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Abstract—Motivated by applications in data centers, we con-
sider a scenario where multiple classes of requests arrive at a
dispatcher at time-varying rates which historically has daily or
weekly patterns. We assume that the underlying environment
is such that at all times the load from each class is very
high and a large number of servers are necessary which, for
example, is fairly common in many data centers. In addition,
each server can host one or more classes. Design, control and
performance analysis under such heterogeneous and transient
conditions is extremely difficult. To address this shortcoming we
have suggested a holistic approach that includes a combination
of sizing, assignment, and routing in an integrated fashion.
Our proposed approach decomposes a multi-dimensional and
non-stationary problem into a one-dimensional, simpler and
stationary one, and achieves time-stability by introducing an
insignificant number of dummy requests. Based on time-stability,
our suggested approach can provide performance bounds and
guarantees for time-varying and transient system. Moreover, we
can operate the data centers in an energy-efficient manner via
suggested approach.

Index Terms—Data center operations, non-homogeneous and
multi-class workloads, parallel server queues, queueing analysis,
simulation, time-stability.

I. INTRODUCTION

INTERNET applications hosted by data centers are charac-
terized by time-varying workloads with significant varia-

tions and uncertainties over multiple time scales (Menasce et
al. [1]). Under such workloads it is challenging to appropri-
ately manage resources to conserve energy consumption which
is skyrocketing (see report [2]) while providing a reasonable
level of performance and meeting service level agreement
(SLA) (Chen et al. [3]). As explained and documented in
Hamilton [4] and Koomey [5], data centers consume a phe-
nomenal amount of power similar to what an entire city would
use, albeit inefficiently; Barroso and Holzle [6] indicated that
servers operate most of the time between 10 and 50 percent
of their maximum utilization levels, and Vogels [7] reported
that many of the large analyst firms estimate that resource
utilization of 15 to 20 percent is common for operation of
data centers. In addition recent studies, Abts et al. [8], Lin et
al. [9], Feller et al. [10], Gandhi et al. [11], Lee and Zomaya
[12] and Wang et al. [13] also mentioned low utilization of
data centers and proposed approach for energy efficiency.

While there are tremendous opportunities to conserve en-
ergy consumption in data centers, due to the inherent un-
certainty and variability in the loads, developing provably
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effective methods to manage resources in data centers has
been a challenge. To address this shortcoming, a number of
techniques have been proposed and most of these studies focus
on developing algorithms to determine the right size of servers
for non-stationary workloads. In particular, Singh et al. [14]
suggested a mix-aware dynamic provisioning technique using
the k-means clustering algorithm to determine workload mix,
Gandhi et al. [15] presented an approach to correctly allocate
resources in data centers such that SLA violations and energy
consumption are minimized and Lin et al. [9] proposed a
new on-line algorithm for dynamic right sizing in data centers
motivated by optimal offline solution for energy cost. Also
Gandhi et al. [11] studied dynamic capacity management for
multi-tier data centers, Wang et al. [16] provided an analytic
framework that captures non-stationarities and stochastic vari-
ation of workloads for dynamic re-sizing in data centers and
Gallego et al. [17] introduced a unified methodology that com-
bines virtualization, speed scaling, and powering off servers to
efficiently operate data centers while incorporating the inherent
variability and uncertainty of workloads. It is worthwhile
pointing out that most of aforementioned approaches [15],
[9], [11], [16] and [17] use quasi-steady state approximations,
i.e. the metrics are piecewise constant for time periods long
enough for the system to reach steady-state.

Although the challenges for right-sizing in data centers for
non-stationary workloads have received significant attention,
the problem of achieving time-stability over time-varying
workloads has not been effectively addressed. Achieving time-
stability is essential for a non-homogeneous system because
it enables the system to provide guaranteed quality of service.
For example, one could compute the tail probability of sojourn
times and probabilistically guarantee an incoming request
for an appropriate SLA. Moreover, by stabilizing a non-
homogeneous system, it is possible to effectively design and
analyze the system and perform monitoring and control based
on time-stability. In the context of data centers, time-stability
has received little attention, although there have been some
research studies in the queueing area. Foley et al. [18] and
Barnes et al. [19] showed that the departure process from the
Mt/Gt/∞ queue can be made stationary. There is another
body of literature which provides algorithms to determine
appropriate staffing levels for call centers. Feldman et al.
[20] proposed a simulation-based iterative-staffing algorithm
for time-stable delay probability, and Liu and Whitt [21]
suggested a formula-based algorithm to stabilize abandonment
probabilities and expected delays using offered-load based ap-
proximations for a queueing model with the non-homogeneous
Poisson arrival process and customer abandonment.
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In our case, we have modeled data centers as a system
of multiple parallel single-server queues, and considered a
scenario where multiple classes of requests arrive at a dis-
patcher at time-varying rates that historically has daily or
weekly patterns. For such a scenario, we develop an approach
to simultaneously determine sizing, assignment and routing
appropriately so that the resulting system performance is
homogeneous over time and uncertainty is controlled despite
the fact that the parameters can vary extremely quickly, not
allowing the system to reach steady-state. Therefore, no matter
how fast arrival rates vary, our approach can provide time-
stable distribution of the number of requests in the system as
well as sojourn times, and this is the crucial difference between
our approach and other sizing algorithms dealing with time-
varying workloads.

Objective of our study is to address needs of practitioners,
such as providing performance guarantees while being prudent
about energy consumption. Our suggested approach provides
an analytic framework simplifying a multi-dimensional, tran-
sient and non-stationary problem by decomposing into individ-
ual simpler stationary ones based on the strategies for sizing,
assignment, and routing in an integrated fashion which has
seldom been implemented jointly. The main contribution of
our study is providing performance guarantees and bounds
which can be simply derived based on stationary analysis
for time-varying and transient system while considering en-
ergy efficiency. The remainder of the paper is organized
as follows: Section II describes the detailed scenario for
the problem and various options for decisions and control
that we would consider; Section III proposes a sequential
procedure to determine assignment, sizing, and routing for the
suggested scenario; Section IV introduces an additional insight
regarding assignment strategies; Section V describes the no-
tion of time-stability and introduces our approach to obtain
time-stability; Section VI discusses details of time-stability
including extension and limitations; Section VII illustrates the
experimental results to support our claims; and Section VIII
presents conclusions and future research directions.

II. ANALYTICAL FRAMEWORK

This section provides a detailed scenario for multi-class and
non-homogeneous requests to servers that are considered in
this paper followed by a stochastic model for the scenario.
We then briefly state the asymptotic scaling where the arrival
rates and number of servers are scaled. This section concludes
with a description of various options for decisions and control
such as assignment, sizing and routing.

A. Scenario and Problem Description

We have considered a system using a large number of
servers with each server having its own queue with an infinite
waiting area, and the servers and their queues are arranged
in a parallel fashion with dispatcher depicted in Figure 1.
Considering that today’s data centers have hundreds or thou-
sands of servers to process huge amount of traffic for cloud
computing, an architecture with multiple servers and a single
queue results in significant communication overload to update

… …
Fig. 1. System of multiple parallel single server queues

the state information of each server to dispatch requests from
queue. Therefore, multiple parallel single server queue system
where dispatcher routes incoming request to servers based on
load balancing algorithm is indeed appropriate to design data
centers. This is corroborated by recent studies, Chen et al. [22],
Gandhi et al. [23] and [24] which used multiple parallel queue
system to analyze data center operations. Note that we also
assume that the servers are identical, however we would like
to point out that the analysis can be extended to heterogeneous
servers as well.

The servers process requests that belong to multiple classes.
The requests that are part of a class are stochastically identical
with a common non-homogeneous arrival process and also the
amount of work they bring. It is assumed that a server can
host multiple classes of requests and every class of request
can be hosted on multiple servers. We have considered a
scaled system where the arrival rate for every class is so
large that several servers would need to be operational to
respond to the requests of that class alone. However, the arrival
rate for every class is time-varying both deterministically and
stochastically. The variability is frequent-enough that in the
general case one cannot expect the system to reach steady state
before arrival rates change. For such a multi-class, transient
and non-homogeneous system, our intent is to effectively
manage resources to ensure time-stability while being mindful
of energy costs. The following are issues that are considered
explicitly for time-stability:

1) Assignment: Applications corresponding to each class of
request can be assigned to servers such that each server
hosts one or more classes and each class is hosted on
multiple servers. One focus is to study the impact of host-
server assignment on performance. We assume that there
is no direct cost per se for the assignments as well as no
costs for switching assignments.

2) Sizing: Each server could be dynamically powered on
or off. Naturally more servers would be “on” during
peak periods than during lean periods. Significant energy
cost savings can be attained by powering servers off.
However, this analysis neither considers switching costs
(from on to off and vice versa) nor considers reliability
costs for on-off cycles. Note that some modern servers
allow for “sleep” settings instead of completely turning
off servers. From a mathematical standpoint, we consider
them equivalent.

3) Routing: There is a dispatcher that is responsible for
routing arriving requests to one of the queues that not
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only can serve the request but also has a server that
is powered on. A key assumption is that the dispatcher
cannot observe the real-time state of any of the servers
(however the dispatcher knows whether a server is on or
off, and what classes it hosts; as we will see in the model
subsequently, these do not vary in real time).

B. Model and Notation
For the problem described in the previous sub-section, here

we set the notation and develop a stochastic model that would
form the inputs to our analysis. We consider a system of N
parallel queues and each queue is served by a single server
that could be dynamically powered on or off. The dispatcher is
responsible for routing arriving requests to one of the queues
that not only serves the request but also has a server that is
powered “on.” An arriving request belongs to one of multiple
classes in a discrete set A denoting a set of applications. The
amount of work a class a (for all a ∈ A) request brings
is independent and identically distributed (IID) according
to general distribution Ha(·) with mean 1/θa and squared
coefficient of variation (SCOV) C2

a . Recall that the SCOV
is the ratio of the variance to the square of the mean. For
ease of exposition, as a probability distribution that can handle
SCOV values greater than, equal to as well as less than one
for analysis, we selected a Coxian-2 distribution for workload.
Essentially, a Coxian-2 distribution is either a sum of two
independent exponential distributions (with parameter θa,1 and
θa,2) with probability pa, or just exponentially distributed
(with parameter θa,1) with probability 1 − pa. We chose the
units of 1/θa to be kB (kilo-Bytes) with the understanding that
the analysis would not be affected in any way by choosing
other units.

Requests of each class arrive to the dispatcher according to
a piecewise constant non-homogeneous Poisson process. It is
assumed that the environment process that drives arrival rates
of the non-homogeneous Poisson process is cyclic. This is a
fairly reasonable assumption as arrivals tend to have daily or
weekly patterns that repeat in a cyclic fashion (Gmach et al.
[25], Lin et al. [26], Liu et al. [27] and Lin et al. [9]). Using
that assumption we modeled each cycle as divided into a set
of phases T so that in each phase ` ∈ T , the arrival rate
for every class a ∈ A remains a constant λa,` per second.
Although the intention is to convey the richness of the model
(in that the analysis would work in such a general fashion), in
practice one would typically choose something like the set of
all disjointed 5-minute intervals (or hourly intervals) in a day
(or a week) as the set of phases T .

Let φ be a target operating speed of a powered on server in
units of kB/s (kilo-Bytes per second). Therefore, a class a (for
some a ∈ A) arrival brings a random amount of workload Wa

kB and is routed to an idle server that is capable of serving
class a requests, then the service time (if all the processor
capacity is allocated to this arrival) would be Wa/φ seconds
with mean E[Wa]/φ = 1/(θaφ) and SCOV C2

a . Note that the
SCOV of service times is unaffected by the speed of service.
At this time, we assume φ remains a constant. One easy way
to accommodate heterogeneous servers is to have them all
operate at φ (since the jobs are assumed to be CPU intensive).

In addition the analysis in this paper uses an asymptotic
approach. In particular, we jointly scaled up the arrival rates
and the number of servers so that together they approach
infinity. Thus, we assume that we can write down for all a ∈ A
and ` ∈ T

λa,` = Nαa,`

where αa,` is the normalized arrival rate, and study a sequence
of systems by letting N = 1, 2, . . . , which is similar in spirit to
the scaling in Liu et al. [21]. However, this is not the traditional
fluid or diffusion limit. All we have is that at any time there is
a total of N servers (some powered on and the rest powered
off) and class a requests arrive at rate λa,` = Nαa,`, then
we scale N . The next section describes how to tackle the
aforementioned issues in a sequential manner.

III. SEQUENTIAL DECISION PROCEDURE

As described in Section II, our objective is to consider
issues regarding assignment, sizing, and routing for the sug-
gested scenario. These decisions are made at different time-
granularities. Specifically, the assignments are made more-or-
less one time, although it is assumed that at the beginning of
each phase ` ∈ T the assignments can be changed for some
servers, possibly (but not necessarily) using virtual migration.
We assume that sizing is done at the beginning of each phase
` ∈ T . In addition, there are real-time issues such as routing
which is determined at every request arrival. The decision
to be made is to determine the server to which an arriving
request would be routed with conditions that (i) the server is
powered on, and (ii) the server has been assigned the class of
application that arrives.

A. Assignment

For each phase ` ∈ T we consider two alternate extreme
assignments for analysis:
• all classes to all servers (pooled) assignment
• one class to one server (dedicated) assignment
In Section V we will show that time-stability can be

obtained by controlling non-homogeneous traffic based on
assignment strategies. In fact it is possible to achieve time-
stability by using dedicated assignment. Also we will intro-
duce an additional insight about performance comparison be-
tween dedicated assignment and pooled assignment in Section
IV.

B. Sizing

As described earlier, the objective is to provide time-
stability while being mindful of saving energy. One of the
greatest savings in energy costs results from powering servers
off (or sending them to sleep states in more modern servers).
Since the workload varies from phase to phase, we have
evaluated the number of servers to be powered “on” in each
phase, and appropriately power on or off the right number of
servers. It is also assumed that there is an ample number of
servers available, therefore running out of servers is out of the
question. In fact, that is a reasonable assumption considering
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how poorly utilized some of the servers are, as the data
centers are typically well over-provisioned. Recall that N
is the total number of servers available. Based on the two
alternate assignments described in the previous section, we
have:
• pooled assignment: All applications assigned to all

servers; let Nl be the number of servers powered “on” in
phase `, ∀ ` ∈ T

• dedicated assignment: Only one application assigned to
one server; let Na,` class a servers be powered on in
phase `, ∀ ` ∈ T and a ∈ A.

We have considered a simple strategy of using enough
servers so that the average load on servers that are powered
on remains constant over time as well as across servers (the
latter is indeed typical in load-balancing but not the former).
To determine N` and Na,`, we defined ρ as a desirable
traffic intensity (ρ is dimensionless) for any server that is
powered on during interval `. While determining the number of
servers to keep the energy consumption low, we aim to create
enough residual capacity for unforeseen surges by restricting
the utilization of each server to be ρ. In addition we control
non-homogeneous traffic in a time-homogeneous fashion by
implementing ρ into sizing algorithm defined as below. We
will show how ρ can be used to achieve time-stability in
Section V. We select the number of “on” servers as follows:
• Dedicated assignment: Only one application assigned to

one server
Na,` =

⌈
1

ρφ

λa,`
θa

⌉
(1)

• Pooled assignment: All applications assigned to all
servers

N` =

⌈
1

ρφ

∑
a∈A

λa,`
θa

⌉
(2)

for all ` ∈ T and a ∈ A. Note that under asymptotic scaling
N →∞,⌈

1

ρφ

λa,`
θa

⌉
→ λa,`

ρφθa
and hence

∑
a∈A

Na,` → N`. (3)

In such a way, the total number of servers powered on in
any phase would be identical for both pooled assignment and
dedicated assignment. By determining the size of powered-
on servers based in Equation (1), each powered-on server is
assigned a desirable traffic intensity ρ in either case. According
to the above sizing rules, if it is necessary to power on
more servers between successive phases, we randomly select
candidate servers among the powered-off servers and power
them on at the beginning of a time phase. Also, to power off
servers we randomly select the powered-on servers and power
them off at the end of a time phase. In this case if selected
server is not idle, then we set state of server as “to be off” and
do not assign any requests to those servers. We will wait until
selected servers complete service for the remaining requests
and power off when those servers become idle. Note that those
requests remaining in “to be off” servers will also have the
same sojourn time distribution since under a first-come-first-
served (FCFS) the sojourn times are not affected by arrivals
that come later.

C. Routing

In the sequential consideration, once the assignment of
classes to servers and the number of servers to be powered
“on” are made for each phase ` ∈ T , the next issue is to
determine the routing strategy for the dispatcher. We assume
that the dispatcher sends incoming requests to servers without
information of real-time states of the queues in terms of
number of jobs or amount of workload. However, we assume
that the dispatcher knows the assignment of classes to servers
as well as whether a server is powered on or off. In that light
two routing policies are considered:
• Round-robin routing: The dispatcher routes job to queues

with powered-on servers in a cyclical fashion. This is
straightforward in the pooled assignment case, while
round-robin is done within a class for dedicated assign-
ment.

• Bernoulli routing: The dispatcher routes jobs to queues
with eligible servers in a random fashion. In the pooled
assignment case, in phase ` (for any ` ∈ T ) select any
of the N` servers with probability 1/N` and route to that
server. For the dedicated case, if the arriving job belongs
to class a, then the dispatcher selects one of the Na,`
servers with equal probability.

Harchol-Balter et al. [28] showed that round-robin routing
results in better performance than Bernoulli routing. Clearly,
other policies such as join the shortest queue and join the
least workload queue would perform better, but they require
real-time state information (which is assumed inappropriate
for large-scale data centers setting). It is worthwhile noting
that the round-robin policy works better because the dispatcher
selects the queue which was the least recently selected (among
candidate queues), and that queue naturally is also the one with
the smallest expected number of jobs and smallest expected
workload. We will continue to use both round-robin and
Bernoulli policies for load balancing, although it is fairly
clear that round-robin results in better performance. One of
the reasons for continuing to use the Bernoulli policy is the
convenience in analytic models, especially to obtain insights.

IV. ADDITIONAL INSIGHT: DEDICATED IS BETTER THAN
POOLING

This section describes an additional insight regarding as-
signment strategies based on our analytical framework. In gen-
eral, because of the benefits of pooling resources mentioned
in the literature, the intuition is that performance would be
better when we assign as many applications as possible to a
server. However, based on two alternate assignments defined in
Section III-A we will show that dedicated assignment would
be better. Although we have the same number of “on” servers
for both dedicated assignment and pooled assignment in each
time period, the queue lengths (or the sojourn times) of overall
system would be higher when we use pooled assignment than
use dedicated assignment. Consider a single server that is
always on with time-homogeneous arrivals, i.e. λa,` does not
vary with ` for all a ∈ A and i.e. λa,` = λa ∀` ∈ T .
This may appear strange given that we started the article
with non-homogeneous arrivals, however subsequently we will
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show that this setting is in fact what is realized in the main
problem in Section V-B1. It is also assumed that the servers are
identical. Consider two cases for the assignments mentioned
above, dedicated assignment or pooled assignment. Recall
that in either case, each powered-on server faces the same
traffic intensity of ρ when we determine the number of servers
to be powered on according to Equation (1) for dedicated
assignment and Equation (2) for pooled assignment.

Theorem 1: If C2a is identical for all a ∈ A and Bernoulli
routing is used, then the mean sojourn time (and total number
in the system) of pooled assignment is higher than dedicated
assignment in a steady state.

Proof: An arriving class a job in steady state brings a
workload Wa and service time Sa = (Wa/φ) for any a ∈ A.
Since we assume that C2a is identical for all a ∈ A, we can
use C2 as SCOV of the amount of work for all a ∈ A. Note
that each server has the same traffic intensity ρ. Based on our
sizing strategies, we can calculate the total number of requests
in the whole system for each assignment strategy by using the
Pollaczek-Khintchine formula (P-K formula) (Gautam [29]) as
follows:
• for the dedicated assignment, the number of servers for

each application a is

Na =
1

ρ

λa
φθa

and arrival rate Λa for each server of application a is

Λa =
λa

1
ρ
λa
φθa

= ρφθa. (4)

Thus, the expected number of requests in each queue
(server) of application a in steady state is

L = ρ+
Λ2
a

2

(V ar[Sa] + (E[Sa])2)

(1− ρ)
. (5)

Then, we have the total number of requests in the whole
system for dedicated assignment case given by

Ldedicated=
∑
a∈A

1

ρ

λa
φθa

(
ρ+

Λ2
a

2

(V ar[Sa] + (E[Sa])2)

(1− ρ)

)
=
∑
a∈A

λa
φθa

+
ρ

2

(
1 + C2

)
(1− ρ)

∑
a∈A

λa
φθa

. (6)

by substituting for (4), and realizing that C2 = C2a =
V ar[Wa]

1
θ2α

.

• for the pooled assignment, the total number of servers is

N =
∑
a∈A

1

ρ

λa
φθa

.

In this case, we need to use the Pollaczek-Khintchine for-
mula for multi-class queue, thus the number of requests
in each queue (server) is

L = ρ+
1

2

Λ2E[S2]

(1− ρ)
(7)

where

Λ =

∑
a∈A λa∑

a∈A
1
ρ
λa
φθa

(8)

and

E[S2] =

∑
a∈A λaE[S2

a]∑
a∈A λa

=

∑
a∈A λa

(
V ar[Sa] + 1

φ2θ2a

)
∑
a∈A λa

.

Then, we can calculate the total number of requests in
the whole system for pooled assignment case as

Lpooled=

(
ρ+

1

2

Λ2E[S2]

(1− ρ)

)∑
a∈A

1

ρ

λa
φθa

=
∑
a∈A

λa
φθa

+
ρ

2

(
1 + C2

)
(1− ρ)

(∑
a∈A

λa
φ2θ2a∑

a∈A
λa
φθa

)∑
a∈A

λa.

(9)

by substituting for (8), and realizing that C2 = C2a =
V ar[Wa]

1
θ2α

.

Based on Equation (6) and (9), Ldedicated ≤ Lpooled if(∑
a∈A

λa
φθa

)2

≤

(∑
a∈A

λa
(φθa)2

)∑
a∈A

λa. (10)

We can represent left-hand side of Equation (10) as(∑
a∈A

λa
φθa

)2

=
∑
i∈A

∑
j∈A

λiλj
1

φθi

1

φθj
. (11)

Likewise the right-hand side of Equation (10) as(∑
a∈A

λa
(φθa)2

)∑
a∈A

λa =
∑
i∈A

∑
j∈A

λiλj
1

(φθi)2
. (12)

Now, using the fact that∑
i∈A

∑
j∈A

λiλj

(
1

φθi
− 1

φθj

)2

≥ 0

we can show Equation (10) is true as since

2
∑
i∈A

∑
j∈A

λiλj
1

φθi

1

φθj
≤ 2

∑
i∈A

∑
j∈A

λiλj
1

(φθi)2
. (13)

Finally, by using Little’s Law (Gautam [29]), the sojourn times
of dedicated assignment case is better than the pooled case.

From Theorem 1, we can conclude that the dedicated
assignment appears to be more effective than the pooled
assignment for the total number of requests as well as the
mean sojourn time.

Remark 1: Based on Theorem 1, we make the following
comments: (i) even if we assign a subset of applications to
each server (not pooling all classes), it would still be worse
than having a dedicated server for each application; (ii) we
conjecture that if the C2 were different for the applications,
the result would still remain (we will verify this conjecture
in the numerical studies in Section VII-B1); (iii) we require
the arrival rates to be homogeneous across time for each
application, and it turns out, as shown in the next section, that
this requirement would be satisfied as we will create time-
stationary queues as described in Section V.
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V. TIME-STABILITY

As we previously mentioned, the main objective is to
suggest an approach which provides performance bounds and
guarantees based on time-stability for the non-homogeneous
and transient system. In this section, we describe our notion of
time-stability and the approach to obtain time-stability based
on the suggested analytical framework.

A. Notion of Time-stability

As we described in Section II-A, we consider a system of
N parallel queues with a single dispatcher. Each queue has
a single server that may be on or off at time t. For all n ∈
{1, . . . , N}, at time t let Xn(t) be the number of jobs in queue
n and On(t) be the status of the server (with On(t) = 1
denoting ‘on’ and On(t) = 0 denoting ‘off’). Let λa(t) be
the arrival rate of class a jobs at the dispatcher at time t. We
assume that we can divide time into arbitrarily small intervals
(of appropriate time units) such that λa(t) = λa([t]), i.e. the
arrival rate stays constant in the interval [t, t+1) for all t (the
notation [t] denotes the integer part of t). Let Wa(t) be the
sojourn times experienced by a class a job that arrives into
the dispatcher at time t.

As described in Section III, we seek to obtain a policy for
deciding (i)

∑
nOn([t]), the total number of servers that would

be ‘on’ in interval [t, t+1) for all t (sizing); (ii) the allocation
scheme of applications to servers (assignment); (iii) the policy
for routing requests from despatcher to server queues (routing).
Based on this, our key objective is to ensure time-stability of
both queue lengths for powered-on servers as well as sojourn
times for a class of application. In other words, for all t ∈
[0,∞), s ∈ [0,∞), and i ∈ {0, 1, 2, . . .},

P{Xn(t) = i|On(t) = 1} = πa(i)

P{Wa(t) ≤ s} = Ψa(s)

where πa(i) and Ψa(s) are computable constants that are not
dependent on t. That is the sense of time-stability we aim
to achieve. In the following sections we will show that we
can achieve the aforementioned time-stability via (i) dedicated
assignment of applications to servers, (ii) sizing rule for
dedicated assignment in Equation (1), (iii) either Bernoulli
routing or round-robin routing, (iv) dummy requests, and (v)
adjusting the remaining work for the head-of-line job. In fact,
if we use round-robin (or Bernoulli) routing, then πa(i) is the
stationary probability that a D/G/1 (or M/G/1) queue has i
jobs in the system and Ψa(s) is the CDF of sojourn times of
an arbitrary job of the corresponding queue.

B. Approach to Obtain Time-stability

In the previous section, we introduce the notion of time-
stability considered in this study. Based on our notion of time
stability, in this section we suggest an approach to obtain
time-stability which consists of two main procedures. First
we decompose non-homogeneous, multiple, parallel single-
server queue system into individual simple time-homogeneous
queues, and then we add “dummies” to ensure the steady state
of each class a server while powering servers on and off. We
describe details of the procedure in the following subsections.

1) Non-homogeneous traffic control: As described in Sec-
tion III-C, we consider two routing strategies, round-robin and
Bernoulli, and the following theorem characterizes the arrival
process for both round-robin and Bernoulli routing based on
pooled assignment.

Theorem 2: For the pooled assignment strategy, each server
that is powered on during phase ` gets arrivals deterministi-
cally (exponentially) at rate∑

a∈A λa,`
1
ρ

∑
a∈A

λa,`
φθa

for all ` ∈ T and a ∈ A, under Round-robin (Bernoulli)
routing, as N → ∞. And the expected workload (in KB/s)
that each request brings (by conditioning on the class) is∑

a∈A

(
λa,`∑
b∈A λb,`

)
1

θa
.

Proof: The net arrival rate to the dispatcher in phase
` is

∑
a∈A λa,`. Thus the time between request arrival at

the dispatcher in phase ` is exponentially distributed with
parameter

∑
a∈A λa,`. Then, due to round-robin routing, each

server that is powered on in phase ` observes inter-arrival time
which is the sum of N` IID exponentially distributed times
with parameter

∑
a∈A λa,`. Thus, the inter-arrival times to a

powered on server is according to an Erlang distribution with
mean N`/

∑
a∈A λa,` and variance N`/

(∑
a∈A λa,`

)2
. In the

limit as N →∞, using the expression for N` in Equation (2),
the mean term converges to∑

a∈A
1
ρφ

λa,`
θa∑

a∈A λa,`

while the variance term converges to zero. Thus the time
between arrivals become deterministic in the limit as N →∞
and each server that is on during phase ` gets arrivals deter-
ministically at rate ∑

a∈A λa,`∑
a∈A

1
ρφ

λa,`
θa

.

Now, we can compute the expected workload (in KB) that
each request brings (by conditioning on the class) as∑

a∈A

(
λa,`∑
b∈A λb,`

)
1

θa

and thus by multiplying by the expected arrival rate the
expected workload arrival is ρφ KB/s. Now, if round-robin
routing is replaced with Bernoulli routing, then the only
change in the theorem would be to replace both occurrences of
the word “deterministically” with “exponentially distributed.”
This is because after a Bernoulli split, the resulting processes
are Poisson processes with identical rates as the deterministic
arrivals (however, note that we do not require the N →∞ for
this case). Otherwise, everything else remains the same.

Theorem 2 concludes that for either routing case, round-
robin or Bernoulli, pooling all applications in one server
(pooled assignment) would result in a non-homogeneous
system without time-stability because each server has time-
varying arrival rates for ` ∈ T under both routing strategies.
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However, the next theorem shows that time-stability can
possibly be obtained with dedicated assignment strategy.

Theorem 3: For the dedicated assignment strategy, each
server of application a that is powered on at any time gets
arrivals deterministically (exponentially) at rate ρφθa under
round-robin (Bernoulli) routing strategies and each arrival
brings work according to CDF Ha(·) as N →∞. Also, each
powered “on” class a server faces an expected workload ρθa
KB/s at all times.

Proof: During phase `, requests of class a arrive accord-
ing to a Poisson process with mean rate λa,`. First consider
round-robin routing. For the dedicated assignment, each server
hosting class a and is powered on in phase ` observes inter-
arrival time which is the sum of Na,` IID exponentially
distributed times with parameter λa,` since for each class a
the dispatcher performs a round-robin of the servers within
the class. Thus the inter-arrival times to a class-a powered-
on server is according to an Erlang distribution with mean
Na,`/λa,` and variance Na,`/λ2a,`. In the limit as N → ∞,
Na,` →∞ the mean term converges to 1/(ρθa) by substituting
for Na,` from Equation (1), while the variance converges to
zero. Thus, the time between arrivals becomes deterministic
in the limit as N → ∞ and each class-a server that is on
during phase ` gets arrivals deterministically at rate ρφθa.
The expected workload (in KB) that each request brings (by
conditioning on the class) to a class-a server is 1/θa, and thus
the expected workload arrival rate is ρφ KB/s. With Bernoulli
routing instead of round-robin, the resulting split processes
going into each powered-on server are Poisson process, and
each server gets arrivals exponentially at rate ρφθa.

Based on Theorem 3, when only one application is assigned
to a server (dedicated assignment), each server of application a
that is powered on at any time phase gets homogeneous arrival
process and also each arrival brings work according to CDF
Ha(·). These will form the building blocks for creating time-
stable queue length processes in powered-on servers. The next
section describes how to obtain time-stability with powering
on and off schemes.

2) Time-stability by Adding Dummy Requests: The previous
section showed that each individual server of application a gets
time-homogeneous arrival process and workload distribution
with dedicated assignment. However, our concern is whether
powering servers on would cause problems for achieving time-
stable performance. It is intuitive to think that stationarity
would be affected during times when servers are powered on
and off, i.e. between phases. In other words, homogeneous
arrival process and workload distribution are not sufficient to
achieve time-stable performance since the initial conditions
in an interval are different when powering servers on. This
is especially the case when time intervals are short and
steady-state is not reached, then the initial conditions become
significant.

To address this problem of initial conditions, we introduce
dummy requests to adjust the initial number of requests in a
queue of a newly powered-on servers. In order to ensure the
steady-state of each class a server that is powered on afresh
at the beginning of an interval, we generated dummy requests
sampled from the stationary distribution of a D/G/1 queue for

round-robin routing or an M/G/1 queue for Bernoulli routing.
For M/G/1 queue case under a FCFS (note that the formulas
have to be tweaked appropriately for other polices such as
versions of processor sharing), we can use the probability
generating function of the stationary queue length distribution
(Gautam [29]) for class a server,

πa(i) =
(1− ρ)(1− i)G̃(λa − λai)

G̃(λa − λai)− i
(14)

where λa = ρφθa and G̃(s) =
∫∞
0
e−sxdG(x), the Laplace-

Stieltjes transform (LST) of the service time distribution G(·).
Note that service time would be X/φ seconds with a random
amount of workload X kB and processing speed φ kB/s, and
we have G(y) = P [Y ≤ y] = P [Xφ ≤ y] = P [X ≤ φy] =
H(φy) where H(·) is cumulative distribution function for
workload. From Equation (14), we derive moment-generating
function of the stationary queue length distribution for class a
server defined by workload distribution H(·),

πa(i) =
(1− ρ)(1− i)H̃(θaρ− θaρi)

H̃(θaρ− θaρi)− i
(15)

where H̃(s) =
∫∞
0
e−sxdH(x), the LST of workload distri-

bution. Now, we can initially populate the number of requests
in queue by sampling from the distribution in Equation (15).
For D/G/1 queue case, we do not have an exact formula for
the stationary queue length distribution, but instead, we can
simulate a single D/G/1 queue offline and obtain the distri-
bution numerically. Note that such a simulation is extremely
inexpensive and straightforward.

In addition since the objective is to create a time-
homogeneous system, at any given time the system character-
istics must be stationary. In particular, at times when a server
is powered on, not only the number of dummy requests be
according to the stationary distribution but the amount of work
completed for the request at the head of the line (if any) must
also be stationary. Using results from renewal theory, we know
that the remaining work for the job at the head of the line is
according to its stationary excess distribution (Gautam [29]).
Stationary excess distribution Fe(t) associated with CDF F (t)
in terms of the mean τ = −F̃ ′(0) such that

Fe(t) =
1

τ

∫ t

0

[1− F (u)]du. (16)

We now illustrate the stationary excess distribution and its
computation for the Coxian-2 random variable that will be
used in Section VII. It results in the following theorem for the
stationary excess distribution of Coxian-2 distribution.

Theorem 4: The stationary excess distribution of Coxian-2
distribution is also Coxian-2 distribution albeit with different
parameters.

Idea of proof: By using the LST we can easily show that
CDF of Coxian-2 distribution can be represented as a linear
combination of two CDFs of exponential distribution. More-
over, stationary excess distribution of Coxian-2 distribution
can be defined as a linear combination of two CDFs of
exponential distribution which means that stationary excess
distribution is also Coxian-2 distribution.
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Next, we introduce dummy traffic to adjust the arrival rate
to each powered-on server under dedicated assignment. Recall
that we determined the number of class a servers powered on
in phase `, Na,` using Equation (1) as described in Section
III-B,

Na,` =

⌈
1

ρφ

λa,`
θa

⌉
to ensure that each powered-on server gets a desirable traffic
intensity ρ in any time phase for both pooled assignment
and dedicated assignment. In case N is finite, we need to
adjust λa,` by adding dummy traffic for class a so that the
net arrival rate in phase ` is Na,`ρφθa. Adding dummy traffic
can ensure a homogeneous arrival process for each class with
dedicated assignment. In this case the amount of additional
dummy traffic would be(⌈

1

ρφ

λa,`
θa

⌉
− 1

ρφ

λa,`
θa

)
ρφθa ≤ 1× ρφθa.

Note that the maximum amount of additional traffic into each
powered on class a server would be less than ρφθa/

⌈
1
ρφ

λa,`
θa

⌉
and if total number of N is large (which is fairly common in
data centers), then the amount of additional traffic would be
insignificant. We will compare actual arrivals with adjusted
arrivals in Section VII-B6). Now, based on the results from
previous sections and strategy for dummies, we can arrive at
the following theorem which shows that time-stable perfor-
mance can be achieved by the suggested approach.

Theorem 5: The number of requests in any powered on
server processing class a requests at any time in an interval
would be stationary according to the stationary distribution
of an D/G/1 or M/G/1 queue depending on round-robin
or Bernoulli routing, thereby resulting in a time-stable perfor-
mance.

Proof: We need to show that initial conditions of class
a servers, especially those powered on afresh, in an every
time interval ` are according to stationary queues with dummy
requests. Considering an arbitrary class a and an arbitrary
interval of time `. For convenience, we let the beginning of this
interval be time t = 0 and select an arbitrary class a server that
is powered on afresh at time t = 0, i.e. powered on in interval
` but powered-off in the previous interval. Clearly, by adding
“dummy” jobs as described above, the number of jobs in the
server as well as the amount workload at time t = 0 are ac-
cording to those of a stationary D/G/1 (M/G/1) queue under
round-robin (Bernoulli) routing. Also, since the arrival process
and the amount of work an arrival brings remain unchanged
throughout the time the server is on (even if it is over multiple
intervals) with dedicated assignment as described in Section
V-B1, the workload process is Markovian for Bernoulli routing
and delayed semi-Markovian for Round-robin routing, due to
stationarity and ergodicity properties which would result in
time-stable performance. Thus the number in the system or
the workload observed at any time t during the server’s on-
time sojourn would remain stationary regardless of powering
servers on and off (note that this includes time intervals beyond
`).

In Section VI-A, we will show that time-stability of the

number of requests in system could be extended to time-
stability of sojourn times in a straightforward fashion.

3) Step-by-Step Procedure: The following is a procedure
to achieve time-stability:

Step 1. Off-line Phase
Step 1.1. By using dedicated assignment, determine the
number of servers for each class a and for each time
period Na,` by using Equation (1).
Step 1.2. Obtain the queue length distribution πa(i)
for M/G/1 queue analytically or D/G/1 queue via
simulation to sample from for initial number of dummy
requests for initial condition.
Step 1.3. Add dummy traffic so that arrival rate for class
a for time ` is Na,`ρφθa.

Step 2. On-line Phase
Step 2.1. At the beginning (or end) of each time period,
compute the difference in the number of servers between
consecutive time periods based on the number of servers
computed in [Step 1.1].
Step 2.2. If Na,` < Na,`+1, then

Step 2.2.1. Select Na,`+1−Na,` servers to be powered
on randomly among the “off” servers.
Step 2.2.2. Add dummy requests to each newly pow-
ered on server by sampling the number of dummy
requests from the queue length distribution πa(i)
derived in [Step 1.3].
Step 2.2.3. Adjust the amount of remaining work of
the very first dummy request of each newly powered
on server based on the stationary excess distribution.

Step 2.3. If Na,` > Na,`+1, then
Step 2.3.1. Select Na,` − Na,`+1 servers randomly
among the “on” servers.
Step 2.3.2. If selected server is idle, then just power
off selected server.
Step 2.3.3. Otherwise, set status of server as “to be
off” and do not route incoming requests to that server,
then power off when server completes service of the
last remaining request.

C. Performance Bounds and Guarantees

As we described in the previous Section V-B2, dummies
are used to (i) adjust the initial number of requests in a
queue of newly powered-on servers and (ii) adjust the class
dependent arrival rate to each powered-on server. Although
adding dummies is crucial to obtain time-stability, it also de-
grades performance and thus practitioners may have concerns
about this issue. In this situation if the practitioners choose
not to add dummy requests, then time-stability predictions
would be an upper bound on actual performance. In other
words, the mean queue length would be time-varying without
using dummies, but strictly bounded by time-stable perfor-
mance which can be obtained by adding dummies. From both
theoretical and practical points of view, such performance
bounds are extremely useful since bounds are provable and
derived by stationary analysis of queueing model (e.g. P-K
formula) for non-homogeneous and transient system. Note
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that it is difficult to yield time-stable performance or obtain
the provable bounds on performance of time-varying system
especially when steady-state cannot be reached.

Remark 2: Time-stable and provable performance bounds
cannot be obtained by simply assuming stationarity without
adding dummies. To explain this, let S1 be an original system
which determines Na,` by using (1), but does not add both
types of dummies. In fact in S1, arrival rates of class a requests
into each powered-on server j, λa,j,` which can be defined as
λa,j,` =

λa,`
Na,`

where
∑
j∈N λa,j,` = λa,`, would be time-

varying across time intervals. In other words, λa,j,` 6= ρφθa

for all ` ∈ T , since λa,j,` = λa,`/Na,` but Na,` =
⌈

1
ρφ

λa,`
θa

⌉
6=

1
ρφ

λa,`
θa

. In this case, we can use standard PK formula for
M/G/1 queue model by assuming stationarity to compute the
mean queue length. Mean queue length of class a server in
time interval `, La,` can be computed as,

La,` =
λa,j,`
φθa

+
1

2

(
λa,j,`
φθa

)2
(

1 + C2
a

1− λa,j,`
φθa

)
.

Based on above equation, our claim is that we cannot obtain
time-stable upper bound on the mean queue length and thus
La,1 6= La,2 6= · · · 6= La,T 6= L̄a where L̄a is an upper
bound on the mean queue length obtained by our suggested
approach, since arrival rates λa,j,` are different across time
intervals without adding dummy traffic as described in Section
V-B2. In this case, Lmax

a = max{La,1, La,2, . . . , La,T } would
be an upper bound, however L̄a ≤ Lmax

a . In other words,
assuming steady-state itself is not enough to obtain time-stable
and provable upper bound L̄a, and our suggested approach
provides essential conditions to obtain an upper bound L̄a
which is provable and can be applied to transient system
without assuming steady state assumption (which is impossible
for real system).

Although time-stable performance bounds provided by our
suggested approach are useful, it is important to analyze the
gap between time-varying actual performance with perfor-
mance bounds. First of all, it is reasonable to expect that the
gap between bounds and actual performance would be bigger
when arrival rates are increasing more drastically since the ac-
tual performance is highly dependent with the increment of the
number of servers. In other words, since every newly powered-
on server starts serving incoming requests with empty queue,
the mean queue length would be decreasing when the number
of server is increasing. In addition the gap between bounds
and actual performance is highly dependent with variance
of workloads and also system utilization based on analysis
of queueing model (e.g. P-K formula (5) and (7) used in
Section IV). Considering that providing performance bounds
and guarantees based on time-stability opposed to time-varying
and transient system has not been addressed before our study,
we believe that our study has both theoretical and practical
contributions. In Section VII-B3 we will introduce simulation
results to compare the time-varying actual performance with
time-stable bounds and analyze the gap for the different SCOV
of workload distribution and the desired traffic intensity ρ.

VI. DISCUSSION ON TIME-STABILITY

In this section we discuss details of time-stability obtained
by our suggested approach in terms of its extension and
limitations.

A. Extension to Sojourn Times

As introduced in Section V-A, our suggested approach
stabilizes queue length distribution. Then we consider sojourn
times as users of data center need to get Quality of Service
(QoS) guarantees in terms of sojourn times. In fact, when the
distribution of the queue lengths is stabilized, performance
analysis of system is very straightforward in terms of sojourn
times. Since the distribution of number of jobs in each
powered-on class a server is time-stable, the amount of work
brought by jobs is time-invariant, and service speed is constant
for each server, the sojourn time distribution would also be
time-stable. Therefore based on queue length distribution, we
can derive time-stable sojourn time distribution which enables
us to provide probabilistic guarantees of the response times
for incoming requests. In other words, under a FCFS regime,
distribution of sojourn time of class a at time t, Wa(t),
can be defined as Ψa(w) = P [Wa(t) ≤ w] (which is not
dependent on time t). Providing probabilistic guarantees on
sojourn times (as well as queue lengths) based on time-
stability has significant benefits since for transient system
with time-varying and non-stationary load, it is extremely
difficult to provide guaranteed SLA without assumption for
steady-state. For example, our approach is able to provide a
bound τ on average sojourn time such that E[Wa(t)] ≤ τ ,
or tail probability of response time for bound τ such that
P [Wa(t) ≤ τ ] ≥ 1 − ε which would remain unchanged
across time. Without assuming that system reaches steady-state
in each time interval, the only way to provide guarantees is
running a large number of servers which causes a much higher
energy consumption. In this context, achieving time-stability
and providing performance bounds and guarantees based on
dummies is the key benefit of our suggested approach.

As described in Section V-B1, under suggested framework
we can decompose our system into simpler homogeneous
queues, D/G/1 queue for round-robin routing and M/G/1
queue for Bernoulli routing. In this case, for the M/G/1 queue
we have the LST of the sojourn time distribution Ψ̃a(s) for
class a request as (Gautam [29]),

Ψ̃a(s) =
(1− ρ)sG̃(s)

s− λa(1− G̃(s))
(17)

where λa = ρφθa and G̃(s) =
∫∞
0
e−sxdG(x), the LST

of service time distribution. Although we do not have a
specific formula for the sojourn time distribution of D/G/1
queue case, we can derive the sojourn time distribution from
simulation with D/G/1 queue setting. Note that it is not
easy to derive continuous sojourn time distribution, thus we
can derive it based on queue length distribution, πa(i) itself.
Indeed, we can apply derived sojourn time distribution to each
server under round-robin routing in time-stable manner. Based
on our analysis, we can also obtain time-stable performance
bound on sojourn times as well as queue lengths. In Section
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VII-B2 we will introduce simulation results which show that
the mean and standard deviation of sojourn times are stabilized
with our suggested approach.

B. Time Interval Length

In order to model time-varying arrivals of requests, we
assume that requests arrive according to a piecewise con-
stant non-homogeneous Poisson process where arrival rates
of requests of application classes stay constant in each time
interval. In this situation, we need to carefully think about
the effect of time interval length in terms of whether our
suggested approach would be robust to time interval length.
In other words, we need to check whether distribution of
queue lengths or sojourn times would be time-stable with
small time interval length when arrival rates change very fast.
In this context, we would like to note that our suggested
approach would perform well when time interval length too
small to reach steady-state within each time interval and has
a sense of the robustness to time interval length. Note that
for implementation it is reasonable to assume that the service
times and inter arrival times of requests are much smaller than
time interval length since the case where the service times are
longer than time interval length is unlikely in practice for data
centers. In Section VII-B4, we will compare the simulation
results with different time interval lengths to show robustness
of our approach.

C. System Size (Total Number of Servers)

In this study, we consider a fairly common situation in
data centers where the traffic of requests is very high and
a large number of servers are necessary, and thus we use the
asymptotic scaling where both the arrival rates and number of
servers are scaled with size N . In fact, our suggested approach
itself has limitation with small size N , since for round-robin
routing arrival rate into each powered-on server would not
be time-homogeneous if size N is small as shown in proof
of Theorem 3. Therefore queue length distribution is also
non-homogeneous with small size N . Note that for the case
of using Bernoulli routing, arrival rate into each powered-on
server would be time-stable regardless of size N . In Section
VII-B5 we will compare simulation results with small size N
for both round-robin and Bernoulli routing cases to check the
limitation of our approach.

VII. NUMERICAL EVALUATION

In this section we describe the simulation settings and then
analyze the results of simulation experiments to evaluate our
approach. We verify our additional insight for assignments and
show that our suggested approach provides time-stability in
both queue length distributions and sojourn time distributions
based on simulation results. Also we analyze performance
bounds and effects of both time interval length and system
size N to time-stability.
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Fig. 2. Normalized arrival rate αa,` for the 5 classes for 1 cycle of 24
equal-length phases

A. Simulation Experiments

We developed a simulation on a Java platform with N =
1000 possible servers using two sets of input data for the
arrival rates and two sets for the workloads. The input data
will be discussed in the latter part of this section. We used 5
classes of requests, hence A = {1, 2, 3, 4, 5} and 24 equally
spaced time intervals (time interval length is 60 minutes),
hence T = {1, 2, ..., 24}. We assume that the request inter-
arrival times are much shorter than the time intervals and it
is crucial to note that although for the analysis we do not
require the intervals be equally spaced, it is that way to avoid
a cumbersome presentation.

Next we describe the 5 classes’ workload characteristics.
Note that we used Coxian-2 distribution for the workload
described in Section II-B. We define two sets of amount of
work data, both having the same mean amount of work 1/θa
for all a ∈ A as 20, 15.2381, 25, 17.619, 21 seconds. These
two sets have different conditions for SCOV, one has the same
value of SCOV, 0.7, for all a ∈ A and the other has SCOV of
the amount of work for classes 1, 2, 3, 4 and 5 as 1, 0.8887,
2.2, 1.335, and 0.9501 respectively. Since we used different
SCOV for amount of work (but the mean amount of work is
the same), we needed to define the parameters of the Coxian-2
distribution, θ1, θ2 and p, differently for each set of amount
of work. For the same SCOV case, we used probability p as
0.9375, 0.6099, 0.8, 0.9591 and 0.8748 for classes 1, 2, 3,
4 and 5 respectively. Also, for the different SCOV case, we
have probability p as 0.9, 0.95, 0.05, 0.1 and 0.55 for classes
1, 2, 3, 4 and 5 respectively. The θ1 and θ2 values can be
obtained using the fact that the mean and SCOV of the Coxian-

2 distribution are 1
θ1

+ p
θ2

and
1

θ21
+ 2p−p2

θ22

1

θ21
+ p2

θ22
+ 2p
θ1θ2

respectively. Note

that we considered only one processing speed, φ = 0.52.
Also, we used two data sets for arrival rates, pattern A and

B for performance analysis. Graphs of the arrival rates αa,`
for two arrival rate patterns are provided in Figures 2a and
2b respectively. In pattern A notice that arrival rate of some
classes are correlated with others over time and the peak times
are not necessarily the same. Our intention was to select a
representative sample to illustrate both heterogeniety as well
as issues such as correlation. Also, in pattern B, we defined ar-
rival rate as sinusoidal function for t ∈ T . The sinusoidal form
of the arrival rate is clearly a mathematical abstraction which
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Fig. 3. Comparing average total number in system across all classes over 1
cycle: Dedicated vs Pooled

has the essential property of producing significant fluctuations
over time (Liu and Whitt [21]). This particular arrival rate
pattern is by no means critical for our approach; our approach
applied to an arbitrary arrival rate but it is convenient to show
how it achieved time-stable performance with time-varying
arrival rates. The number of powered-on servers Na,` would
be determined proportional to the arrival rate by our sizing
rule in Equation (1) in Section III-B. In all our simulations
we only considered FCFS because implementing a processor
sharing scheme with a large number of servers is extremely
cumbersome with long run times. However, it is important to
note that the time-stable results would be valid for any work-
conserving policy such as processor sharing, limited processor
sharing, etc. To enable a meaningful set of simulations in a
reasonable time, we have only presented the FCFS case.

B. Results and Findings

For the purpose of performance analysis, we define baseline
condition which consists of the dedicated assignment, sizing
as described in Section III-B and round-robin routing with
traffic intensity ρ = 0.9. We will evaluate our approach by
using baseline condition in following sections.

1) Performance comparison between assignment strategies:
First, we compare the performance of assignment strategies
to verify our insight described in Section IV. As described
in Theorem 1, we use Bernoulli routing for the dedicated
assignment and pooled assignment. Note that the total number
of servers powered on at any time period is the same for
both assignment strategies, we can make a fair comparison
between assignment strategies. Since, as described in Section
V-B1, the pooled assignment results in a non-homogeneous
system, it would not be possible to use “dummy” requests
for pooled assignment cases. Therefore, we compare the
dedicated assignment case without using “dummy” requests.
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(b) Mean for Pattern B
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(d) Stdev for Pattern B

Fig. 4. Mean and standard deviation of queue length for the 5 classes across
a cycle with round-robin routing

We compare the average total number of requests in the system
by plotting it across time (also averaged across all classes) with
constant SCOV in Figure 3a for arrival rate pattern A and
in Figure 3c for pattern B. From the results, we can verify
that dedicated assignment is better than pooled assignment.
Moreover, we try to compare assignments with different SCOV
defined in the Section VII-A to check our conjecture that our
insight can be extended to more general cases where SCOV
is not constant and each class has a different SCOV value.
Figures 3b and 3d show that dedicated assignment is also
better than pooled assignment with a different SCOV value
for each arrival rate pattern. Since cases with different SCOV
values are regarded as more general, we will consider only
different (and high) SCOV for further analysis.

2) Analysis of Time-Stability: Next we analyze the time-
stability of our suggested approach. As described in Section V,
our approach stabilizes the distributions of the queue lengths
as well as the sojourn times (see Section VI-A). Based on
both time-stable distributions, first we show that the mean
and standard deviation of queue lengths for 5 classes are
time-stable for round-robin (baseline) in Figure 4. Note that
both round-robin and Bernoulli routing result in time-stable
performance as mentioned in Section V-B1, but round-robin
routing indeed results in better performance than Bernoulli
routing as described in Section III-C. For this reason we
analyze time-stable performance of baseline (which use round-
robin routing) for further analysis. Also based on Figures
4 and 5, it is worthwhile to indicate that our time-stable
performance does not depend on arrival rate patterns which
verifies the discussion in Section V-B1. In addition we check
that distribution of sojourn times is also stabilized described in
Section VI-A. As we indicated, Figure 5 show that the mean
and standard deviation of sojourn times for 5 classes are time-
stable.
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Fig. 5. Mean and standard deviation of sojourn times for the 5 classes across
a cycle with round-robin routing
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(a) With dummies

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ea

n 
Q

ue
ue

 E
ln

gt
hs

Time Intervals

class 1

class 2

class 3

class 4

class 5

(b) Without dummies

Fig. 6. Performance of the mean queue length for the 5 classes across 24
60-minutes time intervals

3) Bounded Performance: In Section V-C we mentioned
that our time-stable performance measures would be an upper
bound on actual performance without using dummies. Figure
6 compares the actual time-varying performance obtained
our approach without dummies as opposed to time-stable
performance bound. As we already mentioned, if dummies
are not used then the mean queue lengths are time-varying
across time intervals (due to empty queue of newly powered-
on servers), but they are strictly bounded by the time-stable
mean queue lengths obtained by adding dummies. In addition,
we have claimed that the gap between actual performance and
bound would be affected by both variance of workload (i.e.
SCOV of workload distribution) and utilization (which can be
controlled by the desired traffic intensity ρ in our approach),
but it is not dependent on the time interval length. Figure
7 compares the differences between actual performance and
bound for application class 3 (which shows the largest vari-
ation without dummies) according to the different conditions
of SCOV, utilization and time interval length. As we expected,
the performance gap would be bigger with bigger SCOV and
higher utilization, but the same with smaller time interval
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(a) 60-minutes, SCOV=2.2, ρ = 0.9
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(c) SCOV=0.6
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(d) ρ = 0.95

Fig. 7. Analysis of the gap between bound and actual performance of class
3 for different conditions
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(b) Without dummies

Fig. 8. Bounds and actual performance of the mean queue length for the 5
classes across 288 5-minutes time intervals

length. Although the performance gap seems to be large for
bigger SCOV of workload distribution and higher utilization,
considering that it is also difficult to analyze dynamics of time-
varying and transient system for both cases, we believe that
our suggest approach still provide significant benefits based
on time-stability.

4) The Effect of Time Interval Length: As we discussed
in Section VI-B, in order to check whether our suggested
approach performs well for the case with smaller time interval
length, we run simulation for 288 5-minutes time intervals by
decomposing 24 60-minutes interval into smaller ones with
the same daily pattern. Recall that we used data set which
has the mean service times of 5 classes as 38.46, 29.034,
48.0769, 33.8826, and 40.3846 seconds, and thus we believe
that 5 minutes time intervals are appropriate to check the case
of smaller time interval length. Figure 8 shows the bound
and actual performance of the mean queue lengths for 288
5-minutes time intervals, and based on the comparison with
Figure 6 we can conclude that time-stability obtained by our
suggested approach is robust to time interval length.

5) The Effect of System Size: As we mentioned in Section
VI-C, our suggested approach has a limitation that perfor-
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(a) Round-robin with N = 100
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(b) Bernoulli with N = 100

Fig. 9. Bounds on the mean queue length with N = 100 for both routing
policies: Round-robin and Bernoulli

TABLE I
PERCENTAGE GAP BETWEEN THE ACTUAL ARRIVAL RATES (A) AND

ADJUSTED ARRIVAL RATES (B): (B−A)
A

× 100(%)

Time Class Indices
Intervals class 1 class 2 class 3 class 4 class 5

1 0.6200 0.3275 0.4073 1.6294 0.2857
2 0.2857 0.9125 1.0880 1.1895 0.1143
3 1.4000 0.7370 1.0880 0.6569 0.6984
4 0.5333 0.3275 0.3392 1.6294 0.0755
5 1.0880 0.1000 1.6229 0.3462 0.5042
6 1.7391 1.0540 0.1520 1.9990 0.8163
7 2.1091 1.0100 1.0880 0.5058 0.8722
8 0.4488 1.4226 0.3392 0.7533 1.6229
9 0.4073 0.4062 0.4073 0.5570 0.2857

10 0.7390 0.4250 0.5531 0.0717 1.6229
11 0.3935 0.3774 0.3711 0.8464 0.2857
12 0.1915 1.2682 0.0947 0.6986 2.2521
13 0.0552 0.4062 0.0800 0.3462 0.2857
14 0.5702 1.4226 0.3109 1.2685 1.2987
15 0.5568 1.1706 0.2631 0.7151 0.8722
16 0.3663 0.7084 0.0446 0.4384 0.2857
17 0.2857 0.5750 0.0350 0.8281 0.4746
18 0.3737 0.2857 0.2426 0.1776 0.1143
19 0.5049 1.7351 0.0552 0.3462 0.6234
20 0.2857 1.3512 0.4073 1.9990 0.0902
21 0.6200 0.0350 0.4488 0.9365 0.0583
22 0.2857 0.5136 0.5531 1.9990 1.2987
23 0.6909 0.3275 0.8800 1.4194 0.4883
24 1.1484 1.0540 0.3392 0.1192 0.2857

Overall 0.5318 0.7370 0.3752 0.7847 0.5165

mance would not be stabilized with smaller size N for round-
robin routing. To analyze the limitation of our suggested ap-
proach, we have run simulation by scaling with size N = 100
instead of N = 1000, summarized the results as shown
in Figure 9. As shown in Figure 9, performance by using
Bernoulli routing is stabilized with smaller size N = 100
(but as we mentioned performance is wore than round-robin),
however round-robin does not yield time-stable performance
for the case of size N = 100.

6) Dummy Traffic Analysis: In Section V-B2, we claimed
that the amount of dummy traffic to adjust arrival rates of each
application a is insignificant. We show percentile gap between
the actual arrival rates and adjusted arrival rates in Table I,
and the additional dummy traffic is reasonably negligible to
the actual arrivals.

VIII. CONCLUDING REMARKS AND FUTURE WORKS

A number of approaches have been studied to manage
resources in data centers over non-homogeneous workloads;

those approaches have mainly focused on determining right-
sizing of servers to minimize energy cost while consider-
ing SLA violation conditions. However, the aforementioned
studies ignore achieving time-stability which makes it con-
venient to analyze system, provide probabilistic guarantees
and performance bound under transient conditions. To the best
of our knowledge, achieving time-stability over time-varying
workloads while considering sizing, assignment and load bal-
ancing in integrated fashion for data centers operations has
not been addressed. In this context, we suggest an approach
to effectively reduce energy consumption by powering on and
off just the right number of servers while being able to provide
performance bounds and guarantees over fast varying arrival
rates that steady-state cannot typically be reached.

This paper asks if time-stability can be attained using a
combination of sizing, assignment, and routing in an integrated
fashion. We have suggested an analytic framework simplifying
a large scale, multi-dimensional, and non-stationary problem
by decomposing into individual simpler stationary ones, and
have introduced dummy requests to achieve time stability
based on decomposed settings. Performance bounds and prob-
abilistic guarantees introduced in this study are provable and
simply derived by stationary analysis based on suggested
framework. Also, we have introduced additional insight re-
garding assignment strategies and addressed extension and
limitation of our suggested approach. One could consider the
following in the future: (i) suggest real-time speed scaling
control by varying φ for time-stable performance, (ii) instead
of all classes with a large number of servers some classes
may need to be hosted on only one server, (iii) develop an
optimization framework to holistically right-size, speed scale,
route and assign classes for energy efficiency, and (iv) extend
to multi-server queues.
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