
to the the non-decreasing Vα,n(i, j), and for the case i 6=
0, j = 0 due to the convexity of Vα,n(i, j). Otherwise, it holds
according to the non-decreasing property.

Case (ii): if (a∗i,j , a
∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 0),

we claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+A1, j +A2)]

≤E[Vα,n(i+ 2 +A1, j + 1 +A2)−
Vα,n(i+ 1 +A1, j +A2)].

The above results from the subconvexity of Vα,n(i, j).
Case (iii): if (a∗i,j , a

∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 1),

we claim that

2CH + αE[Vα,n(i+ 1 +A1, j + 1 +A2)−
Vα,n(i+A1, j +A2)] ≤ CT .

Since a∗i+1,j+1 = 0, we have ∆Vα,n(i+ 1, j + 1) ≥ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)−
Vα,n(i+ 1 +A1, j + 1 +A2)] ≥ 0.

Hence the claim is verified.
Case (iv): if (a∗i,j , a

∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 1, 1),

it is trivial since the both Vα,n+1(i+ 1, j + 1)− Vα,n+1(i, j)
and Vα,n+1(i+ 2, j + 1)− Vα,n+1(i+ 1, j) are zeros.

Case (v): if (a∗i,j , a
∗
i+1,j , a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 1, 1, 1),

we claim that

CT ≤ CH(1 + j − [j − 1]+) +

αE[Vα,n(i+ 1 +A1, j +A2)−
Vα,n(i+A1, [j − 1]+ +A2)].

Notice that a∗i+1,j = 1, so ∆Vα,n(i+ 1, j) ≤ 0, i.e.,

CT − CH(1 + j − [j − 1]+) +

αE[Vα,n(i+A1, [j − 1]+ +A2)−
Vα,n(i+ 1 +A1, j +A2)] ≤ 0.
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