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1 Introduction

We consider the movement of a vehicle along a transportation network link (such as

a freeway segment) whose length is x units. The vehicle’s speed varies over the course of

its sojourn due to the influence of an underlying environment process. Owing to the effects

of this random environment, the time required to traverse the link is a random variable

denoted by T (x). In this paper, our aim is to analyze the moments of the random travel

time T (x), in the transient and the asymptotic sense, with the ultimate objective of obtaining

computationally expedient measures that are extremely useful in a number of transportation

contexts. To that end, we demonstrate that the problem can be viewed and analyzed as a

fluid queueing model from which such measures may be derived. The approach allows us

to consider the travel time moments for an individual link of a transportation network

subject to a randomly evolving environment. This random environment is characterized as

a continuous-time stochastic process on a finite sample space.

The dynamics of the model can be described as follows. If at time t ≥ 0 the underlying

finite-state process denoted by {Z(t) : t ≥ 0} is in state i ∈ S ≡ {1, 2, . . . , K}, then the

speed of the vehicle is a strictly positive quantity Vi. The stochastic process {Z(t) : t ≥ 0}

is the random environment process. If D(t) denotes the cumulative distance travelled by

the vehicle up to time t > 0, and {Z(t) : t ≥ 0} is a Markov process, then it can be shown

that {(D(t), Z(t)) : t ≥ 0} is also a Markov process. Moreover, the random variable D(t)

is an additive functional of Z(t). The process {(D(t), Z(t)) : t ≥ 0} is used to analyze the

moments of the random time T (x) which corresponds to a transient first passage time for

the process {D(t) : t ≥ 0}.

Our results are primarily motivated by problems in transportation and logistics where

it is important for decision makers to know the travel time moments of individual vehicles

in a stochastic transportation network. The main contribution of the work is the novel

application of fluid queueing techniques for the analysis of an individual vehicle whose time-

variant speed is modulated by a random environment. This is in contrast to an aggregated
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approach for all vehicles usually found in the traffic flow theory (cf. Lighthill and Whitham

[12] and Highway Capacity Manual [7]). Our approach is intuitive in the sense that a plot of

the vehicle’s speed over time corresponds to a sample path of a continuous-time stochastic

process, possibly on a finite state space. Owing to its generality, the model may be used in

a number of transportation settings directly or by making suitable alterations. We describe

in detail applications in ground and maritime transportation.

• Ground transportation: Consider a vehicle that traverses a roadway segment with x

corresponding to the physical length of the segment. Several factors influence the speed

of the vehicle as it attempts to traverse the roadway segment. Some of those may be

physical factors (e.g., roadway geometry, grades, visibility), traffic factors (e.g., density,

presence of heavy vehicles, merging traffic), or environmental factors (e.g., weather

conditions, speed limits, etc.). It is assumed that the environment process {Z(t) : t ≥

0} is known, and thus, may be used to obtain the moments of the random variable T (x).

These moments can then be applied to construct parametric distributions for stochastic

arc weights in transportation networks within the context of automatic route guidance

systems described in [6] or in least-time stochastic transportation network problems

such as those described in [13] and [14].

• Maritime transportation: The environment process approach is similarly applicable in

maritime scenarios. In particular, consider a ship traversing one leg of its journey

of length x. Stochastic and dynamic weather conditions directly influence the speed

with which the ship may travel. In such case, the stochastic process {Z(t) : t ≥ 0}

may be used to model the set of meteorological variables which determines the ship’s

speed at a given point in time (and possibly space). By assigning a cost for each speed

(e.g., fuel consumption) and making appropriate alterations, our model may be used

to compute the expected cost incurred for traversing each leg of the ship’s sojourn.

Furthermore, if each arc of a network is governed by its own environment process, then

it may be possible to solve a stochastic and dynamic minimum cost problem such as
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that considered by Psaraftis and Tsitsiklis [17].

Throughout the remainder of this paper, we concern ourselves with the general setting of a

vehicle traversing a link of length x with the understanding that this may pertain to either

of the above scenarios. Moreover, it is possible to model a number of real-world contexts

with appropriate alterations to the problem parameters and their physical interpretations.

The main contributions of this work can be summarized as follows. First, using the

tools of fluid queueing models, we present a transparent approach for implicitly incorporating

the time dependence of speed for a vehicle traversing a link of length x. Next, we give

an explicit matrix transform expression for the rth moment of the link travel time which

gives exact results when the transform can be algebraically inverted, and very accurate

approximate results with numerical transform inversion. Third, we discuss asymptotic results

for the first and second moments of the link travel time which serve as computationally

expedient approximations for surrogate link travel time distribution parameters.

The remainder of the paper is organized as follows. The next section reviews the

pertinent concepts from the theory of fluid queues and demonstrates the means by which

the theory is applied to the link travel time problem. Section 3 demonstrates how to compute

the moments of the link travel time for a link of arbitrary (but finite) length x. In section

4, we use the transform results of section 3 to provide intuitive asymptotic expressions for

the mean and variance of the link travel time. Section 5 presents numerical results on two

example problems followed by our concluding remarks in section 6.

2 Mathematical Model

2.1 Fluid Queueing Concepts

In this section, we provide a brief overview of the notation and rudimentary concepts

of fluid queueing models. A fluid queueing model can be described as one in which the input

to a stochastic system is modelled as a continuous fluid that enters a buffer and then leaves

the buffer through an output channel (service mechanism) with constant output capacity c.
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One measure of importance for such systems is the amount of fluid contained in the buffer at

time t denoted by the random variable X(t). The stochastic process, {X(t) : t ≥ 0}, is often

referred to as the buffer content process. There exists an external process called the random

environment process that modulates the input of fluid to the buffer. That is, the state of

the random environment process dictates the rate at which fluid flows into the buffer.

Suppose {Z(t) : t ≥ 0} denotes the random environment process that drives fluid

generation. Define RZ(t) as the entrance rate of fluid to the buffer at time t and let the drift

function of this process be

φZ(t) ≡ RZ(t) − c. (1)

The overall storage capacity of the buffer is denoted by a fixed, deterministic value B. When

B = ∞, the dynamics of the buffer-content process are given by

dX(t)

dt
=

{
φZ(t) X(t) > 0
φ+

Z(t) X(t) = 0

where w+ ≡ max{w, 0}. In case B <∞, the system is governed by

dX(t)

dt
=


φ+

Z(t) X(t) = 0

φZ(t) 0 < X(t) < B
−φ−Z(t) X(t) = B

where w− ≡ max{0,−w}. The probability law of the buffer-content process, {X(t) : t ≥ 0}

is dictated by the form of the random environment process, {Z(t) : t ≥ 0}, and the associated

function φ. This function, referred to as the drift function, corresponds to the net input rate

of fluid to the buffer (entrance rate - exit rate). The diagonal matrix Φ ≡ diag(φ1, φ2, . . . , φK)

is called the drift matrix. The instant at which the fluid level crosses some fixed level x

corresponds directly to a first passage time for the stochastic process {X(t) : t ≥ 0}.

Many researchers in the field of telecommunications have recognized the utility of

such models for solving engineering problems. A few important papers in this area are due

to Antick, et al. [2], Elwalid and Mitra [5], Kesidis, et al., [8] and Kulkarni and Gautam

[11]. Other researchers have considered more generalized fluid queueing problems and some
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good examples are the papers due to Asmussen [3], Rogers [18], and more recently, Takada

[19]. The approach of our paper is to employ a fluid queueing approach for the mathematical

characterization of link travel time moments as simple expressions that may be computed in

a computationally expedient manner. We next demonstrate the means by which this may

be accomplished.

2.2 Fluid Model for Vehicle Displacement

Consider a vehicle that must traverse a link of length x whose speed is governed by

a random environment on a finite state space S = {1, 2, . . . , K} where K ∈ N, K ≥ 2.

Define the random environment process by {Z(t) : t ≥ 0} so that at time t, the vehicle

assumes a (strictly positive) speed VZ(t). Since the environment process has a finite state

space, the vehicle may assume speeds in the finite set {Vi : i = 1, 2, . . . , K}, where Vi > 0

for all i. Moreover, define the matrix V = diag(V1, V2, . . . , VK). Hence, the time dependence

of vehicle speed is captured implicitly through the environment process, {Z(t) : t ≥ 0}. The

initial conditions experienced by the vehicle as it begins its sojourn of the link are captured

by the initial state of the random environment, and we denote the initial distribution of

the environment process by a row vector, z0 = [P{Z(0) = i}]. Define by D(t), the total

displacement of the vehicle up to time t and the associated stochastic process {D(t) : t ≥ 0}.

With these definitions, we next demonstrate that the link travel time model is analogous

to a fluid queueing model. In order to make this point more lucid, Table 1 summarizes the

relationship between the concepts of a fluid queueing model and those of the link travel time

model.
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Table 1: Analogous fluid queueing and transportation concepts.

Fluid Queueing Concept Transportation Analogy
Environment process Z Environment process Z
Drift function φi, i ∈ S Velocity function Vi, i ∈ S
Drift matrix Φ Velocity matrix V
Buffer content process X Vehicle displacement process D
Fluid level crossing time T (x) Vehicle distance crossing time T (x)

Though many analogous concepts exist between the two models, there also exist some

noteworthy distinctions. In our model, we limit the movement of a vehicle to the positive

direction and allow only positive velocities. Once the vehicle begins its sojourn, it does not

stop, nor does it move in the negative direction. The analogous situation in the fluid queueing

model is that the output capacity of the system is zero (c = 0), and the buffer accumulates

fluid until it first reaches the threshold value x. Hence, our link travel time model is a

special case of a general fluid queueing model in which the drift rates (φi, i = 1, 2, . . . , K)

are all positive, and the D process, corresponding to the buffer content process X, possesses

monotonically increasing sample paths. The cumulative distance travelled by the vehicle up

to time t > 0 is defined by

D(t) =

∫ t

0

VZ(u)du. (2)

Equation (2) indicates that D is a Markov additive functional of Z, and thus, the random

time required to first traverse a link of length x is the first passage time

T (x) = inf{t : D(t) > x}. (3)

When the process {Z(t) : t ≥ 0} is an irreducible, continuous-time Markov chain

(CTMC) on S = {1, 2, ..., K} with infinitesimal generator matrix Q = [qij], the dynamics

of the buffer-content process are well understood. For example, Rogers [18] provided the

stationary probability law of the buffer-content process when the buffer is finite or infinite

using the Wiener-Hopf factorization for the generator matrix of the governing Markov pro-

cess. Asmussen [3] derives the stationary distribution of the same process in two cases: with
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and without an additional Brownian component. Recently, Takada [19] presented a fluid

queueing model that generalizes previous results for the MAP/G/1 queue by allowing the

buffer-content process to additionally include jumps. These works provide mathematically

elegant approaches for computing the time-stationary probability distribution of the buffer-

content process. By contrast, the link travel time problem requires the transient probability

law for the D process as indicated by Equation (3). For the purposes of this work, we con-

sider a transform approach for the transient probability distribution of D(t) from which we

obtain (spatially) transient and asymptotic measures for the link travel time moments. The

following review of this transient distribution follows from [9].

Define the joint distribution function

Hi(x, t) = P{D(t) ≤ x, Z(t) = i}, i ∈ S. (4)

Moreover, define the cumulative distribution function for T (x) by

G(x, t) ≡ P{T (x) ≤ t} = 1− P{D(t) ≤ x}

= 1−
∑
i∈S

Hi(x, t). (5)

Let H(x, t) = [Hi(x, t)]i∈S denote a 1×K vector. It can be shown that the joint probability

distribution H(x, t) satisfies the partial differential equation (PDE),

∂H(x, t)

∂t
+
∂H(x, t)

∂x
V = H(x, t)Q. (6)

with initial condition H(x, 0) = z0. Denote by H∗(x, s2), the Laplace transform (LT) of

H(x, t) with respect to t given by

H∗(x, s2) =

∫ ∞

0

e−s2tH(x, t)dt, (7)

and the Laplace-Stieltjes transform (LST) of H∗(x, s2) with respect to x as

H̃∗(s1, s2) =

∫ ∞

0

e−s1xdH∗(x, s2). (8)

so that H̃∗(s1, s2) = [H̃∗
i (s1, s2)]i∈S is a 1 × K row vector of transform expressions. The

following result of [9] can be used in conjunction with Equation (5) to obtain the probability

distribution of the random link travel time T (x).
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Theorem 1 The solution to the partial differential equation (6) in the transform space is

given by

H̃∗(s1, s2) = z0(s1V + s2I −Q)−1 (9)

where H̃∗(s1, s2) is defined by Equation (8), z0 is the initial environment distribution, and

s1 and s2 are complex transform variables with Re(s1) > 0 and Re(s2) > 0.

Finally, it is easy to see that the cumulative distribution function for T (x) is given by

G̃∗(s1, s2) =
1

s2

− z0H̃
∗(s1, s2)e. (10)

where e denotes a K-dimensional column vector of ones. It should be noted that the LST of

the link travel time distribution can be obtained as a one-dimensional transform with respect

to the temporal variable t in a slightly more mathematically elegant manner. In particular,

we note that our problem is a special case of the problems considered by both Rogers [18] and

Asmussen [3] with the exception that Equation (9) corresponds to a transient distribution.

The distributions of this section can be accurately computed using a two-dimensional

numerical inversion algorithm such as the one due to Moorthy [15]. However, it is possi-

ble to generate approximate distributions with far less computational effort by computing

the moments of the link travel time and using them in surrogate, parametric distributions.

This approach may be especially useful in the analysis of stochastic transportation networks

wherein the entire cumulative distribution function is needed to compute stochastically short-

est paths. However, in lieu of the link travel time distribution, the moments of this random

time can be computed in a simple fashion. Moreover, asymptotic approximations of the link

travel time moments can be obtained as closed-form analytical expressions. In section 3, we

show how to compute the moments of the random link travel time using Equation (9) when

the length of the link (x) is finite.
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3 Transient Link Travel Time Moments

In this section, we derive an expression using the fluid queueing approach for the

moments of the link travel time whenever the link length is finite. By Equation (5),

G(x, t) = 1−
∑
i∈S

Hi(x, t),

where G is the CDF of the random link travel time, Hi(x, t) = P{D(t) ≤ x, Z(t) = i}, and

S is the finite state space of the random environment process {Z(t) : t ≥ 0} that modulates

vehicle speed. It is well-known that the rth moment of the random variable T (x) may be

obtained by evaluating at 0, the rth-order derivative of the Laplace-Stieltjes transform (LST)

of G which is given by

G̃(x, s2) =

∫ ∞

0

e−s2tdG(x, t) = 1−
∑
i∈S

H∗
i (x, s2)s2, (12)

where H∗
i (x, s2) is given by Equation (7). The rth moment of the link travel time, denoted

by mr(x), is

mr(x) ≡ E[(T (x))r] = (−1)r ∂
r

∂sr
2

G̃(x, s2)

∣∣∣∣
s2=0.

(13)

Next define

Kr
s2

(x) = (−1)r ∂
rG̃(x, s2)

∂sr
2

= (−1)r+1

(
s2

∑
i∈S

∂rH∗
i (x, s2)

∂sr
2

+ r
∑
i∈S

∂r−1H∗
i (x, s2)

∂sr−1
2

)
. (14)

Equation (14), which is derived from Equation (12), implies that

mr(x) = Kr
0(x) = (−1)r+1r

∑
i∈S

∂r−1H∗
i (x, s2)

∂sr−1
2

∣∣∣∣
s2=0.

(15)

In order to solve the differential Equation (15), transform methods are again employed. The

LST of mr(x) with respect to x is

m̃r(s1) =

∫ ∞

0

e−s1xdmr(x).
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By taking the LST of Equation (15) on both sides,

m̃r(s1) = (−1)r+1r
∑
i∈S

∂r−1H̃∗
i (s1, s2)

∂sr−1
2

∣∣∣∣
s2=0

= (−1)r+1r
∂r−1H̃∗(s1, s2)

∂sr−1
2

∣∣∣∣
s2=0

e (16)

where H̃∗(s1, s2) is the matrix transform of Equation (9). Assuming the existence of all

derivatives of Hi(x, s2) at s2 = 0, inversion of Equation (16) yields the rth moment of the

random link travel time. The following lemma will be needed to derive a matrix expression

for Equation (16).

Lemma 1 The kth order partial derivative of the vector H̃∗(s1, s2) with respect to s2 is

∂kH̃∗(s1, s2)

∂sk
2

= (−1)kk!z0 (s1V + s2I −Q)−k−1 , k ≥ 0.

Lemma 1 can be easily proved by mathematical induction and is next used to derive a general

expression for the rth moment of the link travel time.

Theorem 2 The Laplace-Stieltjes transform of mr(x) is given by

m̃r(s1) = r!z0(s1V −Q)−re. (17)

Proof. Applying Lemma 1 to Equation (16) directly shows that

m̃r(s1) = (−1)r+1r
∂r−1

∂sr−1
2

H̃∗(s1, s2)

∣∣∣∣
s2=0

e

= (−1)r+1r(−1)r−1(r − 1)!z0

[
(s1V −Q)−1

]r
e

= r!z0(s1V −Q)−re,

and the proof is complete.

Equation (17) gives an exact analytical expression for the LST of the rth moment of the

random link travel time, provided that all derivatives exist at s2 = 0. In some cases,

the transform may be inverted algebraically for an exact solution. However, very close

approximations may be obtained via numerical inversion in only one dimension by using a

number of widely available inversion algorithms such as the one due to Abate and Whitt [1].
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4 Asymptotic Link Travel Time Moments

In this section, the asymptotic behavior of the moments of the random link travel

time is considered. In subsections 4.1 and 4.2, we investigate the first and second moments

of the link travel time in the asymptotic region (as x→∞) when the speed is modulated by

a CTMC, {Z(t) : t ≥ 0}. In section 4.3, the asymptotic variance is considered. Asymptotic

approximations often yield computationally expedient expressions that can drastically reduce

computational effort by eliminating the need for iterative algorithms. Furthermore, these

approximations may be used to construct surrogate, parametric distributions for the link

travel time.

4.1 Asymptotic First Moment of T (x)

In order to prove our result for the asymptotic mean of the random link travel time,

we first need the following lemma.

Lemma 2 Let Q be the positive recurrent infinitesimal generator matrix for the environment

process, {Z(t) : t ≥ 0}, having stationary distribution p = [pj]j∈S. Then the matrix Q̂ =

V −1Q is an infinitesimal generator for a CTMC, {Ẑ(t) : t ≥ 0}, with limiting distribution

p̂ = [p̂j]j∈S given by

p̂j =
pjVj

pv
, j ∈ S, (18)

which satisfies p̂Q̂ = 0 and p̂e = 1, where v = V e and pv =
∑

j pjVj.

Proof. The proof is immediate since V −1Q is positive recurrent and clearly possesses

the stated unique, stationary distribution.

Theorem 3 provides an intuitive result for the mean link travel time, namely, that the long-

run average link travel time divided by its displacement converges to the reciprocal of the

long-run average speed of the vehicle.
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Theorem 3 As x −→∞,

m1(x)

x
−→ 1

pv
. (19)

Proof. By the asymptotic properties of the LST, it is well-known (Kulkarni [10], p.

583) that

lim
s1→0

s1m̃1(s1) = lim
x→∞

m1(x)/x.

Thus, it will be shown that s1m̃1(s1) → (pv)−1 as s1 → 0. Applying Theorem 2

s1m̃1(s1) = s1z0(s1V −Q)−1e

= z0s1(s1I − V −1Q)−1V −1e (20)

By Lemma 2, Q̂ = V −1Q is a generator matrix for the CTMC, {Ẑ(t) : t ≥ 0} with probability

transition matrix P̂ (t) satisfying the forward equation,

dP̂ (t)

dt
= P̂ (t)Q̂. (21)

Transform methods are employed to solve Equation (21). After simplication, the LST of

P̂ (t), denoted by, Ψ(s1), is

Ψ(s1) = s1(s1I − Q̂)−1. (22)

By the limiting properties of the LST (Kulkarni [10]),

lim
s1→0

Ψ(s1) = lim
t→∞

P̂ (t) = P̂ (∞), (23)

where the jth column of P̂ (∞) has p̂j of Equation (18) for each row, provided the CTMC is

ergodic. Now, substituting Equations (22) and (17) into Equation (20) gives

lim
s1→0

s1m̃1(s1) = lim
s1→0

z0s1(s1I − V −1Q)−1V −1e

= z0P̂ (∞)V −1e

= (pv)−1

and the result is obtained.
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4.2 Asymptotic Second Moment of T (x)

In this subsection, we provide a similar, intuitive result for the asymptotic second

moment of the random link travel time. The following lemma is needed to prove the result.

Lemma 3 Let f(·) be a function of exponential order on the positive real line such that

f(t) → ∞ and f ′(t) → ∞ as t → ∞. Let the Laplace transform of f be denoted by f ∗(s)

and let its Laplace-Stieltjes transform be f̃(s). Then,

lim
s→0

s3f ∗(s) = lim
s→0

s2f̃(s) = 2 lim
t→∞

f(t)

t2
. (24)

Proof. The lemma will be proved by considering the Laplace transform of the third

derivative of f . Assuming the existence of this transform, we have that (see Churchill [4])

L
(
d3f

dt3

)
=

∫ ∞

0

e−stf (3)(t)dt = s3f ∗(s)− s2f(0)− sf ′(0)− f (2)(0).

where f (n) (n ≥ 2) denotes the nth-order derivative of f with respect to t. Letting s→ 0 on

both sides of the above equation yields,

lim
s→0

s3f ∗(s)− f (2)(0) = lim
s→0

∫ ∞

0

e−stf (3)(t)dt

= lim
a→∞

∫ a

0

f (3)(t)dt

= lim
a→∞

f (2)(a)− f (2)(0),

which implies,

lim
s→0

s3f ∗(s) = lim
t→∞

f (2)(t). (25)

It will next be shown that the right-hand side of Equation (24) is equal to the right-hand

side of Equation (25).

2 lim
t→∞

f(t)

t2
= 2 lim

t→∞

f ′(t)

2t

= lim
t→∞

f (2)(t).

The equality is obtained by applying L’Hospital’s rule twice.
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Theorem 4 Assume that m′
2(x) −→∞ as x −→∞. Then as x −→∞

m2(x)

x2
−→ 1

(pv)2
.

Proof. By Lemma 3, it follows directly that

lim
s1→0

s2
1m̃2(s1) = 2 lim

x→∞
m2(x)/x

2.

Thus, it will be shown that s2
1m̃2(s1) → 2(pv)−2 as s1 → 0.

lim
s1→0

s2
1m̃2(s1) = lim

s1→0
2z0s1(s1I − V −1Q)−1V −1s1(s1I − V −1Q)−1V −1e

= 2z0P̂ (∞)V −1P̂ (∞)V −1e

= 2(pv)−2

which implies m2(x)/x
2 → (pv)−2.

Theorems 3 and 4 indicate that the asymptotic approximation form1(x) is m̂1(x) = x/pv and

the asymptotic approximation for m2(x) is given by m̂2(x) = x2/(pv)2 = (m̂1(x))
2. Thus,

the asymptotic approximations for the first two moments of the link travel time reduce to

simple functions of the link’s length x. Before proceeding to an analysis of the variance of the

random variable T (x), it should be noted that the transform expressions of Theorems 3 and

4 directly provide insight to the limiting behavior of T (x)/x, as indicated in the following

corollary.

Corollary 1 Assume m′
2(x) −→∞ as x −→∞. Then as x −→∞

T (x)/x −→P 1/pv,

i.e., the random variable T (x)/x converges to 1/pv in probability.

Proof.

lim
x→∞

V ar

(
T (x)

x

)
= lim

x→∞
x−2

{
m2(x)−m2

1(x)
}

= 0. (26)
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Fix ε > 0. By Chebyshev’s inequality and Equation (26), we have that

P

{∣∣∣∣∣T (x)

x
− 1

pv

∣∣∣∣∣ ≥ ε

}
≤ 1

ε2
V ar (T (x)/x) −→ 0.

The corollary states that, just as m1(x)/x → 1/pv, the random variable T (x)/x converges

to the reciprocal of the long-run, average speed, even though T (x) →∞ as x→∞. In the

following subsection, it will be shown that the standard deviation of the link travel time in

the asymptotic regime is proportional to the square root of the link length.

4.3 Asymptotic Variance of T (x)

In order to construct meaningful distribution approximations using the asymptotic

moments of this section, we now examine the variance of link travel time as the length of the

link tends toward infinity. The limiting behavior of V ar[T (x)] is characterized using the K-

dimensional generator matrix Q and the velocity matrix V . First we require some notation

for the spectral representation of the matrix V −1Q. Let ηi, i = 1, 2, . . . , K, denote the K

eigenvalues of V −1Q, and let li (ri), i = 1, 2, . . . , K, denote their corresponding left (right)

eigenvectors. Of theK eigenvalues, one eigenvalue is zero and the remainingK−1 are strictly

negative. In particular, we note that the vector p̂ is the left eigenvector corresponding to

the zero eigenvalue. Using the remaining K − 1 eigenvalues (and eigenvectors), the limiting

behavior of V ar[T (x)] is characterized in Theorem 5.

Theorem 5

lim
x→∞

V ar[T (x)]

x
= − 2

pv

K∑
i=2

1

ηi

(pri)(liV
−1e)

liri

. (27)

Proof. By Equation (19), it can be shown that

m1(x) = x/(pv) +O(x) (28)

where O(x)/x→ 0 as x→∞. In like manner, it can be shown that m2(x) is of the form

m2(x)

x
= x/(pv)2 + c(x) +

O1(x)

x
, (29)
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where c(x) is a function that depends on x and O1(x)/x→ 0 as x→∞. Let

ψ(x) =
V ar[T (x)]

x
=
m2(x)

x
− (m1(x))

2

x

and define its Laplace-Stieltjes transform (LST) as

ψ̃(s) =

∫ ∞

0

e−sxdψ(x). (30)

For sufficiently large x, the function ψ(x) can be written as

ψ(x) = c(x)− 2O(x)/(pv). (31)

Taking the LST of both sides of Equation (31) gives

ψ̃(s) = c̃(s)− 2Õ(s)/(pv) (32)

where ψ̃(s) is defined as in Equation (30). Next, we compute the transforms c̃(s) and Õ(s).

By taking the LST of both sides of Equation (28) and rearranging terms,

Õ(s) = m̃1(s)−
1

(pv)s

where m̃1(s) is the LST of m1(x) so that

Õ(s) = z0(sV −Q)−1e− 1

(pv)s
(33)

and z0 is the initial distribution of the environment process. Now to compute c̃(s), we take

the LST of both sides of Equation (29) and rearrange terms to obtain

c̃(s) = sm̃2(s)−
2

s(pv)2
− LST

{
O1(x)

x

}
= 2z0s(sV −Q)−2e− 2

s(pv)2
− LST

{
O1(x)

x

}
, (34)

where LST{h(·)} denotes the LST of the function h(·). Substituting Equations (34) and

(33) into Equation (32) and letting s→ 0 yields

lim
s→0

ψ̃(s) = lim
s→0

2z0(sV −Q)−1
[
s(sV −Q)−1 − I(pv)−1

]
e− LST

{
O1(x)

x

}
= lim

s→0

2

pv

(
p(sV −Q)−1e− 1

spv

)
.
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Now let ηi denote one of the K − 1 strictly negative eigenvalues of V −1Q and let li (ri),

i = 2, . . . , K denote the corresponding left (right) eigenvectors of V −1Q. It can be shown

(see Asmussen [3]) that, using the spectral representation of V −1Q,

p(sV −Q)−1e =
1

spv
+

K∑
i=2

(
1

s− ηi

)
1

liri

(pri)(liV
−1e)

where we omit the zero eigenvalue and its corresponding eigenvector. Hence, we obtain

lim
x→∞

V ar[T (x)]

x
=

2

(pv)
lim
s→0

(
p(sV −Q)−1e− 1

spv

)
= − 2

pv

K∑
i=2

1

ηi

(pri)(liV
−1e)

liri

5 Numerical Examples

In this section, the performance of the analytical results of sections 3 and 4 are demonstrated

on two numerical examples. The numerical transform inversions, obtained by using the algo-

rithm of Abate and Whitt [1], are validated via Monte-Carlo simulation of link travel times

under the assumption that vehicle speed is modulated by a continuous-time Markov chain.

Example 1: Ground Transportation Problem

Consider a vehicle traversing a roadway segment of length x miles. Due to time-variant

traffic factors (e.g. flow and density), the speed of the vehicle may be categorized in one

of 10 distinct ranges. Then the random environment process is a general, 10-state CTMC

with state space S = {1, 2, . . . , 10}. When the environment is in state i, the speed of the

vehicle is Vi = 75/i for i ∈ S. The off-diagonal entries of the generator matrix, Q = [qij]i,j∈S,

are distributed uniformly on the interval (200, 400) and the units are 1/hr. If the CTMC

is currently in state i ∈ S, the process transitions to state j ∈ S \ {i} with probability

qij/(−qii). It is arbitrarily assumed that, with probability 1, the system starts in state 1 at

17



time 0. The off-diagonal entries of Q were computed by generating a uniform variate on the

interval (0,1) and translating each entry so that it lies in the interval (200, 400), which is

chosen arbitrarily. Table 2 displays the numerical results for this example.

Table 2: Lower moments for vehicle link travel time.

x (mi) Measure Transient Simulated Asymptotic
0.25 m1(x) 0.647889 0.647530 0.681060

m2(x) 0.439642 0.439307 0.463843
0.50 m1(x) 1.317198 1.318089 1.348891

m2(x) 1.779084 1.781252 1.819507
1.00 m1(x) 2.658887 2.657945 2.691188

m2(x) 7.158717 7.153180 7.242492
5.00 m1(x) 12.977443 12.978734 13.005931

m2(x) 168.807281 168.842391 169.154242
10.00 m1(x) 26.218836 26.224240 26.249637

m2(x) 688.289778 688.571303 689.043454

Example 2: Variance Calculations

The purpose of this example is to demonstrate the variance calculations using Equation

(27). We assume the random environment process is a general, 5-state CTMC with state

space S = {1, 2, . . . , 5}. When the environment is in state i, the speed of the vehicle is

Vi = 75/i for i ∈ S. The off-diagonal entries of the generator matrix, Q = [qij]i,j∈S, are

distributed uniformly on the interval (20, 60) with units 1/hr. If the CTMC is currently

in state i ∈ S, the process transitions to state j ∈ S \ {i} with probability qij/(−qii). It

is arbitrarily assumed that, with probability 1, the system starts in state 1 at time 0. The

off-diagonal entries of Q were computed by generating a uniform variate on the interval (0,1)

and translating each entry so that it lies in the interval (20, 60). Table 3 displays numerical

results comparing values obtained from Equation (27) and Monte-Carlo simulation.

18



Table 3: Asymptotic variance results.

x Simulated Asymptotic
1.00 0.232525 0.408426
5.00 2.111038 2.042130
10.00 3.968300 4.084261
50.00 20.491260 21.030564
100.00 41.294269 41.141287

6 Conclusions

We have presented a fluid queueing model for implicitly incorporating the time depen-

dence of speed for a vehicle traversing a link of length x by considering a random environment

process that evolves stochastically over time. When the environment process is known to be

a continuous-time Markov chain, an explicit expression is obtained for the rth moment of

the link travel time. The derived expression gives exact results when the transform can be

algebraically inverted, and very accurate approximations with numerical Laplace transform

inversion. Moreover, the transform expressions give rise to useful, asymptotic approxima-

tions in the form of limit theorems for the mean, second moment and variance of the random

link travel time.

There are several real-world contexts that motivate the study of a vehicle traversing

a random environment. The generality of our model allows for the exact analysis of the link

travel time moments in a variety of transportation settings. In this work, we were primarily

motivated by the need for computationally expedient measures that may be directly applied

to stochastic transportation network problems. It is clear that the technique can be easily

modified and extended to accommodate a number of different problem settings.

The techniques of this paper can potentially be used to construct three types of

distributions for the random time to traverse a link of length x. First, it is always possible to

solve for the matrix H(x, t) via transform techniques and perform numerical inversion in two

dimensions to obtain an approximate distribution. However, the numerical inversion process
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is computationally intensive, particularly when K is large. An alternative is to construct

surrogate transient or asymptotic normal approximations. Transient normal approximations

should utilize the transient moment results of section 3 for the mean and variance of the

distribution. Asymptotic normal approximations should use the limiting results for the mean

and variance of link travel time (section 4). The appropriate choice of distribution will depend

on the computation time or accuracy required by the algorithm in which the link travel time

is used. The simpler, parametric distributions, particularly normal approximations, will be

useful since look-up tables can be utilized to obtain cumulative distribution function values.

The model can be suitably extended to more general environment processes (such as semi-

Markov processes), depending upon the application.
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