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Abstract

Distributed Multi-Agent Systems (DMAS) such as supply
chains functioning in highly dynamic environments need to
achieve maximum overall utility during operation. The util-
ity from maintaining performance is an important compo-
nent of their survivability. This utility is often met by identi-
fying trade-offs between quality of service and performance.
To adaptively choose the operational settings for better util-
ity, we propose an autonomous and scalable queueing the-
ory based methodology to control the performance of a hi-
erarchical network of distributed agents. By formulating
the MAS as an open queueing network with multiple classes
of traffic we evaluate the performance and subsequently the
utility, from which we identify the control alternative for a
localized, multi-tier zone. When the problem scales, an-
other larger queueing network could be composed using
zones as building-blocks. This method advocates the sys-
tematic specification of the DMAS’s attributes to aid real-
time translation of the DMAS into a queueing network. We
prototype our framework in Cougaar and verify our results.

1. Introduction

Distributed multi-agent systems (DMAS), through adap-
tivity, have enormous potential to act as the “brains” be-
hind numerous emerging applications such as computa-

tional grids, e-commerce hubs, supply chains and sensor
networks [13]. The fundamental hallmark of all these appli-
cations is dynamic and stressful environmental conditions,
of one type or the other, in which the MAS as whole must
survive albeit it suffers temporary or permanent damage.
While the survival notion necessitates adaptivity to diverse
conditions along the dimensions of performance, security
and robustness, delivering the correct proportion of these
quantities can be quite a challenge. From a performance
standpoint, a survivable system can deliver excellent Qual-
ity of Service (QoS) even when stressed. A DMAS could be
considered survivable if it can maintain at leastx% of sys-
tem capabilities andy% of system performance in the face
of z% of infrastructure loss and wartime loads (x, y, z are
user-defined) [7].

We address a piece of the survivability problem by build-
ing an autonomous performance control framework for the
DMAS. It is desirable that the adaptation framework be
genericandscalableespecially when building large-scale
DMAS such as UltraLog [2]. For this, one can utilize a
methodology similar to Jung and Tambe [19], composing
the bigger society of smaller building blocks (i.e. agent
communities). Although Jung and Tambe [19] success-
fully employ strategies for co-operativeness and distributed
POMDP to analyze performance, an increase in the number
of variables in each agent can quickly render POMDP inef-
fective even in reasonable sized agent communities due to
the state-space explosion problem. In [27], Rana and Stout
identify data-flows in the agent network and model scala-
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Figure 1. Operational Layers forming the MAS

bility with Petri nets, but their focus is on identifying syn-
chronization points, deadlocks and dependency constraints
with coarse support for performance metrics relating to de-
lays and processing times for the flows. Tesauro et al. [34]
propose a real-time MAS-based approach for data centers
that is self-optimizing based on application-specific utility.
While [19, 27] motivate the need to estimate performance of
large DMAS using a building block approach, [34] justifies
the need to use domain specific utility whose basis should
be the network’s service-level attributes such as delays, uti-
lization and response times.

We believe that by using queueing theory we can analyze
data-flows within the agent community with greater granu-
larity in terms of processing delays and network latencies
and also capitalize on using a building block approach by
restricting the model to the community. Queueing theory
has been widely used in networks and operating systems
[5]. However, the authors have not seen the application
of queueing to MAS modeling and analysis. Since, agents
lend themselves to being conveniently represented as a net-
work of queues, we concentrate on engineering a queueing
theory based adaptation (control) framework to enhance the
application-level performance.

Inherently, the DMAS can be visualized as a multi-
layered system as is depicted in Figure 1 . The top-most
layer is where the application resides, usually conforming
to some organization such as mesh, tree etc. The infrastruc-
ture layer not only abstracts away many of the complexi-
ties of the underlying resources (such as CPU, bandwidth),
but more importantly provides services (such as Message
Transport) and aiding agent-agent services (such as nam-
ing, directory etc.). The bottom most layer is where the
actual computational resources, memory and bandwidth re-
side. Most studies in the literature do not make this dis-

tinction and as such control is not executed in a layered
fashion. Some studies such as [35, 17], consider control-
ling attributes in the physical or infrastructural layers so
that some properties (eg. robustness) could result and/or
the facilities provided by these layers are taken advantage
of. Often, this requires rewiring the physical layer, avail-
ability of a infrastructure level service or the ability of the
application of share information with underlying layers in
a timely fashion for control purposes. In this initial work,
we consider control only due to application-level trade-offs
such as quality of service versus performance and assume
that infrastructure level services (such as load-balancing,
priority scheduling) or physical level capabilities (such as
rewiring) are not possible. While we intend to extend the
approach to multi-layered control, it must be noted that it
is not always possible for the application (or the application
manager) to have access to all the underlying layers due
to security reasons. In autonomic control of data centers,
the application manager may have complete authority over
parameters in the physical layer (servers, buffers, network),
the infrastructure (middle-ware) and the applications. How-
ever, in DMAS scenarios, especially when dealing with mo-
bile agents (as an application), trust between the layers is
often partial forcing them to negotiate parameters through
authorized channels. Hence, each layer must be capable of
adapting with minimum cross-layer dependencies.

Our contribution in this work is to combine queueing
analysis and application-level control to engineer a generic
framework that is capable of self-optimizing its domain-
specific utility. Secondly, we provide a methodology for
engineering a self-optimizing DMAS to assure application-
level survivability. While we see utility improvements by
by adopting application-level adaptivity, we understand that
further improvement may be gained by utilizing the adap-
tive capabilities of the underlying layers.

Before we consider the details of our framework, we
classify the performance control approaches in literature in
Section 2. We present the details for our Cougaar based
test-bed system in Section 3. The architectural details of
our framework is provided in Section 4. We provide an em-
pirical evaluation in Section 5 and finally conclude with dis-
cussions and future work in Section 6.

2. Background and Motivation

2.1 Approaches in Literature

Because of the diversity of literature on control frame-
works and performance evaluation, we examined a repre-
sentative subset primarily on the basis of control objec-
tive, (component) interdependence and autonomy, gener-
ality, composability, real-time capability (off-line/on-line
control) and layering in control architecture.



In someAI based approachessuch as [32, 10], behav-
ioral or rule based controllers are employed to make the
system exhibit particular behavior based upon logical rea-
soning or learning. While performance is not the objec-
tive, layered learning is an interesting capability that may
be helpful in a large scale MAS. Learning may be from a
statistical sense as well where the parameters of a trans-
fer function are learnt from empirical data to subsequently
enforce feedback control [8]. Another architectural frame-
work called MONAD [37], utilizes a hierarchical and dis-
tributed behavior-based control module, with immense flex-
ibility through scripting for role and resource allocation,
and co-ordination. While many these approaches favor
the “sense-plan-act” or “sense and respond” paradigm and
some partially support flexibility through scripting, some
important unanswered questions are what happens when
system size changes, can all axioms and behaviors be learnt
a-priori and what is the performance impact of size (i.e.
scalability)?

Control theoretic approachesin software performance
optimization are becoming important [22, 29], with soft-
ware becoming increasingly more complex, multi-layered
and having real-time requirements. However, because of
the dynamic system boundaries, size, varying measures of
performance and non-linearity in DMAS it is very com-
plex to design a strict control theoretic control process [21].
Some approaches such as [21, 34] take the heuristic path,
with occasional analogs to control theory, with an empha-
sis on application or domain-specific utility. Kokar et al.
[22] refer to this utility asbenefit functionand elaborate on
various analogs between software systems and traditional
control systems. From the perspective of autonomic con-
trol of computer systems, Bennani and Menasce [4] study
the robustness of self-management techniques for servers
under highly variable workloads. Although queueing the-
ory has been used in this work, any notion of compo-
nents being distributed or agent-based seems to be absent.
Furthermore, exponential smoothing or regression based
load-forecasting may not be sufficient to address situations
caused by wartime dynamics, catastrophic failure and dis-
tributed computing. Nevertheless, in our approach we have
a notion of controlling a distributed application’s utility us-
ing queueing theory.

Numerousmarket-based control mechanismsare avail-
able in literature such as [24, 9, 12, 6]. In market-based
control systems, agents emulate buyers and sellers in a
market acting only with locally available information yet
helping us realize global behaviour for the community of
agents. While these methods are very effective and offer
desirable properties such as decentralization, autonomy and
control hierarchy, they have been used for resource alloca-
tion [24, 9] and resource control [6]. The Challenger [9]
system seeks to minimizemean flow time (job completion

time - job origination time), the task is allocated to an agent
providing least processing time. Load balancing is another
application as applied by Ferguson et al. [12]. Resource al-
location and load-balancing can be thought of as infrastruc-
ture level services, that agent frameworks such as Cougaar
[1] provide and hence in our work we focus on application-
level performance and the associated utility to the DMAS.

Using finite state machines, hybrid automata and their
variants have been the foci of many research paths in agent
control as in [11, 23]. The idea here is to utilize the states
of the multi-agent system to represent, validate, evaluate,
and choose plans that lead the system towards the goal. Of-
ten, the drawback here is that when the number of agents
increase, the state-space approaches tend to become in-
tractable.

Heuristicshave widely been used in controlling multi-
agent systems primarily in the following sense: searching
and evaluating options based on domain knowledge and
picking a course of action (maybe a compound action com-
posed of a schedule of individual actions) eventually. The
main idea in recent heuristics based control as exemplified
by [36, 26, 31] is that schedules of actions are chosen based
upon requirements such as costs, feasibilities for real-time
contexts, complexity, quality etc. Opportunistic planning is
an interesting idea as mentioned in Soto et al. [31] refers
to the best-effort planning (maximum quality) considering
available resources. These meta-heuristics offer very ef-
fective, special-purpose solutions to control agent behavior,
however to be more flexible, we separate the performance
evaluation and the domain-specific application utility com-
putation.

Given that we have a model for performance estimation
(whose parameters and state-space are known), dynamic
programming (DP) and its adaptive version - reinforcement
learning (RL), and model predictive control (MPC) have
been used to find the control policy [3, 33, 20, 28, 25].
Since the complexity of finding the optimal policy grows
exponentially with the state space [3] and convergence has
to be ensured in RL [33, 20], we take an MPC-like approach
in our work for finding quick solutions in real-time. We dis-
cuss this further in Section 4.

2.2 Related Work

In large scale MAS applications, performance estima-
tion and modeling itself can be a formidable task as illus-
trated by [16] in the UltraLog [2] context. UltraLog [2],
built on Cougaar [1], uses for heuristic control a host of
architectural features such as operating modes, conditions,
and plays and play-books as described in [21]. Helsinger
et al. [15] incorporate the aforementioned features into
their closed-loop heuristic framework that balances the dif-
ferent dimensions of system survivability through targeted



defense mechanisms, trade-offs and layered control actions.
The importance of high-level, system specifications (inter-
changeably calledTechSpecs, specification database, com-
ponent database) has been emphasized in many places such
as [18, 21, 14]. These specifications contain component-
wise, static input/output behavior, operating requirements
and control actions of agents along with domain mea-
sures of performance and computation methodologies [14].
Also, queueing network based methodologies for offline
and design-time performance evaluation have been applied
and validated in [14, 30]. Building on these ideas, we build
a real-time framework with queueing based performance
prediction capabilities.

2.3 Problem Statement

Being the top-most layer as an application, the surviv-
ability of a DMAS depends on its ability to leverage its
knowledge of the domain, the system’s overall utility and
available control-knobs. The utility of the application is the
combined benefit along several conflicting (eg. complete-
ness and timeliness [7, 2]) and/or independent (eg. confi-
dentiality and correctness [7, 2]) dimensions, which the ap-
plication tries to maximize in a best-effort sense through
trade-offs. Understandably, in a distributed multi-agent
setting, mechanisms to measure, monitor and control this
multi-criteria utility function become hard and inefficient,
especially under conditions of scale-up. Given that the ap-
plication does not change its high-level goals, task-structure
or functionality in real-time, it is beneficial to have a frame-
work that assists in the choice of operational modes (orop-
modes) that maximize the utility from performance. Hence,
the research objective of this work is to design and de-
velop a generic, real-time, self-controlling framework for
DMAS, that utilizes a queueing network model for perfor-
mance evaluation and a learned utility model to select an
appropriate control alternative.

2.4 Solution Methodology

This research concentrates on adjusting the application-
level parameters oropmodeswithin the distributed agents to
make an autonomous choice of operational parameters for
agents in a reasonable-sized domain (called an agent com-
munity). The choice ofopmodesis based on the perceived
application-level utility of the combined system (i.e. the
whole community) that current environmental conditions
allow. We assume that the application’s utility depends on
the choice ofopmodesat the agents constituting the commu-
nity because theopmodesdirectly affect the performance.
A queueing network model is utilized to predict the impact
of DMAS control settings and environmental conditions on
steady-state performance (in terms of end-to-end delays in
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(b) Agent society formed by com-
posing communities

Figure 2. MAS Community and Society

flows), which in turn is used to estimate the application-
level utility. After evaluating and ranking several alterna-
tives from among the feasible set of operational settings on
the basis of utility, the best choice is picked.

3. Overview of Application (CPE) Scenario

The Continuous Planning and Execution(CPE) Soci-
ety is a command and control (C2) MAS built onCougaar
(DARPA Agent Framework [1]) that serves as the test-bed
for performance control. Designed as a building block for
larger scale MAS, the primary CPE prototype consists of
three tiers (Brigade, Battalion, Company) as shown in Fig-
ure 2a. While the discussion is mainly with respect to the
structure of CPE, the system can be grown by combining
many CPE communities to form large agent societies as
shown in Figure 2b.

CPE embodies a complete military logistics scenario
with agents emulating roles such as suppliers, consumers
and controllers all functioning in a dynamic and hostile (de-
structive) external environment. Embedded in the hierar-
chical structure of CPE are both command and control, and
superior-subordinate relationships. The subordinates com-
pile sensorupdatesand furnish them to superiors. This
enables the superiors to perform the designated function
of creatingplans (for maneuvering and supply) as well as
control directives for downstream subordinates. Upon re-
ceipt of plans, the subordinates execute them. The sup-
ply agents replenish consumed resources periodically. This
high level system definition is to be executed continuously
by the application with maximum achievable performance
in the presence of stresses that include temporary and catas-
trophic failure. Stresses associated with wartime situations
cause the resource allocation (CPU, memory, bandwidth)
and offered load (due to increased planning requirements)
to fluctuate immensely.



Figure 3. Traffic flow within CPE

As part of the application-level adaptivity features, a set
of opmodesare built into the system.Opmodesallow indi-
vidual tasks (such asplans, updates, control)to be executed
at differentqualitiesor to be processed at different rates. We
assume thatTechSpecsfor the CPE application (similar to
[14]) are available to be utilized by the control framework.

Although, functionally CPE and UltraLog are unique,
the same flavor of activities are reflected in both. Both of
them share the same Cougaar infrastructure; execute plan-
ning in a dynamic, distributed settings with similar QoS re-
quirements; and are both one application with physically
distributed components interconnected by task flows (as
shown in Figure 3 in the case of CPE), wherein the indi-
vidual utilities of the components contribute to the global
survivability.

4. Architecture of the Performance Control
Framework

The distributed performance control framework that
accomplishes application-level survivability while operat-
ing amidst infrastructure/physical layer and environmental
stresses is represented in Figure 4. This representation con-
sists of activities, modules, knowledge repositories and in-
formation flow through a distributed collection of agents.
The features for adaptivity are solely at the application level
without considering infrastructure or physical level adaptiv-
ity such as dynamically allocating processor share or adjust-
ing the buffer sizes.
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Figure 4. Architecture Overview

Architecture Overview

When the application is stressed by an amountS by the
underlying layers (due to under-allocation of resources)
and the environment (due to increased workloads during
wartime conditions), theDMAS Controllerhas to exam-
ine all its performance-related variables from setX and the
current overall performanceP in order to adapt. The vari-
ables that need to be maintained are specified in theTech-
Specsand may include delays, time-stamps, utilizations and
their statistics. They are collected in a distribution fashion
through the measurement pointsMP . The DMAS Con-
troller knows the set of flowsF that traverse the network
and the set of packet typesT from the TechSpecs. With
(F, T, X, C), whereC is a suggestion from theDMAS
Controller, theModel Buildercan select a suitable queue-
ing model templateQ. The Control Set Evaluatorknows
the current opmode setO as well as the set of possible op-
modes,OS from TechSpecs. To evaluate the performance
due to a candidate opmode setO

′
, the Control Set Eval-

uator uses theQueueing Modelwith a scaled set of op-
erating conditionsX

′
. Once the performanceP

′
is esti-

mated by theQueueing Modelit can be cached in the per-
formance databasePDB and then sent to theUtility Cal-
culator. TheUtility Calculator computes the domain utility
due to(O

′
, P

′
) and caches it in the utility database,UDB.

Subsequently, the optimal operating modeO∗ is identified
and sent to theDMAS Controller. The functional units of
the architecture are distributed but for each community that
forms part of a MAS society,O∗ will be calculated by a



single agent. We now examine the functionality and role
offered by each component of the framework in greater de-
tail.

4.1 Self-Monitoring Capability

Any system that wants to control itself should possess
a clear specification of the scope of the variables it has to
monitor. TheTechSpecsis a distributed structure that sup-
ports this purpose by housing meta-data about all variables,
X, that have to be monitored in different portions of the
community. The data/statistics collected in a distributed
way, is then aggregated to assist in control alternatives by
the top-level controller that each community will possess.

The attributes that need to be tracked are formulated
in the form ofmeasurement points(MP ). The measure-
ment points are “soft” storage containers residing inside
the agents and contain information on what, where and
how frequently they should be measured. Each agent can
look up its ownTechSpecsand from time-to-time forward
a measurement to its superior. The superior can analyse
this information (eg. calculate statistics such as delay,
delay-jitter) and/or add to this information and forward it
again. We have measurement points for time-periods, time-
stamps, operating-modes, control and generic vector-based
measurements. These measurement points can be chained
for tracking information for a flow such that information is
tagged-on at every point the flow traverses. For the sake of
reliability, the information that is contained in these agents
is replicated at several points, so that in the absence of pack-
ets reaching on time or not reaching at all, previously stored
packets and their corresponding information can be utilized
for control purposes.

4.2 Self-Modeling Capability

One of the key features of this framework is that it has
the capability to choose a type of model for representing it-
self for the purpose of performance evaluation. The system
is equipped with several queueing model templates that it
can utilize to analyze the system configuration with. The
type of model that is utilized at any given moment is based
on accuracy, computation time and history of effectiveness.
For example, a simulation based queueing model may be
very accurate but cannot complete evaluating enough alter-
natives in limited time, in which case an analytical model
(such as BCMP, QNA [38]) is preferred.

The inputs to the model builder are the flows that traverse
the network (F ), the types of packets (T ) and the current
configuration of the network. If at a given time, we know
that there aren agents interconnected in a hierarchical fash-
ion then the role of this unit is to represent that information
in the required template format (Q). The current number

of agents is known to the controller by tracking the mea-
surement points. For example, if there is no response from
an agent for a sufficient period of time, then for the pur-
pose of modeling, the controller may assume the agent to
be non-existent. In this way dynamic configurations can
be handled. On the other hand,TechSpecsdo mandate
connections according to superior-subordinate relationships
thereby maintaining the flow structure at all times. Once the
modeling is complete, the MAS has to capability to analyze
its current performance using the selected type of model.
The MAS does have the flexibility, to choose another model
template for a different iteration.

4.3 Self-Evaluating Capability

The evaluation capability, the first step in control, allows
the MAS to examine its own performance under a given
set of plausible conditions. This prediction of performance
is used for the elimination of control alternatives that may
lead to instabilities. Our notion of performance evaluation
is similar to [34]. While Tesauro et al. [34] compute the
resource level utility functions (based on the application
manager’s knowledge of the system performance model)
that can be combined to obtain a globally optimal alloca-
tion of resources, we predict the performance of the MAS
as a function of its operating modes in real-time (within
Queueing Model) and then use it to calculate its global util-
ity (some more differences are pointed out in Section 4.4).
By introducing a level of indirection, we may get some de-
sirable properties (discussed in Section 6) because we sep-
arate an application’s domain-specific utility computation
from performance prediction (or analysis). This theoreti-
cally enables us to predict the performance ofany appli-
cation whoseTechSpecsare clearly defined and then com-
pute the application-specific utility. In both cases, control
alternatives are picked based on best-utility. We discuss the
notion of control alternatives in Section 4.4. Also, our per-
formance metrics (and hence utility) are based on service
level attributes such as end-to-end delay and latency, which
is a desirable attribute of autonomic systems [34].

Whenplan, updateandcontrol tasks (as mentioned in
Section 3) flow in this heterogeneous network of agents
in predefined routes (calledflows), the processing and wait
times of tasks at various points in the network are not alike.
This is because the configuration (number of agents allo-
cated on a node), resource availability (load due to other
contending software) and environmental conditions at each
agent is different. In addition, the tasks themselves can be
of varying qualities or fidelities that affects the time taken
to process that task. Under these conditions, performance is
estimated on the basis of the end-to-end delay involved in a
“sense-plan-respond” cycle.

The primary performance prediction tool that we use are



Table 1. Notation
Symbol Description

N Total # of nodes in the community
λij Average arrival rate of classj at nodei
1/µijk Average processing time of classj at

nodei at qualityk
M total number of classes
Ti Routing probability matrix for classi
Wijk Steady state waiting time for classj at

nodei at qualityk
Qij Set of qualities at which a classj task

can be processed at nodei

called Queueing Network Models (QNM) [5]. The QNM
is the representation of the agent community in the queue-
ing domain. As the first step of performance estimation, the
agent community needs to be translated into a queueing net-
work model. Table 1 provides the notations used is this sec-
tion. Inputs and outputs at a node are regarded as tasks. The
rate at which tasks of classj are received at nodei is cap-
tured by the arrival rate (λij). Actions by agents consume
time, so they get abstracted as processing rates(µij). Fur-
ther, each task can be processed at a qualityk ∈ Qij , that
causes the processing rates to be represented asµijk. Statis-
tics of processing times are maintained at each agent inPDB
to arrive at a linear regression model between qualityk and
µijk. Flows get associated with classes of traffic denoted
by the indexj. If a connection exists between two nodes,
this is converted to a transition probabilitypij , wherei is
the source andj is the target node. Typically, we consider
flows originating from the environment, getting processed
and exiting the network making the agent network an open
queueing network [5]. Since we may typically have mul-
tiple flows through a single node, we consider multi-class
queueing networks where the flows are associated with a
class. Performance metrics such as delays for the “sense-
plan-respond” cycle is captured in terms of average waiting
times,Wijk. As mentioned earlier,TechSpecsis a conve-
nient place where information such as flows andQij can be
embedded.

The choice of QNM depends on the number of classes,
arrival distribution and processing discipline as well as
a suggestionC by the DMAS controller that makes this
choice based upon history of prior effectiveness. Some an-
alytical approaches to estimate performance can be found
in [5, 38]. In the context of agent networks, Jackson and
BCMP queueing networks to estimate the performance in
[14]. By extending this work we support several templates
of queueing models (such as BCMP, Whitt’s QNA [38],
Jackson, M/G/1, a simulation) that can be utilized for per-
formance prediction.

4.4 Self-Controlling Capability

In contrast to [34], we deal with optimization of the do-
main utility of asingleMAS that is distributed, rather than
allocating resources in an optimal fashion tomultiple ap-
plications that have a good idea of their utility function
(through policies). As mentioned beforeopmodesallow
for trading-off quality of service (task quality and response
time) and performance. We are assuming there is a maxi-
mum ceilingR on the amount of resources, and the avail-
able resources fluctuate depending on stressesS = Se+Sa,
whereSe are the stresses from the environment (i.e. mul-
tiple contending applications, changes in the infrastructural
or physical layers) andSa are the application stresses (i.e.
increased tasks). TheDMAS controller receives from
the measurement points (MP ) a measurement of the ac-
tual performanceP and a vector of other statistics (relat-
ing to X). Also at the top-level the overall utility (U ) is
U(P, S) =

∑
wnxn is known wherexn is the actual util-

ity component andwn is the associated weight specified by
the user or another superior agent. We cannot changeS, but
we can adjustP to get better utility. SinceP depends on
O, which is a vector of opmodes collected from the com-
munity, we can use the QNM to findO∗ and henceP ∗ that
maximizesU(P, S) for a givenS from within the setOS.
In words, we find the vector ofopmodes(O∗) that max-
imizes domain utility at currentS and opmodesO. This
computation is performed in theUtility Calculator module
using a learned utility model based onUDB.

In addition to differences pointed out thus far, here are
some more differences between this work and [34]:

• Tesauro et al. [34] assume that the application manager
in Unity has a model of system performance, which
we do not assume. Although they allude to amodeler
module, they do not explain the details of their per-
formance model. We use a queueing network model
that is constructed in real-time to estimate the perfor-
mance for any set ofopmodesO′ by taking the current
opmodesO and scaling them appropriately based on
observed histories (X) to X ′ in theControl Set Evalu-
ator.

• Because of the interactions involved and complexity
of performance modeling [19, 27], it may be time-
consuming to utilize inferencing and learning mech-
anisms in real-time. This is why we use an analyti-
cal queueing network to get the performance estimate
quickly.

• Another difference is that in [34], they assume oper-
ating system support for being able to tune parame-
ters such as buffer sizes and operating system settings
which may not be true in many MAS-based situations
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because of mobility, security and real-time constraints.
Besides, in addition to the estimation of performance,
the queueing model may have the capability to elimi-
nate instabilities from a queueing sense, which is not
apparent in the other approach.

• But most importantly, their work reflects a two level hi-
erarchy where the resource manager mediates several
application environments to obtain maximum utility to
the data center. But our work is from the perspective
of a single, self-healing, multi-level application that is
trying to be survivable by maximizing its own utility.

Inspite of these differences, it is interesting to see that the
self-controlling capability can be achieved, with or without
explicit layering, in real-world applications.

5. Empirical Evaluation on CPE Test-bed

The aforementioned framework was implemented within
CPE which we use as a test-bed for our experimentation.
The main goal of this experimentation was to examine if
application-level adaptivity led to any utility gains in the
long run. The superior agents in CPE continuously plan
maneuvers for their subordinates which get executed by the
lower rung nodes. We subjected the entire distributed com-
munity to random stresses by simulating enemy clusters of
varying sizes and arrival rates. These stresses translated into
the need to perform the distributed “sense-plan-respond”
more frequently causing increased load and traffic in the
network of agents. The stresses were created by aworld-
agentwhose main purpose was to simulate warlike dynam-
ics within our test-bed.

The CPE prototype consists of 14 agents spread across
a physical layer of 6 CPUs. We utilized the prototype
CPE framework to run 36 experiments at two stress lev-
els (S = 0.25 andS = 0.75). There were three layers of
hierarchy as shown in Figure 2a with a three-way branch-
ing at each level and one supply node. The community’s
utility function was based on the achievement of real goals

in military engagements such as terminating or damaging
the enemy and reducing the penalty involved in consuming
resources such as fuel or sustaining damage. To keep our
queueing models simple, we assumed that the external ar-
rival was Poisson and the service times were exponentially
distributed. In order to cater to general arrival rates, the
framework contains a QNA-based and a simulation-based
model. Using this assumption a BCMP or M/G/1 queue-
ing model could be selected by the framework for real-time
performance estimation. The baseline for comparison was
thedo nothing policy(default) where we let the Cougaar in-
frastructure manage conditions of high load. Although our
framework did better than any set of opmodes as shown in
Figure 5 for the two stress modes, we show instantaneous
and cumulative utility for two opmode sets (Default A and
Default B) in particular in Figure 6. We noticed that in the
long run the framework did enhance the utility of the appli-
cation as compared to the default policy.

At both stress levels, the controlled scenario performed
better that the default as shown in Figure 6. We did observe
oscillations in the instantaneous utility and we attribute this
to the impreciseness of the prediction of stresses. Stresses
vary relatively fast in the order of seconds while the control
granularity was of the order of minutes. Since this is a mil-
itary engagement situation following no stress patterns, it is
hard to cope with in the higher stress case. In contrast to
MAS applications dealing with data centers where load can
be attributed to time-of-day and other seasonal effects, it is
not possible to get accurate load predictions for MAS appli-
cations simulating wartime loads. We think that this could
be the reason why our utility falls in the latter case. In sub-
sequent work, we intend to enhance Cougaar capability to
be supportive of application-layer by forcing it to guarantee
some end-to-end delay requirements.

6. Conclusions and Future Work

In this paper, we were able to successfully control a real-
time DMAS to achieve overall better utility in the long run,
thus making the application survivable. Utility improve-
ments were made through application-level trade-offs be-
tween quality of service and performance. We utilized a
queueing network based framework for performance analy-
sis and subsequently used a learned utility model for com-
puting the overall benefit to the DMAS (i.e. community).
While Tesauro et al. [34] employ a resource arbiter to max-
imize the combined utility of several application environ-
ments in a data center scenario, we focus on using queueing
theory to maximize the utility from performance of a sin-
gle distributed application given that is has been allocated
some resources. We think that the approaches are com-
plementary, with this study providing empirical evidence to
support the observation by Jennings and Wooldridge in [18]
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that agents can be used to optimize distributed application
environments, including themselves, through flexible high-
level (i.e. application-level) interactions.

Furthermore, this work has resulted in a general archi-
tectural lesson. We believe that any distributed applica-
tion would have flows of traffic and would require service
level attributes such as response times, utilization or de-
lays of components to be optimized. The paradigm that we
have chosen can capture such quantities and help evaluate
choices that may lead to better application utility. This con-
cept of breaking the application into flows and allowing a
real-time model-based predictor to steer the system into re-
gions of higher utility is pretty generic in nature.

We have kept the building-blocks small and the number
of common interactions (between models) minimal since
this may assist in making the framework morescalable.
DistributedTechSpecshas assisted this effort to a large ex-
tent, re-emphasizing the well-foundedseparation princi-
ple (separating knowledge/policy and mechanism) in the
computing field. While we think that the aforementioned
architectural principles have been well-utilized, we hope
to broaden the layered control approach to encompass the
infrastructural-level control into the framework. Another
avenue for improvement is to design self-protecting mech-
anisms within our framework so that the security aspect of
the framework is reinforced.
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