
1

Efficiently Operating Wireless Nodes Powered by
Renewable Energy Sources

Natarajan Gautam Senior Member, IEEE, and Arupa Mohapatra

Abstract—We consider a node in a multi-hop wireless network
that is responsible for transmitting messages in a timely manner
while being prudent about energy consumption. The node uses
energy harvesting in the sense that it is powered by batteries that
are charged by renewable energy sources such as wind or solar.
To strike a balance between latency and availability, we develop
a multi-timescale model. At a faster timescale, the node makes
decisions based on local information such as queue lengths of
packets in input buffers and available energy levels. The decisions
include scheduling packets on the output buffers that would
be transmitted at the next opportunity, possibly using network
coding. At the slower timescale, we model the energy levels in
the battery using a stochastic fluid-flow model to determine the
availability and time-averaged latency. Ultimately we present
a unified framework that iteratively sets model parameters to
satisfy latency and availability targets. The methods are based
on Markov decision processes, Markov chains and semi-Markov
process analysis.

Index Terms—Energy Harvesting, Multi-hop Wireless Net-
works, Network Coding, Stochastic Fluid Model, Performance
Analysis, Quality of Service

I. INTRODUCTION

IN this research, we consider a single node of a multi-hop
wireless network. The research is motivated by applications

in wireless smart-sensor networks with energy harvesting. The
node has limited battery capacity, and the battery is charged
using renewable sources like solar and wind. We assume
that the node would make decisions based only on local
real-time information and no state information is exchanged
between neighbors. Under such a setting, the problem we
consider is how to operate the node efficiently to satisfy
certain availability and latency requirements. While reducing
the number of transmissions will imply lesser energy con-
sumption and thus better battery availability, it could result
in worsening the latency. However, the operating policy does
not have to be static. In fact, one could reduce the number of
transmissions when the battery level is low, and be sensitive
to latency when the battery level is high. The main aim of this
research is to develop a theoretical framework to understand
the tradeoffs and make efficient decisions. However, there are
several challenges in developing this theoretical framework.
One is that the network traffic is stochastic and heterogeneous
(i.e. the mean flow rates could be different on different flows).
Another challenge is that there is tremendous variability (albeit

N. Gautam is with the Department of Industrial and Systems Engineering,
Texas A&M University, College Station, TX 77843, USA (e-mail: gau-
tam@tamu.edu).

A. Mohapatra is with Oracle Corporation, Bala Cynwyd, PA 19004, USA
(email: arupa.mohapatra@oracle.com).

orders of magnitude slower than packet queue size variability)
and uncertainty in the battery charging process.

Our approach is to decompose the two interacting sub-
systems in each node, namely the information flow and the
energy flow. On one hand, we would like to develop policies
for the information flow, while keeping in mind that the
information flow impacts the energy flow as it is the main
consumer of the battery power. On the other hand, we would
like to develop mathematical expressions for the availability
of energy (thereby the availability of the entire node as
well) and the latency, for both of which we need to develop
models for the energy-level in the system. Our key idea is
that by considering different timescales for state changes in
the information flow and the discretized energy flow, we are
able to analyze the two sub-systems independently, and iterate
across them by passing parameters. With that understanding,
we separate out the introductory remarks regarding the two
sub-systems.

To reduce the number of transmissions per unit time in
the information flow subsystem, we consider XOR-based net-
work coding which is also frequently referred to as “reverse-
carpooling” (see Ahlswede et al. [1], Medard and Sprintson
[2], Katti et al. [3] and Effros et al. [4]). Under the network-
coding framework, several researchers have considered trade-
offs between transmission and latency. In particular, He and
Yener [5] consider a two-way relay and address issues of
trading off energy consumption against delay. Subsequently,
a more generic cost-delay tradeoff is considered in Ciftcioglu
et al. [6]. Our group also has a series of papers addressing the
issue of whether to send packets uncoded or wait for coding
opportunities, starting with Hsu et al. [7]. While these research
works are certainly cognizant of energy conservation, they do
not explicitly model the energy consumption process.

Our group’s approach (including this paper) is primarily
based on using average cost Markov decision processes with
countable state space. It is well documented and accepted that
deriving the structure of the optimal policy is not straight-
forward (see Borkar [8], Cavazos-Cadena and Sennott [9],
Sennott [10], Schäl [11] and Arapostathis et al. [12]). While
we leverage upon the results of our previous work, a critical
difference is that unlike our previous works and all the Markov
decision process papers mentioned above where costs are as-
sumed to be real, in this paper we consider costs in a fictitious
manner. Note that in reality there are no operational costs
(other than routine maintenance of the nodes) in running the
network as all the energy necessary is harvested. However, it is
impossible to solve optimization problems without the notion
of costs, and therefore we introduce fictitious transmission

2

costs and holding costs to improve availability and latency
respectively.

Moving over to the energy-flow side by specifically con-
sidering energy harvesting, there have been several stochastic
models for energy-level analysis and energy-management poli-
cies (see Kansal et al. [13], Jaggi et al. [14] and Sharma et al.
[15]). For example, Sharma et al. [15] model the energy har-
vesting process by using a periodic stationary ergodic process
in discrete time. However, to the best of our knowledge, there
are no works that explicitly consider modeling energy-levels as
a fluid process with piece-wise constant increase and decrease
due to charging and discharging. In modeling solar-irradiance,
Poggi et al. [16] show a Markovian structure, while Kantz et
al. [17] demonstrate that wind speeds can be modeled using
Markov chains. With this motivation, we consider stochastic
fluid flow models with slowly varying rates compared to the
packet arrival rates to analyze the amount of energy in the
battery.

One of the few articles where the amount of energy in a
battery is modeled as a fluid with piecewise constant power
arrival rates is considered in Jones et al. [18]. However, that
article only considers a single battery, constant discharge rates
(which can be reduced when the battery level becomes low)
and the time until the battery becomes empty for the first
time. In this paper, we consider multiple batteries, varying
discharge rates, and continuous evolution of charging and
discharging even after becoming empty. We assume that the
charging process can be modeled as a piecewise constant
power arrival rates modulated by a Markov process. Such fluid
queues have been well-studied in the literature. Kankaya and
Akar [19] provide in the introduction section a list of articles
with different methods to obtain the buffer content distribution
of fluid queues. Using that one can obtain the availability,
which has been studied in the reliability literature (see Kiessler
et al. [20] and Kharoufeh et al. [21]).

It is worthwhile pointing out that the notion of availability is
relatively less studied in the energy-harvesting literature. The
motivation for considering energy harvesting is to improve the
longevity of wireless sensor networks. While this has certainly
been achieved by the use of rechargeable batteries with en-
ergy harvesting, one cannot guarantee 100% availability. For
example, several cloudy days in a row would result in a solar-
cell based node becoming unavailable because the battery has
completely run out. Further, the node could remain unavailable
for several hours at a stretch. Thus the main contribution of
this paper is the introduction of the notion of availability,
analysis of the tradeoff between availability and latency, and
development of fluid-flow model for energy level in batteries
to compute availability. Other contributions include: usage
of multiple batteries (or sensors) per node and the analysis
therein to improve availability of the node; development of a
multi-time-scale approach to decompose information flow and
energy flow; and the use of fictitious costs to drive operating
point to a feasible value.

This paper is organized in the following manner. In Section
II, we describe our two-tier framework consisting of the
information-flow and energy-flow sub-systems. In there we
also state the problem under consideration, and the approach

to solve it. We use a decomposed approach with interactions.
In Section III, we consider the information flow aspects and
develop an optimal policy that performs tradeoffs between
energy consumption and latency by observing local informa-
tion. Then, in Section IV we present our fluid flow model to
obtain the availability and average latency experienced by the
node. Having closed the loop between the two sub-systems, in
Section V we discuss design issues, what performance metrics
to advertise, what approach to take to obtain the strategy
for transmission, and also show a numerical example of our
approach. Finally, in Section VI, we present our concluding
remarks and ideas for future work.

II. TWO-TIER FRAMEWORK

In this section, we describe in detail the problem scenario,
explain the problem specifications in terms of the modeling
aspects, provide justifications and briefly state our approach.

A. Scenario

N
 b

at
te

rie
s	

K	

Wireless Sensor Network	
 Single Node	
 Environmental Charging	

Fig. 1. Scenario: single node with network coding and harvesting N batteries

We consider a single node (see Figure 1) in a multi-hop
wireless network. The node performs network coding to reduce
the number of transmissions to its neighbors. For the entire
paper, we assume that our node has only two neighbors to fa-
cilitate XOR coding (see [22]). However, when there are more
than two neighbors, we can consider neighbors two at a time
and perform a similar analysis in parallel and aggregate. Since
we strive to minimize energy-guzzling transmissions, it is only
reasonable to assume that state information is not exchanged
between nodes and hence we do not know the status of any
of the other nodes in the network. Therefore we also assume
that routing decisions have been made apriori in a centralized
fashion, and we know the resulting flow rate. Further, once
the node operations and service level advertisements are made,
scheduling is decided again in a centralized fashion based on
node advertisements. This is contrary to other articles such as
Joseph et al. [23] which consider routing, power control and
scheduling in a unified manner.

One of the unique features of our scenarios is that the node
under consideration has N batteries, each with capacity K.
At any time only one battery is used while all N can be
charged simultaneously. As an alternative setting, one could
also think of having N sensors, each with its own solar panel
and battery, but only one of the N sensors is used at a time
while all N get charged. Such a redundancy is extremely
critical to maintain high availability (details in Section II-C).
We assume that the node always knows the number of packets
in its input queue as well as some aggregate information about
the amount of battery power available in the node. Based

3

on this, the objective is to develop a policy to determine a
strategy to decide whether to send packets uncoded, or wait
for an opportunity to code. Note that in our previous work
[22], we are not concerned with the battery level but make
our decisions purely based on the queue status of the input
buffers at the time of transmission. In addition, in our previous
work [22], not only did we study the case N = 1, but also
that the consumption rate c was constant over time, while here
we consider time-varying rates. Here we would like to study
the two sub-systems, i.e. information flow and energy flow in
a unified format in a single framework to enable the node
under consideration to advertise a service level in terms of
availability and latency.

B. Problem Description

We consider a node with two sub-systems, namely the
information flow and the energy flow. For the information flow,
each node has two input buffers into which packets arrive from
two adjacent nodes at rates λ1 and λ2, as shown in Figure 2.
Assume that the arrivals are according to a Poisson process.
There is an output buffer which gets an opportunity every T
time units to transmit all its packets. Instead of using two
transmissions for packets x1 and x2, the node could perform
x1 ⊕ x2 and broadcast one packet. However, if there are no
packets to perform this XOR coding, the node could choose to
either hold the packets for a future opportunity to code, or send
uncoded. Thus f(x1, x2) in Figure 2 is f(x1, x2) = x1 ⊕ x2,
x1, x2 or the null-set.

T λ1

λ2

x1

x2

f(x1,x2)

Fig. 2. Information flow model with input and output buffers

Clearly, if there are i packets in input buffer 1 and j in
input buffer 2, min(i, j) must be sent to the output buffer.
Our objective is to develop a strategy to determine how many
of the remaining |i − j| packets to send to the output buffer.
Recall that the node works independently with only local state
information. Besides the state of the input queues, the node
also knows the amount of energy available. In particular, we
assume that the node knows the amount of energy as an
integral multiple of K (viz. nK). In other words, the node
knows how many full-battery equivalent power is available at
any time.

For the second sub-system, namely the energy flow model,
recall that the node has N batteries. Only one battery is used at
any time, while all N batteries can be charged simultaneously.
The battery capacity is K, and when a battery becomes empty,
a different battery, if one with energy is available, is used. We
only consider exhaustive polling policy, i.e. use up a battery
until all its charge is exhausted and then go on to the next
available one. While the exhaustive polling policy is clearly

not the most optimal policy in terms of improving availability
(use the battery with most energy, in fact is optimal), it is the
easiest to implement. All N batteries can be simultaneously
charged in a perfectly correlated fashion by the environment
(solar, wind, etc.). The node would be unavailable if all the
batteries are empty.

All non-full batteries get charged simultaneously according
to irreducible CTMC {Z(t), t ≥ 0} with finite state space
S = {1, . . . ,M} and generator Q. When the environment is
in state m ∈ S, energy flows into all non-full batteries at rate
rm, as shown in Figure 3. When there is an equivalent of n
fully charged batteries (recall that this is what is observed to
determine coding strategies), energy is drawn at an average
rate of cn, i.e. power demand. For the moment cn is unknown
and we need to figure out how cn would vary with time.
We will address that subsequently. Also note that since the
maximum energy that can be stored in a battery is K, once a
battery becomes full, the excess energy generated is not saved.

cn

discharge
rm

rm

rm

rm

charge

environment
Z(t) = m

Fig. 3. Charging and discharging of N batteries

Remark 1: The goal is to develop a strategy for transmitting
packets (wait or send uncoded) to guarantee quality of service
(QoS) in terms of latency and availability. In particular, the
node would like to advertise that the time-averaged latency
across the node is less than L and availability greater than
1− ε.

C. Explaining the N Battery Scenario

Consider a numerical example for the case N = 1, where
the CTMC modulating the charging process has state space
S = {1, 2, 3, 4, 5},

Q =

−0.02 0.008 0 0.012 0
0.1 −0.2 0.1 0 0
0 0.2 −0.5 0 0.3
0.04 0 0 −0.06 0.02
0 0 0.2 0.4 −0.6

per hour and energy inflow rates [r1 r2 r3 r4 r5] =
[0 0.2 0.4 1 1.2] W. The battery has energy capacity K = 50
Wh and constant (as opposed to variable which we will
consider subsequently) energy consumption rate c = 0.272
W (which is almost equal to the average energy supply rate of
0.2718 W). While it is tempting to think that the system would
yield adequate performance as the average energy supply
is approximately equal to the average energy demand, the
availability which can be obtained from the analysis in Section
IV is only 0.8073, an unacceptably low value.

Note that it may not be always possible to achieve a desired
level of availability with only one battery. However, we can
improve the availability by harvesting and storing additional
energy from the environment. Therefore, we consider the
strategy to use redundant batteries with the caveat that they

4

would all be charged in a correlated fashion as they are in
the same location. Say, there are N batteries and only one
is used at a time. Note that while one of the batteries would
get discharged at rate c, if the power arrival is ri(t) at time
t for some i ∈ S, then all N batteries would get charged at
rate ri(t). Using the analysis for availability in Section IV,
the results for varying N are presented in Table I. Note that
as N grows, the availability become reasonable, in terms of
what one would typically expect from a node. Also notice
that in the last row we provide the availability when c is
reduced (which can be achieved via reducing transmissions
using technologies like XOR network coding). For practical
applications an unavailability of 10−6 or lower is typically
desirable to operate nodes. We now revert back to the problem
description where c varies depending on the energy level in
the node.

TABLE I
AVAILABILITY VERSUS N AND ALSO VERSUS c

c N Availability
0.272 1 0.8073
0.272 2 0.9712
0.272 3 0.9969
0.272 4 0.9997
0.272 5 1− 1.9155× 10−5

0.272 6 1− 1.2416× 10−6

0.170 6 1− 1.6484× 10−11

D. Approach

Notice that on one hand, to obtain the availability in the
energy-flow tier, one needs the energy consumption rate (cn)
based on the dynamics in the information-flow tier. On the
other hand, to obtain latency in the information-flow tier, one
needs to know the strategy for transmitting packets which in
turn depends on the energy storage level (n) from the energy-
flow tier. To resolve this conundrum and to devise a strategy
for transmission, we make the following assumption in the
form of a remark.

Remark 2: We assume that the state corresponding to
amount of stored energy available (n) changes at a much
coarser time scale than the input queue states in the
information-flow tier.

Note that the above is a reasonable assumption considering
that information state changes occur in a micro-second granu-
larity or smaller, whereas n changes in minutes or even hours.
As a practical example, n is like the number of “bars” on a
mobile-phone battery indicator which we have all observed
changes in minutes to hours. However, packets arrive onto
our devices at a much faster speed. While this is a reasonable
assumption, the key implication is that we assume that n stays
a constant for a significant time such that the queue length
process for packets reaches steady state. Of course, this is
actually a quasi-steady-state condition, since a change in n
would result in a short period of transient condition.

Based on the assumption in the remark above, we take
an iterative approach. For that we describe some fictitious
costs. Note that for the node as such, there are no operational

N batteries

MDP

cn

Given λ1,λ2

T
λ1
λ2

tc(n), h

DTMC

Optimal
policy

Fluid
model SMP Given K,Q,rm

A, L

Evaluation
engine

ln

Fig. 4. Iterative approach starting till QoS is satisfied

costs in terms of power as only harvested energy is used.
However, to facilitate the system to converge to a solution so
that QoS in terms of availability and latency is met, we use an
evaluation engine (see Figure 4) that orchestrates the process
of reaching an acceptable QoS level, if the arbitrarily selected
initial strategy does not result in QoS being met. For that,
when the amount of energy available is nK (i.e. equivalent
of K full batteries) for some n ∈ {0, 1, . . . , N}, then the cost
per transmission is tc(n). Once again, there is truly no cost
for transmission per se but this is to develop a good policy. In
each round of iteration, the evaluation engine selects a vector
of tc(n) for all n. For example, tc(n) could be proportional to
1/n. Thus transmission is expensive when there is very little
energy available and vice versa. In addition, there is a cost h̄
of holding a packet per unit time.

For each n, we can solve a separate Markov decision process
(MDP) and obtain an optimal policy to determine when to
transmit uncoded and when to wait. Using the optimal policy,
we develop a discrete time Markov chain (DTMC) for each
n, analyze that DTMC and obtain the latency for each n.
In addition, we can also compute the average number of
transmissions per unit time for each n. Using that we can
obtain cn, the average power consumed for each n. Recall the
time-scale assumption, due to which the battery being used
gets drained at approximately constant rate cn for each n.
In other words, the energy consumption rate of the node is
cn when the total energy in the node is between nK and
(n + 1)K. Using a semi-Markov process (SMP) analysis we
can obtain the steady-state probability of being in state n.
Based on the steady-state probabilities, we can obtain L, the
average latency and A, the availability. If the QoS criteria
are met, i.e. L < L and A > 1 − ε, then we are done.
Otherwise, the evaluation engine selects another tc(n) for all
n and iterates. Before forging ahead, it is worthwhile noting
that in Section V we will describe an alternate approach that
bypasses the MDP step.

III. INFORMATION FLOW

Given (fictitious) costs tc(n) for all n ∈ {0, 1, . . . , N} and
h̄ from the evaluation engine (see Figure 4), the objective in
this section is to develop a strategy for transmission with or
without XOR coding so that the long-run average cost per
unit time is minimized. For that, we consider the input-output
buffer model described in Figure 2. Refer to Section II-B for
a description of the parameters used. Figure 5 represents a
snapshot when an action needs to be taken. In particular, just
before a transmission opportunity, say there are i packets in
input buffer 1, j packets in input buffer 2, and battery energy is

5

nK (recall that battery energy is available as the equivalence
of the number of full batteries, and this changes very slowly
compared to the change in i and j). We next describe an
optimal policy in state {(i, j), n}, where n > 0.

N
 b

at
te

rie
s	

K	

n	
(i,j)	

λ1,λ2,h,tc(n)	

Action	

Fig. 5. Decision-making set up for information flow

Theorem 1: In state {(i, j), n}, the optimal policy is: (a)
perform XOR coding for the min(i, j) packets and send them
to the output buffer, then (b) if i > j, then send the smallest
number of packets from input buffer 1 to the output buffer
uncoded so that there is no more than L1(n) packets left
in input buffer 1 (likewise, if i < j, then send the smallest
number of packets from input buffer 2 to the output buffer so
that there is no more than L2(n) packets left in input buffer
2).
Proof. We present an idea of the proof with minimal extra
notation. Let Sk be the time epoch when n changes for
the kth time. From our assumption in Remark 2, E[Sk+1 −
Sk] >> 1/min(λ1, λ2) for all k. For any k and at time Sk+
(i.e. immediately after Sk), say the information flow state
is {(i, j), n}. Between time Sk and Sk+1, since n remains
unchanged, the transmission policy can be developed for just
the various values of i and j. As E[Sk+1 − Sk] → ∞, the
situation is identical to that in [22], where we need to develop
an optimal policy in state (i, j) given costs tc(n) and h̄. In fact,
the optimal policy is indeed threshold type with thresholds
L1(n) and L2(n) (using [22]). Further, the information flow
state at time Sk+1, say {(i′, j′), n′}, would be such that (i′, j′)
is independent of (i, j) as E[Sk+1−Sk]→∞. This allows us
to solve during each interval Sk+1 − Sk, a separate “infinite
horizon” MDP as a limit of a finite-horizon MDP. In the limit
as we let E[Sk+1 − Sk]→∞, the resulting policy would be
the one described in the theorem.

Perform f(.,.) for min(i,j) and send to output buffer; then (if N=5)

i-j i-j

n

Leave in input buffer 2 Leave in input buffer 1

Fig. 6. Optimal policy after min(i, j) packets sent to output buffer

In addition, since tc(n) in non-increasing in n, for k = 1, 2,
Lk(n) would be non-increasing with n. Thus the resulting
policy in state {(i, j), n} is a switching curve. An example is
depicted in Figure 6. However, at this point we only know
the structure of the optimal policy but the optimal values
of L1(n) and L2(n) for all n are unknown. To compute
them, under arbitrary (L1(n), L2(n)), let U1

t (n) and U2
t (n)

be the number of packets in the first and second input queues
respectively just after all transmissions are completed at the tth

transmission opportunity for a given n (which remains fixed).
Then {(Z1

t , Z
2
t), t ≥ 0} is an irreducible DTMC with state

space

S(n)′ = {(0, L2(n)), (0, L2(n)− 1), . . . , (0, 1), (0, 0),

(1, 0), . . . , (L1(n)− 1, 0), (L1(n), 0)}.

The approach to obtain the stationary probabilities π(n)ij as
well as to use them to obtain the minimum long-run average
cost per unit time is identical to that in Mohapatra et al. [22].
Using that, say L∗1(n) and L∗2(n) are the optimal thresholds
and π(n)

∗
ij are the corresponding stationary probabilities.

Then the average battery power consumption when there is
the equivalent of n full batteries worth of power is

cn = ζn +
P
T

∑
(i,j)∈S(n)′

π(n)
∗
ijηij(L

∗
1(n), L∗2(n)), (1)

where ηij(L∗1(n), L∗2(n)) is the expected number of transmis-
sions during the next transmission opportunity given that after
the current transmission opportunity the state is {(i, j), n}, P
is the amount of battery energy consumed per transmission,
and ζn is the expected value of the power consumed to process,
sense and receive information at the node. A calculation
of ηij(L∗1(n), L∗2(n)) is provided in Appendix A. It is also
possible to compute the average latency in state n which we
state in the next theorem.

Theorem 2: The average latency (sojourn time in the node)
under optimal thresholds (L∗1(n), L∗2(n)) when the amount of
energy in the batteries is equal to n full batteries is:

`n =
1

λ1 + λ2

∑
(i,j)∈S(n)′

π(n)
∗
ij(i+ j) +

T

2
. (2)

Proof. To compute the time-averaged number of packets in
the node, for an arbitrary time slot of length T (i.e. the
time between transmission opportunities) in steady state, we
consider the beginning of the time slot as when a transmission
opportunity just passed. There are two types of packets, one
the i+j packets that are in the node at the beginning of the slot
(soon after previous transmission opportunity) as well as the
packets that arrive till the next transmission opportunity. Since
the probability that there are i packets in queue 1 and j packets
in queue 2 is π(n)

∗
ij , upon unconditioning we get the long-run

average number of packets left from the previous transmission
opportunity as

∑
(i,j)∈S(n)′ π(n)

∗
ij(i+j). Likewise, the time-

averaged number of new packets in a slot is 1
2 (λ1 + λ2)T

(this can be shown by an integration argument of the expected
number of new arrivals from 0 to T and dividing by T). Thus
the time-averaged number of packets in the node is∑

(i,j)∈S(n)′
π(n)

∗
ij(i+ j) +

T

2
(λ1 + λ2)

and using Little’s law, the mean sojourn time in the theorem
can be obtained by dividing the above expression by λ1 +λ2.

Now, we are in a position to pass on this information (cn
and `n) over to the energy flow side in Figure 4. However, it

6

is crucial to realize that the values cn and `n (as well as the
strategy of when to code and send uncoded) are dependent on
tc(n) for all n ∈ {0, 1, . . . , N} and h̄.

IV. OBTAINING AVAILABILITY VIA FLUID MODELS

Referring to Figure 4, we are now at the “fluid model”
stage. Using cn in Equation (1) and `n in Equation (2) for
all n from the information flow layer, and combining with
the battery-related parameters defined in Section II-B namely,
K, N , Z(t), Q and rm for all m ∈ S, our objective in this
section is to compute availability of the node, i.e. the long-run
fraction of time there is non-zero energy in the batteries. The
scenario is depicted in Figure 3. Recall that the node uses up
the batteries in a round-robin fashion, i.e. completely exhaust
a battery before using the next battery. Note that when the
total energy is between (n− 1)K and nK for n = 1, . . . , N ,
the energy discharge rate is cn (derived in Equation (1)). Say
we number the batteries 1, 2, . . . , N . For all b ∈ {1, 2, . . . , N}
let Xb(t) be the amount of energy in sensor battery b at time
t and Y (t) = k if battery k is used at time t.

Although the multivariate stochastic process
{(X1(t), X2(t), . . . , XN (t), Y (t), Z(t)), t ≥ 0} is
indeed a Markovian process, it is computationally
intractable to analyze. However, what we really need is
X(t) = X1(t) + . . .+XN (t) which is the total energy in the
entire node to compute P{X(t) > 0}, which in the limit as
t → ∞ is the availability. But X(t) by itself is not easy to
analyze since it is not Markovian unless K =∞. To address
this shortcoming, we consider two alternative policies to
exhaustive polling that are not realistic to implement, but if
implemented, would give us bounds on X(t):

1) Use battery with most energy at all times: Note that
this would result not only in frequent switching between
batteries but the real-time status of all batteries need to
be known, hence it is not implementable. However, this
policy is tractable because now the total energy in the
system, call it X∗(t), would be identical to that of a
large battery with storage capacity NK, energy input
rates Nrm for all m ∈ S if Z(t) = m, and energy
consumption cn when the total energy is between (n−
1)K and nK for n = 1, . . . , N .

2) Move energy between batteries: To upper-bound the
number of full batteries at all times, every time the total
energy X(t) reaches nK, we redistribute this energy
so that n batteries have full power while the remaining
N − n will be empty. Let X̄(t) be the total amount
of energy in the batteries when we use this alternate
policy. Note that X̄(t) would be identical to that of a
large battery with storage capacity NK, energy input
rates (N−n)rm for all m ∈ S if Z(t) = m, and energy
consumption cn when X̄(t) is in between (n−1)K and
nK for n = 1, . . . , N .

Theorem 3: If X(0) = X∗(0) = X̄(0), then

X̄(t) ≤ X(t) ≤ X∗(t)

for all t.

Proof. The reason for X(t) ≤ X∗(t) is that the only time
when the first alternative policy “wastes” energy (i.e. unable to
charge at full rate) is when all N batteries are full which would
be identical in case of the large battery being full. Thus at any
time there would be more energy in the system under the first
alternative policy. The second alternative policy would result in
a higher wastage of energy than the original exhaustive polling
policy since at time t when X(t) = nK, the energy nK would
typically be spread over more than n batteries. Thus fewer than
n batteries would be full in the actual system, thereby lesser
wastage. Hence we have X̄(t) ≤ X(t) at all t.

Remark 3: Analyzing the fictitious process process X∗(t)
would result in an upper bound on the availability of the
original system (i.e., the one with X(t)) and a lower bound
on the average latency since latency is lower when the amount
of energy level is higher. However, what we want is a lower
bound on the availability and an upper bound on the average
latency of the original system, which can be obtained by
analyzing X̄(t).

Z(t)
rn(t)

NK (N-1)K 3K 2K K

Region N Region 3 Region 2 Region 1

c

Fig. 7. Regions and thresholds in fluid flow corresponding to X̄(t) process

Thus for the remainder of this section, we focus on ana-
lyzing X̄(t) and leave aside X∗(t). The reason we presented
X∗(t) in the first place is because the lower bound becomes
easier to describe and explain. To analyze X̄(t), we consider
thresholds 0, K, 2K, . . ., NK and regions between these
thresholds. The regions are described in Figure 7, where
rn(t) = (N − n)rZ(t). Besides the situation when X̄(t) = 0
or X̄(t) = NK, it is entirely possible in the mathematical
abstraction that the values N , n, rm and cn are such that the
energy level would be “stuck” at a threshold. This happens
because on both sides of the threshold, there is a drift toward
the threshold n in state m. With that caveat we now proceed
with analyzing the steady state distribution of X̄(t) and
compute the availability as 1− P{X̄(t) = 0} as t→∞.

t	

X(t)	

3K	

2K	

K	

S1	
 S2	
 S4	
S3	
 S5	
 S6	
 S7	
 S9	
S8	

Fig. 8. Sample path of X̄(t) with Markov regenerative epochs, N = 3

To obtain the availability, we use a semi-Markov process
(SMP) model. At Markov regeneration epochs {Sk, k ≥ 0},
either X̄(t) crosses a threshold, or the environment changes
state when X̄(t) is stuck at a threshold. A sample path is
provided in Figure 8. Define Wk = (n,m) if X̄(Sk) = nK
and Z(Sk) = m. The state space of Wk is T := {0, . . . , N}×

7

S . Now, define Ŵ (t) = WN(t), where N(t) := sup{k ≥ 0 :
Sk ≤ t}. Then we have the following theorem.

Theorem 4: The sequence {(Wk, Sk) : k ≥ 0} is a Markov
renewal sequence. The process {Ŵ (t), t ≥ 0} is an SMP with
{Wk, k ≥ 0} an irreducible DTMC embedded in the SMP.
Proof. Recall that {Sk, k ≥ 0} is a sequence of Markov
regeneration epochs. That is because once we know X̄(Sk),
we can predict the evolution of X̄(t) for all t ≥ Sk without
knowing any history, i.e. before time Sk. Then, by definition
and the structure of Wk, the sequence {(Wk, Sk) : k ≥ 0}
is a Markov renewal sequence. Then the piecewise constant
process {Ŵ (t), t ≥ 0} is an SMP with {Wk, k ≥ 0} an
irreducible DTMC embedded in the SMP.

To analyze the SMP we once again differentiate between
seeing the system in a region versus a threshold. Given Wk =
(n,m), we can find out whether the energy level in the system
is going to enter a region or remain stuck at the threshold nK.
When Wk = (n,m) indicates that the energy level is going
to to be stuck at the threshold nK, we call the state (n,m) a
sticky state. The set of all sticky states:

T1 = {(n,m) ∈ T : n = 0,m ∈ S−1 ; or n = N,m ∈ S+N ;

or 0 < n < N,m ∈ S+n ,m ∈ S−n+1},

where S−n and S+n are the sets of states in S that correspond to
net discharging and net charging rates (respectively) in region
n. We will call the states in the set T \ T1 as non-sticky
states. With that we are in a position to describe the limiting
availability and average latency.

Let π̂ be the stationary distribution of the embedded Markov
chain {Wk, k ≥ 0}, and τnm be the expected sojourn time of
the SMP {Ŵ (t), t ≥ 0} in state (n,m) for (n,m) ∈ T . The
limiting availability is given by

A = lim
t→∞

P
(
Ŵ (t) /∈ {(0,m) : m ∈ S−1 }

)
= 1−

∑
m∈S−1

π̂0mτ0m∑
(n,m)∈T π̂nmτnm

. (3)

Likewise, the average latency is given by

L =

∑
(n,m)∈T π̂nmτnm`n∑
(n,m)∈T π̂nmτnm

, (4)

where `n is is described in Equation (2).
It is possible to compute π̂nmτnm for all (n,m) ∈ T using

spectral expansion methods (see Appendix B). Alternatively,
one could use matrix analytic methods (see da Silva Soares
and Latouche [24] and Bean et al. [25]). Before proceeding
ahead, it is crucial to make the following remark.

Remark 4: Note that A is a lower bound on the availability
of the original system, whereas L is an upper bound on the
average latency of the original system.

V. PUTTING IT ALL TOGETHER

We have come a full circle in Figure 4 where we began with
the evaluation engine setting costs tc(n) (for all n) and h̄, and
now have returned the availability A from Equation (3) and
average latency L from Equation (4), back to the evaluation
engine. The evaluation engine checks if the required QoS in

terms of availability (A > 1 − ε) and latency (L < L) are
met. If they are met we are done, else we can modify h̄ and
tc(n) for all n and go over the process once again. However,
before we address how the evaluation engine selects a new set
of h̄ and tc(n) for all n, we state a more fundamental question
whose response would guide us with the evaluation engine.

What should the node advertise as its availability guarantee
1 − ε and latency guarantee L? For this we consider two
policies for transmitting packets. Refer to Mohapatra et al.
[22] for details regarding the policies:

1) Transmit-all policy: In this policy the node codes packets
opportunistically, i.e. min(i, j) if there i packets in
queue 1 and j in queue 2. Then the remaining packets
|i − j| are transmitted without coding. In other words,
this is equivalent to setting L1(n) = 0 and L2(n) = 0
for all n. So at the end of a transmission opportunity,
the node is always empty resulting in the lowest possible
latency. However, it would also correspond to the lowest
availability of the node among all policies.

2) Always code lower λ policy: In this policy if λ1 < λ2,
the packets in queue 1 will always be coded while
packets in queue 2 will use opportunistic coding. In
other words, this is equivalent to setting L1(n) =∞ and
L2(n) = 0 for all n. This would minimize the number of
transmissions (among all policies that ensure stability)
and in fact keep the mean transmission rate at λ2. Thus
this policy would result in a higher latency than transmit-
all policy while maximizing the availability among all
policies that ensure stability.

We use the above two policies to determine the target
levels of availability 1 − ε and latency L. As a first step we
select the time between transmission opportunities T so that
the average latency is reasonable. For that we consider the
transmit-all policy for which the average latency is T/2. Next
we select the number of batteries N . For this we compute
the availability under always code lower λ policy for which
the average number of transmissions per unit time is an easy
computation, namely max(λ1, λ2). Then we pick the smallest
N that satisfies a reasonable availability. Once T and N are
decided, we determine the latency and availability of transmit-
all policy and always code lower λ policy. It is schematically
depicted in Figure 9. We select the target levels of availability
1− ε and latency L as the midpoint between the values of the
two policies.

Next, to achieve the target availability and latency (these
are not satisfied by transmit-all policy or always code lower
λ policy), we consider the following procedure:

1) Determine T , N , K, λ1, λ2, Q, r1, r2, . . . , rM , P , ε
and L.

2) Begin by setting tc(n) = 1/n for all n ∈ {1, . . . , N}
and h̄ = 0.05.

3) Obtain the optimal thresholds L∗1(n) and L∗2(n) for all
n ∈ {1, . . . , N}.

4) Compute the average energy consumption rate cn using
estimates of ζn, and latency `n when the total battery
energy is equivalent to n full batteries, for all n ∈
{1, . . . , N}.

8

Availability	

La
te

nc
y	

1-ε	

L

Transmit-all	

Always code lower λ	

Fig. 9. Setting latency and availability targets based on other policies

5) Calculate availability A and average latency L.
6) If A > 1− ε and L < L, go to step 7. Otherwise, reset

tc(n) for all n ∈ {1, . . . , N} and go to step 3.
7) Operate the node using the optimal thresholds L∗1(n)

and L∗2(n) for all n ∈ {1, . . . , N}.
Before illustrating the above procedure using a numerical

example, we briefly state how to reset tc(n) values for all
n ∈ {1, . . . , N}. We essentially adopt a greedy-yet-informed
approach as our objective is only to obtain a feasible solution.
Essentially, increasing tc(n) would result in fewer transmis-
sions, hence improving availability but worsening latency (i.e.
going toward the always-code-lower-λ in Figure 9), and vice
versa. However, if both availability and latency are worse, then
increase tc(n) for lower n while reducing it for higher n.
That is because the average energy level would correspond
to higher n and hence the latency would be affected only by
changing costs for higher n. On the contrary, availability is
affected heavily by smaller n as in those states we need to
avoid the energy levels reaching zero. We are unable to provide
a mathematical expression for the speed of convergence of this
algorithm. Since it works similar to a binary search algorithm,
we believe the convergence rates would be similar to a binary
search.

We now present a numerical example. We consider the case
λ1 = 2, λ2 = 2.4, ζn = 0 ∀ n, P = 1/9, and the numerical
values of K, Q, and r1, r2, . . . , r5 described in Section II-C.
We select T = 1, giving us an average latency of 0.5 under
the transmit-all policy. Next, similar to Table I in Section
II-C, we obtain for various N the availability for c = 2.4/9
(since mean transmission rate is 2.4 and P = 1/9) from the
always code lower λ policy. We choose N = 6 batteries for
an unavailability of order of the order of 10−7, our initial cut.
For the case T = 1 and N = 6, Table II provides the mean
transmission (Tx) rate, availability and mean latency, under
both transmit-all policy as well as always code lower λ policy.
Notice from the table that the transmit-all policy has a much
lower availability but a much better latency than always code
lower λ policy. Also notice that the mean transmission rate of
3.0266 for the transmit-all policy is much lower than λ1 +λ2
which would be the case if we did not do any network coding.
In addition, conforming to our intuition, the always code lower
λ has a mean transmission rate of 2.4 which is max{λ1, λ2}.

TABLE II
AVAILABILITY AND LATENCY FOR TRANSMIT-ALL AND ALWAYS CODE

LOWER λ POLICIES

Policy Mean Tx Availability Mean
rate latency

transmit-all 3.0266 1− 3.5787× 10−5 0.5
always code lower λ 2.4 1− 8.6641× 10−7 1.4799

We select the target levels of availability 1 − ε = 1 −
1.8326795 × 10−6 and average latency L = 0.98995 as the
midpoint between the values of the two policies in Table
II. Now we follow through the steps to obtain the optimal
thresholds L∗1(n) and L∗2(n) for all n such that the resulting
availability is above its target and the resulting latency is
below its target. We choose h̄ = 0.05 as described in the
above procedure. The other inputs and the outputs of the first
iteration are depicted in Table III. It results in an availability
A = 1 − 2.4114 × 10−6 and average latency L = 0.7295.
While the average latency L is below L, the availability A is
not greater than 1− ε.

TABLE III
FIRST ROUND OF ITERATIONS TO OBTAIN LATENCY AND AVAILABILITY

n 1 2 3 4 5 6
tc(n) 1 1/2 1/3 1/4 1/5 1/6
L∗
1(n) 10 5 4 3 2 2

L∗
2(n) 2 2 1 1 1 0
cn/P 2.4302 2.4847 2.5345 2.5731 2.6275 2.7077
`n 1.1165 0.9491 0.8536 0.7990 0.7434 0.6794

10 7 10 6 10 5 10 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(1 Availability) in log scale

La
te

nc
y

Transmit all

Always code lower

Using our procedure

Fig. 10. Unavailability versus latency for three policies

Thus in the second round of iteration, we increase the
costs tc(n) by multiplying each by a factor 1.5 and retain
h̄ = 0.05 as described in the above procedure. The other
inputs and the outputs of the second iteration are depicted in
Table IV. It results in an availability A = 1− 1.7423× 10−6

and average latency L = 0.8052. To compare these values
of availability and latency against those of transmit-all and
always code lower λ policies see Figure 10. Now the average
latency L is below L, and the availability A is greater than

9

1 − ε. Thus the procedure is complete and we operate the
node using threshold L∗1(n) and L∗2(n) in Table IV. The
node would also advertise its QoS guarantee for availability
as 1 − ε = 1 − 1.8326795 × 10−6 and average latency
L = 0.98995.

TABLE IV
SECOND ROUND OF ITERATIONS TO OBTAIN LATENCY AND AVAILABILITY

n 1 2 3 4 5 6
tc(n) 1.5 1.5/2 1.5/3 1.5/4 1.5/5 1.5/6
L∗
1(n) 14 8 5 4 3 3

L∗
2(n) 2 2 2 1 1 1
cn/P 2.4140 2.4450 2.4847 2.5345 2.5731 2.5731
`n 1.2059 1.0569 0.9491 0.8536 0.7990 0.7990

As an alternative to the above approach we can also con-
sider a method to obtain operating thresholds by completely
bypassing the MDP. The key idea is that for any given set of
thresholds L1(n) and L2(n) for all n ∈ {1, . . . , N}, we can
directly use the DTMC to obtain average energy consumption
rate cn and latency `n when node energy is equivalent to n
full batteries. Then we can calculate availability A and average
latency L. If A > 1 − ε and L < L, we are done and we
can operate the node using the thresholds L1(n) and L2(n)
for all n ∈ {1, . . . , N}. Otherwise, we can pick another set
of thresholds L1(n) and L2(n), and try again. While this
method avoids MDP and fictitious costs, the difficulty is in
selecting the next set of thresholds as the relationship between
thresholds and the performance metrics is not straightforward.
Also, a complete enumeration of the vector of thresholds
would be more time-consuming than the MDP fictitious cost
based method. To further elaborate on this, we consider 10
different sets of threshold values and plot the trade-off between
latency and unavailability. The 10 different sets are described
in Table V (the choices, though arbitrary, have been biased
by the previous set of values). The latency and unavailability
values for each of the 10 sets of value is depicted in Figure
11.

10
−5.9

10
−5.8

10
−5.7

10
−5.6

10
−5.5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

(1−Availability) in log scale

La
te

nc
y

set 1

set 2

set 3

set 4 set 5
set 6

set 7 set 8 set 9

set 10

Fig. 11. Unavailability versus latency for 10 sets of thresholds

Before wrapping up, it is worthwhile pointing out a couple
of technical glitches. One is that it is important to realize that

TABLE V
SETS OF THRESHOLD VALUES TO STUDY AVAILABILITY-LATENCY

TRADEOFF

n 1 2 3 4 5 6
Set 1 L1(n) 15 14 13 12 11 10

L2(n) 3 3 2 2 1 1
Set 2 L1(n) 8 7 7 6 6 5

L2(n) 5 4 3 2 1 0
Set 3 L1(n) 20 16 12 8 4 0

L2(n) 10 8 6 4 2 0
Set 4 L1(n) 10 8 7 6 4 2

L2(n) 5 4 3 2 1 0
Set 5 L1(n) 13 9 6 4 3 2

L2(n) 3 3 2 2 1 1
Set 6 L1(n) 15 9 6 5 2 2

L2(n) 2 2 2 1 1 1
Set 7 L1(n) 15 14 13 3 2 1

L2(n) 4 4 4 1 1 1
Set 8 L1(n) 10 10 5 5 1 0

L2(n) 6 5 4 2 1 0
Set 9 L1(n) 5 4 3 3 2 1

L2(n) 4 4 2 2 0 0
Set 10 L1(n) 5 4 3 2 1 0

L2(n) 4 3 2 1 0 0

the calculation is done assuming that the availability is one.
Note that when the node is unavailable, the latency equals the
time spent in the unavailable state. While it is reasonable to
ignore the analysis when the node is unavailable considering
that ε is extremely small, when it is not small (such as 0.05
for example), it is recommended that a latency calculation be
done taking into account the unavailability. The second issue
is that it is entirely possible that the target availability and
target latency levels are infeasible to reach. In that case, the
best option is to advertise a QoS that is attainable. That said,
we next present some concluding remarks and present some
directions for future work.

VI. CONCLUSION

In this paper, in a single framework we analyzed packet
transmission and energy usage in a node of a wireless sensor
network harvested by energy from renewable sources. For that
we used a “decomposed” approach based on different time
scales, which is realistic considering that packet-level queue
lengths vary in micro-second granularity while discretized
energy levels take several minutes to change. Thus we model
the packet transmission policy knowing quasi-static infor-
mation regarding the discretized amount of energy available
while the energy usage benefited from knowing the average
power consumption. For the former, we used an MDP we had
developed for the non–energy aware case and extended it in
this paper to a switching curve that allows us to decide (given
the discretized energy level) whether packets that do not have a
pair to perform network coding should be transmitted without
coding, or wait for a future opportunity.

The optimal policy for a given discretized energy level
is threshold-type and the thresholds are non-increasing with
energy levels. The optimal thresholds, average power con-
sumption as well as mean latency in each discrete energy
level is computed using a DTMC. Given the average power
consumption, we use it now to model the energy level as a

10

continuous process, in particular, a stochastic fluid flow model.
Then we use an SMP to obtain the long-run probability (lower
bound) that all batteries are empty which can be used to obtain
the availability of the node. In addition, using the mean latency
in each energy level and steady-state probabilities from the
SMP, we can also obtain the aggregate average latency. We
use this framework to develop an iterative algorithm that finds
out the appropriate threshold values so that the node can satisfy
an advertised QoS in terms of availability and latency.

Besides considering information flow and energy flow in
a single framework, there are other unique features in this
research. Historically research in MDPs and other optimization
methods assumes that either cost and reward functions are
known or there is an easy mapping from performance to
cost. However, as shown here, while it is possible to find
the average power consumption and average latency given the
costs, there is no easy way to obtain the appropriate costs
for a target power consumption and latency values. This is
especially significant in our case where there is no operating
cost as the energy is harvested from renewable sources, and
all the costs are fictitious indeed.

Although we have focused on a somewhat restrictive frame-
work such as: (a) two neighbors, (b) Poisson arrivals, (c) XOR
coding, and (d) time-homogeneous environmental charging
processes, these can be suitably extended before embarking
upon issues such as energy-aware routing. In particular we
can extend to: (a) multiple neighbors by considering them
in a pairwise fashion as that is required for XOR coding;
(b) general arrivals by using Poisson arrivals as a first order
approximation; (c) other coding schemes and also in-network-
function-computing scenarios by computing the appropriate
transmission rates; (d) non-homogeneous environment charg-
ing process by considering a much larger state space for the
CTMC to include discretized time of the day and phase-
type distributions when exponentials are not appropriate. It
is crucial to note that the current algorithm takes a fraction of
a second to run, and it would not be an issue to perform these
extensions.

APPENDIX A
COMPUTING ηij(L

∗
1(n), L∗2(n))

To obtain ηij(L∗1(n), L∗2(n)), we first define the probabili-
ties p1k and p2l for some k and l in {0, 1, 2, 3, . . .} as:

p1k = P{A1 = k},
p2l = P{A2 = l},

where A1 ∼ Poisson(λ1T), and A2 ∼ Poisson(λ2T). Then,
ηij(L

∗
1(n), L∗2(n)) =∑

k,l

p1kp
2
l ×

[
[(i+ k) ∧ (j + l)]

+ [i+ k − [(i+ k) ∧ (j + l)]− L∗1(n)]
+

+ [j + l − [(i+ k) ∧ (j + l)]− L∗2(n)]
+
]
.

APPENDIX B
COMPUTING THE SMP STEADY-STATE PROBABILITIES

Here we describe an approach to obtain τnm and π̂nm for
all (n,m) ∈ T . For that, the kernel of the SMP is G(t) =
[G(n,m)(k,l)(t)], where

G(n,m)(k,l)(t) = P{W1 = (k, l), S1 ≤ t|W0 = (n,m)},

for all (n,m), (k, l) ∈ T . Using the Laplace Stieltjes transform
(LST) of the kernel, we can compute the expected sojourn
times τnm as

τnm = − d

dw

∑
(k,l)

G̃(n,m),(k,l)(w) at w = 0.

In addition, the transition probability matrix of the Markov
chain {Wn, n ≥ 0} can be obtained as P̂ = G(∞) =
G̃(0). The stationary probabilities π̂ of this Markov chain
can be found by solving the equations π̂ = π̂G̃(0) and∑

(n,m)∈T π̂nm = 1. So next we characterize the kernel and
its LST starting with the sticky states.

From a sticky state (n,m) ∈ T1, the SMP can only go to
another state (k, l) such that k = n and l 6= m. Since this
change is only due to the change of state from m to l in the
environment process, we have

G(n,m),(n,l)(t) =
qml

−qmm

(
1− eqmmt

)
,

and its LST G̃(n,m),(n,l)(w) =
qml

−qmm + w
.

Next we obtain the kernel elements’ LSTs for non-sticky initial
states. When the energy level is in region n, we define the
first passage time to reach either the upper threshold nK or
the lower threshold (n− 1)K as

Tn = inf
{
t ≥ 0 : X̄n(t) = 0 or X̄n(t) = K

}
,

where X̄n(t) = X̄(t)− (n− 1)K. Now, for m, l ∈ S, t ≥ 0,
and 0 ≤ x ≤ K, consider the joint distribution

Hn
ml(x, t) = P{Tn ≤ t, Z(Tn) = l|X̄n(0) = x, Z(0) = m}.

The distribution Hn(x, t) = [Hn
ml(x, t)] satisfies the PDE:

∂Hn(x, t)

∂t
−Dn ∂H

n(x, t)

∂x
= QHn(x, t),

where Dn is a diagonal matrix with [Dn]mm = (N − n +
1)rm − cn for m = 1, . . . , |S|.

Taking LST w.r.t. t, we obtain

Dn dH̃
n
(x,w)

dx
= (wI −Q)H̃

n
(x,w)

with boundary conditions:

H̃n
ml(K,w) = 1 if m = l,m ∈ S+n ,

H̃n
ml(K,w) = 0 if m 6= l,m ∈ S+n ,
H̃n

ml(0, w) = 1 if m = l,m ∈ S−n ,
H̃n

ml(0, w) = 0 if m 6= l,m ∈ S−n .

11

Once H̃
n
(x,w) is computed for every region n, we can

construct all non-zero kernel elements that correspond to
transition from a non-sticky state as:

G̃(0,m),(0,l)(w) = H̃1
ml(0, w) if m ∈ S+1 , l ∈ S

−
1 ,

G̃(0,m),(1,l)(w) = H̃1
ml(0, w) if m ∈ S+1 , l ∈ S

+
1 ,

G̃(N,m),(N,l)(w) = H̃N
ml(K,w) if m ∈ S−N , l ∈ S

+
N ,

G̃(N,m),(N−1,l)(w) = H̃N
ml(K,w) if m ∈ S−N , l ∈ S

−
N ,

and for all n that satisfy 0 < n < N ,

G̃(n,m),(n+1,l)(w) = H̃n+1
ml (0, w) if m ∈ S+n+1, l ∈ S

+
n+1,

G̃(n,m),(n,l)(w) = H̃n+1
ml (0, w) if m ∈ S+n+1, l ∈ S

−
n+1,

G̃(n,m),(n,l)(w) = H̃n
ml(K,w) if m ∈ S−n , l ∈ S+n ,

G̃(n,m),(n−1,l)(w) = H̃n
ml(K,w) if m ∈ S−n , l ∈ S−n .

ACKNOWLEDGMENT

This material is based upon work partially supported by the
AFOSR under Contract No. FA9550-13-1-0008. The authors
are grateful to the Sense & Sense-abilities group in I2R
Singapore for their inputs and discussions. The comments and
suggestions from the anonymous reviewers have significantly
improved the content and presentation of this work.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[2] M. Médard and A. Sprintson, Network coding: Fundamentals and
applications. Academic Press, 2011.

[3] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 4, pp. 243–254, 2006.

[4] M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design
for wireless networks,” in IEEE Information Theory Workshop (ITW),
2006, pp. 62–66.

[5] X. He and A. Yener, “On the energy-delay trade-off of a two-way relay
network,” in Proceedings of the 42nd Annual Conference on Information
Sciences and Systems (CISS), 2008, pp. 865–870.

[6] E. Ciftcioglu, Y. Sagduyu, R. Berry, and A. Yener, “Cost-delay tradeoffs
for two-way relay networks,” IEEE Transactions on Wireless Commu-
nications, vol. 10, no. 12, pp. 4100–4109, 2011.

[7] Y.-P. Hsu, N. Abedini, S. Ramasamy, N. Gautam, A. Sprintson, and
S. Shakkottai, “Opportunities for network coding: To wait or not to wait,”
in Proceedings of the IEEE International Symposium on Information
Theory Proceedings (ISIT), 2011, pp. 791–795.

[8] V. S. Borkar, “Control of markov chains with long-run average cost
criterion: The dynamic programming equations,” SIAM Journal on
Control and Optimization, vol. 27, no. 3, pp. 642–657, 1989.

[9] R. Cavazos-Cadena and L. I. Sennott, “Comparing recent assumptions
for the existence of average optimal stationary policies,” Operations
Research Letters, vol. 11, no. 1, pp. 33–37, 1992.

[10] L. I. Sennott, “The average cost optimality equation and critical number
policies,” Probability in the Engineering and Informational Sciences,
vol. 7, no. 1, pp. 47–67, 1993.

[11] M. Schäl, “Average optimality in dynamic programming with general
state space,” Mathematics of Operations Research, vol. 18, no. 1, pp.
163–172, 1993.

[12] A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh,
and S. I. Marcus, “Discrete-time controlled markov processes with aver-
age cost criterion: a survey,” SIAM Journal on Control and Optimization,
vol. 31, no. 2, pp. 282–344, 1993.

[13] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 6, no. 4, p. 32, 2007.

[14] N. Jaggi, K. Kar, and A. Krishnamurthy, “Near-optimal activation
policies in rechargeable sensor networks under spatial correlations,”
ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 3, p. 17,
2008.

[15] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy
management policies for energy harvesting sensor nodes,” Wireless
Communications, IEEE Transactions on, vol. 9, no. 4, pp. 1326–1336,
2010.

[16] P. Poggi, G. Notton, M. Muselli, and A. Louche, “Stochastic study
of hourly total solar radiation in corsica using a markov model,”
International journal of climatology, vol. 20, no. 14, pp. 1843–1860,
2000.

[17] H. Kantz, D. Holstein, M. Ragwitz, and N. K Vitanov, “Markov chain
model for turbulent wind speed data,” Physica A: Statistical Mechanics
and its Applications, vol. 342, no. 1, pp. 315–321, 2004.

[18] G. L. Jones, P. G. Harrison, U. Harder, and T. Field, “Fluid queue models
of battery life,” in Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2011 IEEE 19th International
Symposium on. IEEE, 2011, pp. 278–285.

[19] H. E. Kankaya and N. Akar, “Solving multi-regime feedback fluid
queues,” Stochastic Models, vol. 24, no. 3, pp. 425–450, 2008.

[20] P. Kiessler, G.-A. Klutke, and Y. Yang, “Availability of periodically
inspected systems subject to Markovian degradation,” Journal of Applied
Probability, vol. 39, no. 4, pp. 700–711, 2002.

[21] J. P. Kharoufeh, D. E. Finkelstein, and D. G. Mixon, “Availability
of periodically inspected systems with markovian wear and shocks,”
Journal of Applied Probability, vol. 43, no. 2, pp. 303–317, 2006.

[22] A. Mohapatra, N. Gautam, S. Shakkottai, and A. Sprintson, “Network
coding decisions for wireless transmissions with delay consideration,”
Communications, IEEE Transactions on, vol. 62, no. 8, pp. 2965–2976,
2014.

[23] V. Joseph, V. Sharma, U. Mukherji, and M. Kashyap, “Joint power
control, scheduling and routing for multicast in multihop energy har-
vesting sensor networks,” in International Conference on Ultra Modern
Telecommunication (ICUMT 09), 2009, pp. 1–8.

[24] A. da Silva Soares and G. Latouche, “Matrix-analytic methods for fluid
queues with finite buffers,” Performance Evaluation, vol. 63, no. 4, pp.
295–314, 2006.

[25] N. Bean, M. OReilly, and P. G. Taylor, “Hitting probabilities and hitting
times for stochastic fluid flows,” Probab. Eng. Inf. Sci, vol. 23, pp. 121–
147, 2009.

Natarajan Gautam is a Professor in the Department
of Industrial and Systems Engineering at Texas
A&M University with a courtesy appointment in the
Department of Electrical and Computer Engineering.
Prior to joining Texas A&M University in 2005, he
was on the Industrial Engineering faculty at Penn
State University for eight years. He received his
M.S. and Ph.D. in Operations Research from the
University of North Carolina at Chapel Hill, and
his B.Tech. from Indian Institute of Technology,
Madras.

His research interests are in the areas of modeling, analysis and performance
evaluation of stochastic systems with special emphasis on optimization and
control in computer, telecommunication and information systems. He is an
Associate Editor for the INFORMS Journal on Computing, IIE Transactions,
and OMEGA.

Arupa Mohapatra is a Member of Technical Staff
at Oracle Corporation. He received his B.Tech. de-
gree in electrical and electronics engineering from
the National Institute of Technology, Tiruchirappalli,
India and Ph.D. in industrial and systems engineer-
ing from Texas A&M University, College Station.

His research interests are in the areas of per-
formance evaluation and optimization in various
networked systems with a focus on wireless com-
munication networks and transportation networks.

