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Abstract

Data centers consume a phenomenal amount of energy which can be significantly reduced by
appropriately allocating resources using technologies such as virtualization, speed scaling and
powering off servers. We propose a unified methodology that combines these technologies under
a single framework to efficiently operate data centers. In particular, we formulate a large-scale
mixed-integer program (MIP) that prescribes optimal allocation of resources while incorporating
inherent variability and uncertainty of workload experienced by the data center. However, only
for small to medium-sized clients it is possible to solve the MIP using commercial optimization
software packages in a reasonable time. Thus for large sized clients we develop a heuristic
method that is effective and fast. We perform an extensive set of numerical experiments to
illustrate our methodology, obtain insights on the allocation policies, evaluate the quality of
our heuristic, and test the validity of the assumptions made in the literature. The results show
that gains of up to 40% can be obtained by using the integrated approach over the traditional
approach where virtualization, dynamic voltage/frequency scaling and powering off servers are
done separately.

1 Introduction

Data centers are among the fastest growing enterprises in the U.S. economy. Growing demand

for data services, the availability of high-volume Internet gateways, and the relatively modest

facilities requirements for server banks have led to an explosive growth in the data center industry.

Practically every single organization, especially if they have a web page, whether a private company

or a public undertaking, uses the services of a data center (in-house or outsourced, usually the latter)

to acquire, analyze, process, store, retrieve, and disseminate information. While these data centers

provide high quality of service, they also consume a phenomenal amount of energy. In a year, data

centers use about 60 billion kilowatt hours of electricity, accounting for 1.5% of all consumption in

the United States. Industry-wide data centers currently spend over $5 Billion annually on electricity

[10] and for their growth alone 10 new power plants would be needed by 2013 [27].
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Further, the greenhouse gas emissions by data centers is next to airlines, shipyards, and steel

plants. The combined greenhouse gas emissions from all data centers exceed what entire countries

like Argentina or the Netherlands emit [7]. Therefore, reducing energy consumption and thereby

greenhouse gas emissions in data centers is of paramount importance from an environmental

standpoint. In addition to the environmental impact, reducing energy consumption would also

result in serious economical gains. Computerworld [21] reports that power-related issues are already

a top concern in all data centers. For every watt of power used by IT equipment in data centers

today, another watt or more is typically expended to remove waste heat [21, 23]. In fact, energy

costs are higher than the cost to lease the space for data centers [19].

The key problem is that most of the energy consumed by data centers is not for useful work.

The utilization of an average server is very low, but it also consumes energy and generates heat

while being idle. One of the reasons for this low server-utilization is that most data centers are

built up of cheap servers running a single application [17]. A few data centers have begun to remove

dead servers, enable power-save features, and power off servers when not in use. But there are other

strategies that can be explored. IBM [11] recently announced that it should be possible to achieve

about 40-80% energy savings in data centers by power management. According to [8], “if you were

to implement all the data center efficiencies that could be reasonably achieved by 2015, it would save

the equivalent of the annual electricity consumption of 1.8 million homes.” To achieve that much

of energy savings, there exist technologies such as virtualization and dynamic voltage frequency

scaling (DVFS) that enable energy conservation. Virtualization allows data centers to consolidate

applications on a server. DVFS enables servers to run at slower speeds thereby significantly lowering

energy consumption. Hence it is also referred to as speed scaling. In addition, depending on the

load experienced, one could power down servers from time to time.

In this paper we devise a unified approach for resource allocation in data centers to remove all

feasible inefficiencies by combining virtualization, DVFS and powering on/off servers. The state of

the practice is that only a few data centers have begun considering these technologies and those

that do, use a somewhat ad hoc approach. However, the state of the art in terms of research is

mature and is summarized in Section 2. One of the major shortcomings of the previous research

is that it separates the strategic problem of virtualization (i.e., mapping applications to servers)

from the operational problem of DVFS and powering on/off. In particular, the articles on the

operational problem assume a certain structure for the strategic problem which we show is not

necessarily optimal. Likewise, the articles on the strategic problem are not operation-aware which

also is not optimal.
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To address the key energy-efficiency issues in data centers, we leverage upon the benefits of

virtualization, DVFS and powering servers on/off. We formulate the problem as a mixed integer

(0-1) program (MIP) that considers all three techniques and implicitly provides quality of service

(QoS). Our formulation determines which applications to allocate to which servers. Given a load

profile for various applications in a data center, our model decides how best to allocate them to

various servers via virtualization so that energy cost of operations is minimized. We determine

power on/off decisions, request-routing allocations and adjust the frequency of each server at a

fine granularity. However, this MIP is a large scale problem that is difficult to solve directly.

Therefore, we devise a heuristic method that provides close to optimal results for large instances of

the problem. We also compare the results of our integrated approach to the traditional case where

virtualization, DVFS and powering on/off servers is done separately. The results show that the

integrated approach provides gains of up to 40% in terms of energy consumption.

The contributions of this work are: a) a unified methodology that integrates virtualization,

DVFS, request routing and powering on/off servers so that the strategic decisions are operation-

aware and vice-versa; b) an MIP formulation of the integrated energy consumption reduction

problem; c) a heuristic method for solving the problem; and d) extensive computational results that

demonstrate that using the integrated approach over the traditional approach where virtualization,

dynamic voltage/frequency scaling and powering off servers are done separately provides substantial

energy savings. The rest of this paper is organized as follows: In the next section we review

related work and in Section 3 we state the relevant research questions. We give a formal problem

description and derive the formulation in Section 4 along with a description of how we resolve

uncertainty and non-stationarity while providing QoS. In Section 5 we derive a heuristic solution

method for the integrated problem and a two-phase heuristic for the non-integrated problem. We

report computational results in Section 6 and end with some concluding remarks and ideas for

future work in Section 7.

2 Literature Review

The recent rise in data-center energy costs has motivated the research that aims to reduce power

consumption (viz. using dynamic voltage/frequency scaling (DVFS), strategically powering on/off

servers, routing and virtualization). Speed scaling or DVFS enables servers to run at slower

processor speeds thereby significantly lowering energy consumption. Horvath et al. [14] present a

nonlinear optimization approach to control the energy efficiency of a multi-tier web server using
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a Dynamic Voltage Scaling (DVS) scheme. While acknowledging that turning servers on and off

can contribute to a reduction in the energy usage of multi-tier web servers, the authors assume

that such an energy savings approach has previously been implemented and consider the case

where all machines are on. Herbert and Marculescu [13] examine the benefits of using DVFS

on chip-multiprocessors. The authors explain the advantage of using DVFS and partitioning the

processor into voltage/frequency islands which consist of clusters of cores that are running at the

same frequency.

DVFS can be combined with turning the servers on/off. Petrucci et al. [25] study such a

problem and optimize power consumption levels by formulating an MIP. For large problem sizes

ranging from 150 to 500 servers, the solution approach presented was unable to find an optimal

solution within a prescribed time (300 seconds), so the authors present the solution gap between

the best feasible solution found and the lower bound. The key assumption is that all applications

reside in all servers (we call that a cluster of servers). Chen et al. [5] investigate the use of multiple

power management techniques in data centers. Their model incorporates turning servers on/off

and DVFS with all servers (in a cluster) running at the same frequency, while providing a QoS

guarantee. Three different approaches for the power efficiency problem are investigated; a pro-

active approach, a reactive approach, and a hybrid approach that combines the previous two. The

pro-active model predicts the incoming workload behavior and uses this information in a queueing

model to control the power usage of the system. The reactive model controls the power management

strategy by using feedback control, while the hybrid scheme combines the two approaches by using

the predictive information gathered to allocate applications to servers and the feedback to control

the DVFS scheme. Bertini et al. [1] develop a MIP model for the energy-efficiency problem for

data centers. Energy saving strategies incorporated in their model include turning servers on and

off and choosing what speeds the servers will run at. A QoS constraint is also employed to control

the fraction of deadlines met and by how late the requests are upon completion.

Having described DVFS and powering on/off, next we consider virtualization. Virtualization

allows data centers to run more than one application on a server. Kusic et al. [16] use virtualization

and examine how turning servers on and off can reduce the power consumed by the physical

machines. The authors formulate the problem of determining the allocation of resources as an

optimization problem. Control theory is used to handle adapting to the varying workload, while

attempting to satisfy a QoS constraint. To validate the setup, the authors simulate a system

consisting of six servers with two applications. Padala et al. [22] take a control theoretic approach

to achieve high utilization of servers in data centers by adopting virtualization techniques while
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meeting QoS goals. They examine the case when the system consists of multi-tier applications

with varying QoS goals at each tier and conduct their experiments using five servers, two of which

host two applications. This is in contrast with our objective since we seek to maximize the energy

efficiency of the system while meeting QoS goals. Also, DVFS and turning servers on and off are not

implemented. Wang et al. [31] take a two-layer control theoretic approach to the energy efficiency

problem of virtualized systems. On one level, the strategy is to attempt to balance the load among

the virtualized machines so that they can have similar response times. On the other level, the

frequency of the CPU is adjusted in order to increase the power efficiency. Their setup uses two

computers that hosts three virtual machines. However, the configuration does not account for the

ability to turn servers on and off.

The process of assigning applications to servers has been studied using different techniques that

include graph-theoretic approaches as well as heuristics. For example, Houstis [15] determines an

optimal allocation of an application to a k-processor system with the objective of minimizing the

total processing time for an application. More recent articles on assigning applications to servers

include Chandra et al. [2] and Urgaonkar et al. [29]. Chu and Lan [6] propose a heuristic to allocate

tasks to processors in a distributed system. They also assume that tasks have been partitioned into

modules that are to be allocated to processors. Chen et al. [3] addresses issues with load balancing

and proposes routing strategies that enable powering on-off of servers. Le et al. [18] consider

routing, not within a data center, but across geographically distributed data centers so that cost

is minimized with minimal environmental impact. Tindell et al. [28] use simulated annealing to

address the task assignment problem for a set of processors that have a fixed processing speed and

capacity. Garcia and Harbour [12] show how heuristics can be used to assign priorities to tasks in

a distributed real-time system to minimize end-to-end delay.

There has also been significant research proposing new architectural designs for data centers

to optimize energy-efficiency as well as research on understanding which data center components

contribute the most to power-efficiency issues. Meisner et al. [20] propose an energy saving approach

called PowerNap. The proposed design seeks to minimize the amount of power consumed while

the system is operating in a state with a low workload while also minimizing the time required

to transition from a high power state to a low power state, and vice versa. The design works by

alternating between a high power state and a low power state. The authors compare their concept

with a system capable of utilizing DVFS by comparing performance metrics such as energy savings

and response time based on a queueing model.

Pelley et al. [24] develop models that can be used to simulate the major components of a
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data center including servers, power conditioning equipment, cooling systems, networking systems,

and lighting systems. The authors show which subsystems of a typical data center consume the

most power. As expected, servers typically consume the most power in data centers and the authors

simulation model validate this assumption. In fact, the authors show that servers typically consume

56% of the total power utilized. To put this into perspective, the next highest power-consuming

subsystem in a data center is the cooling system which consumes 30% of the available power, while

the remaining subsystems consume the remaining 14% of the available power. That said, Table 1

summarizes the power management techniques used in papers that are most related to our research.

Table 1: Summary of related work using multiple servers and multiple applications

Assigning Applications Routing Requests Primary
Paper To Servers Among Servers DVFS On/Off Methodology

[1] No No Yes Yes MIP
[3] No Yes No Yes NLP/Q
[5] No No Yes Yes NLP/Q
[14] No No Yes No NLP
[16] No No No Yes CT
[25] No No Yes Yes MIP
[29] Yes No No No MIP

This work Yes Yes Yes Yes MIP
Legend: MIP - Mixed Integer Programming; CT - Control Theory; NLP - Nonlinear Programming; Q - Queueing

3 Research Questions

Having reviewed the literature, we now postulate research questions that we seek to answer by way

of this study. Most of the research questions are based on the shortcomings of the literature. In

particular, the strategic problem of allocating applications to servers, and the operational problem

of deciding the server speeds, routing and power on/off have been dealt with separately in the

literature. We will study whether they need to be considered in a unified framework. In particular,

we would like to know if the assumptions made while studying them separately are reasonable when

they are considered in a unified framework. That motivates us to ask the following key research

questions:

1. Are servers clustered across applications? All relevant papers in the literature, which consider

DVFS and/or powering on/off servers such as Petrucci et al. [25] and Chen et al [5], not only

assume that the allocation of applications to servers is already done, but also resulting in

clusters of servers with the same set of applications. For example, three servers would all

contain the same four-application set {a1, a2, a3, a4} for some ai ∈ A (i = 1, 2, 3, 4). The
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rationale behind this assumption is that servers can be powered down during lean periods

and fired up at fastest frequencies during peak periods.

2. Are applications positively or negatively correlated assigned to the same server? A natural

approach is to pair up applications that are positively or negatively correlated and run them

on a single server (see Verma et al. [30]). The rationale behind that is that when applications

are positively correlated, during lean periods the servers can be powered down, whereas when

they are negatively correlated the effective load is lower and thereby one can operate at a

lower server frequency. Clearly, it would enable decoupling the strategic decision of assigning

applications to servers from the operational ones.

3. Are assignments based on peak loads a good idea? Given a fixed capacity of a data center,

it is fairly common (see Peak Clustering based Placement in Verma et al. [30] and references

therein) in resource allocation to make decisions only considering peak periods. Then, it

is also common to use this resource assignment as a benchmark for other periods including

lean periods. The notion is that if we carefully allocate resources during peak loads, one can

always design methods to reduce energy consumption during lean periods. The argument

that goes against this is that during peak loads one does not have much of a choice but run

the system at full capacity, it is only during lean periods there is scope to save energy and

this must be done effectively.

4. Are servers running at the same frequency in a given time interval? While solving the

stochastic control problem of deciding what frequencies or speeds to run servers, it is often

convenient (as done in Chen et al [5]) from an analytical standpoint that all “on” servers run

at the same frequency at any given time. The rationale is that if the set of frequencies is from

a continuous spectrum, then the frequency used by every server would converge to a constant

value.

5. Is the workload for each application split across servers similarly over time? DVFS and

powering on/off are sometimes performed independently of each other at each server with a

forecast of workload such that workload is split across servers in a pre-assigned manner (see

Chen et al. [3]). This means that the workload is more-or-less a constant across time for all

applications and servers.

6. Is it sufficient to just consider powering on/off without doing DVFS? Articles in the literature

(Meisner et al. [20]) have suggested that it may be efficient to just power servers on and off
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without worrying about DVFS. So if a server is on, it just runs at the maximum frequency or

it is powered off. The intuition is that a server might as well run at highest speed and provide

excellent QoS since even at the lowest speed a significant amount of power is consumed.

7. Is the selected frequency during any interval of bang-bang nature, i.e. the highest or lowest

possible frequency? Many articles (viz. Dhiman et al. [9]) suggest that instead of having

a spectrum of frequencies it is sufficient to just have two, the highest and lowest possible.

This way the server could pile up some requests, then serve them all at the fastest rate.

Although our formulation does not consider changing frequencies at such a small granularity,

a bang-bang policy at the larger granularity could certainly imply the same in the smaller

granularity.

8. Is it necessary to consider all the applications while making assignment, routing and frequency

selection? Data centers like many other systems experience loads from applications based

on the Pareto principle, i.e. 20% of the applications (called elephants) constitute 80% of the

load. Why not just use those 20% of applications, i.e., elephants (as described in Singla et al

[26]), to make decisions, perhaps the problems would be faster to solve? A simpler question

to ask is whether allocation based on the elephants will provide a near-optimal allocation

when mice (the remaining 80% of applications) are also present.

Next we present our methodology and provide answers to the above research questions later in

Section 6 after presenting our computational results.

4 Problem Description and Model Formulation

Data Center Pre processing Model inputs Processing Model outputs
Focus of this study

Equipment, processes, 
requirements, clients, 
historical data: demand, 

workloads, energy 
ti

Notion of servers, 
applications, time‐slots, 
and all parameters in 

Table 2

Data Center Pre‐processing Model inputs
Application to server 
assignments, power 

on/off servers, routing 
and frequency setting, 
i.e. all parameters in 

Processing Model outputs

consumption
p
Table 3

Energy consumption 

Not okay

goodVerification, validation, 
implementation and gy p

and QoS

Post‐processingSimulation outputsCalibration

implementation and 
testing

Figure 1: Process of modeling, analysis and implementation
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We first describe the scope of this research study depicted in Figure 1. In this paper we focus on

the Processing step that takes the Model inputs and converts them to Model outputs. However, we

assume that the pre-processing step of converting the data center system into the “model inputs”

is already done. Understandably, this is an art which would be tailored to individual data centers.

In particular, the data center would have to model equipment (by aggregating or decomposing)

abstractly so that they can be called servers. Likewise client processes and requirements would have

to be mapped to applications. Then based on historical data, model-parameters such as demand,

workload and energy consumption over time and space can be obtained and an appropriate way

to partition the decision horizon into time-slots would be determined. This would result in the

parameters that we later list in Table 2. Another crucial aspect that is left out of this study

includes the post processing phase of determining the true energy consumption and QoS by running

simulations as well as issues such as verification, validation, implementation and testing. Once

again, these would be specific to individual data centers and would have to be done on a case-

by-case basis. That said, we next describe the detailed model and formulation, followed by some

theoretical underpinnings.

4.1 Model and Formulation

We consider a data center with a set of applications A that need to run on a set of (not necessarily

homogeneous) servers S. These applications can be web services, databases, etc., and they are

CPU intensive. More than one application can run on a server at a given time using virtualization

technology (if necessary). In addition, it is crucial to note that an application can simultaneously

run on more than one server. Thus servers run multiple applications and an ingress router sends

incoming requests to the servers running the appropriate application. We seek to answer the

strategic question of how to assign applications to servers bearing in mind that not more than Cj

applications can be assigned to server j for all j ∈ S. By assigning applications to servers we mean

using a single physical server to run multiple virtual servers, one virtual server for each application.

So this virtual server set up is one time and it is possible for jobs to migrate from one virtual server

to another in small time scales which we take advantage of between time intervals.

Once the strategic assignments are made, the operational decisions include whether to power

on or off a given server, if on at what speed to run the server and what fraction of an application’s

requests to route there. The technology that enables a server to run at many speeds is DVFS.

Essentially a server’s CPU can be slowed down by adjusting the voltage and/or frequency thereby

significantly reducing the energy consumed. The frequency of a CPU is directly proportional to
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the voltage supplied, and for the remainder of this paper, we shall use the term frequency instead

of voltage (in fact in the literature this is also referred to as DVFS for Dynamic Voltage/Frequency

Scaling or just speed scaling). Measurements have shown that the energy consumption is ap-

proximately a third-order polynomial function of the frequency (see references in Chen et al [5]).

However, slower frequency does mean that time to process jobs would be correspondingly slower

too.

We consider a planning horizon that encompasses a set of time slots T . In each time slot we

decide whether each server must be powered on or off and if on, at what frequency it must run in

that time-interval (the application to server assignment remains fixed during the entire planning

horizon). For example, in all our numerical experiments we consider a planning horizon of one day

and each day is divided into 24 one-hour time slots within which the server runs at a particular

frequency (with a frequency of zero corresponding to the server powered off). We assume that a

forecasted average load profile is available for each application during each time slot. Note that in

many cases the forecast load remains relatively unchanged from day to day resulting in identical

application to server assignments on a daily basis.

For convenience, we provide the notation we use to describe our formulation in Tables 2 and 3.

In our model λit will denote the forecasted average job arrival rate for application i at time slot t (in

units of number of jobs per second) for all i ∈ A and t ∈ T . Also, 1/µi is the average workload that

each arriving class i (for all i ∈ A) brings in for service. The speed at which jobs can be processed

by a server is proportional to the frequency the server’s CPU runs at. Specifically, let Zj be the

set of possible frequencies for server j using DVFS (for all j ∈ S). Then for any j ∈ S, the speed of

server j in terms of the amount of workload it can process per second is given by γjz for all z ∈ Zj .

To provide reasonable QoS for the job requests, we use a maximum allowable traffic intensity at

each server to be ρ. In other words, the average workload that arrives at server j per unit time

for all j ∈ S must not exceed ργjz at any time period if the server runs at frequency z ∈ Zj . We

will show in Section 4.2 how this addresses uncertainty, non-stationarity and QoS. Also, the data

center incurs a cost of βjzt per second when server j is operated at frequency z during time interval

t for all j ∈ S, z ∈ Zj and t ∈ T .

The inputs to the decision-making framework considered here are: A, S and T , as well as

variables based on them such as Zj , Cj , γjz, λit, µi, ρ and βjzt for all i ∈ A, j ∈ S, z ∈ Zj

and t ∈ T . The goal of this paper is to effectively manage resources through virtualization, DVFS,

routing and powering on/off by considering them in a single framework. Our objective is to minimize

the energy cost incurred to operate the data center during the course of a planning horizon so that
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Table 2: Notation corresponding to problem statement inputs

Sets
A index set of applications
S index set of servers
T index set of time slots (e.g. every hour of a week)

Parameters
Zj index set of frequency options of server j ∈ S
Cj maximum number of applications assignable to server j ∈ S
γjz capacity of server j ∈ S (workload per second) under frequency z ∈ Zj , units: workload/time
λit average number of arrivals per second for application i at time slot t for all i ∈ A, t ∈ T

1/µi average workload brought by each arriving application i request for all i ∈ A
ρ target load for all servers (surrogate for quality of service)
βjzt cost incurred per second when server j runs at frequency z at time t, ∀ j ∈ S, z ∈ Zj , t ∈ T

Table 3: Decision variable list ∀i ∈ A,∀j ∈ S,∀z ∈ Zj , ∀t ∈ T

Decision Variables
xij xij = 1 if application i is assigned to server j, 0 otherwise
vijt fraction of arrivals of application i assigned to server j during interval t
ujzt ujzt = 1 if server j runs at frequency z during time t, 0 otherwise

capacity and QoS needs are met. To do that we need to decide how applications are to be allocated

to servers (virtualization), which server to route each request for various applications and what

frequencies the servers should run (DVFS and power on/off) at each time period.

Let xij be the corresponding decision-variable so that if xij = 1, application i is assigned to

server j, otherwise xij = 0 for all i ∈ A and j ∈ S. Recall that an application can be assigned to

more than one server, and a server can run more than one application. Note that this assignment

does not change over the entire planning horizon. However, what could change during each time

slot in the horizon is the traffic split for various applications to servers they are running on. In

particular, let vijt be the fraction of arrivals of application i that are assigned to server j during

time interval t (∀ i ∈ A, j ∈ S and t ∈ T ). The final set of decision-variables deals with DVFS and

powering on/off servers during each time interval t ∈ T . For server j (for any j ∈ S) recall that Zj

is the available set of frequency indices. We assume that this set also contains a frequency z = 0

corresponding to the server powered down. Thus, we define ujzt for all j ∈ S, z ∈ Zj and t ∈ T as

ujzt = 1 if server j is running at frequency z during time interval t, otherwise ujzt = 0.

To minimize the cost incurred during a planning horizon subject to satisfying various capacity,

feasibility and allocation constraints we propose the following formulation (with decision variables
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xij , ujzt and vijt for all i ∈ A, j ∈ S, z ∈ Zj and t ∈ T ):

MIP1 : Min
∑
j∈S

∑
z∈Zj

∑
t∈T

βjztujzt (1a)

s.t.
∑
z∈Zj

ujzt = 1 ∀j ∈ S, ∀t ∈ T (1b)

∑
j∈S

vijt = 1 ∀i ∈ A, ∀t ∈ T (1c)

ρ
∑
z∈Zj

ujztγjz ≥
∑
i∈A

λit
µi
vijt ∀j ∈ S,∀t ∈ T (1d)

∑
i∈A

xij ≤ Cj ∀j ∈ S (1e)

vijt ≤ xij ∀i ∈ A, ∀j ∈ S, ∀t ∈ T (1f)∑
i∈A

vijt ≤ Cj(1− uj0t) ∀j ∈ S,∀t ∈ T (1g)

vijt ≥ 0, xij ∈ {0, 1}, ujzt ∈ {0, 1} ∀i ∈ A, ∀j ∈ S, ∀z ∈ Zj , ∀t ∈ T (1h)

The model MIP1 aims to minimize the total cost incurred during the planning horizon. Since

ujzt is a binary variable denoting whether or not server j used frequency z at time t, we can write

down the associated cost for server j during interval t as the sum over all z the product βjztujzt.

Thus by summing that over all servers across the planning horizon we get the objective function

(1a). Constraint (1b) ensures that during an interval t, server j can run only at one frequency

(including z = 0 denoting a server being off). Thus if server j runs at frequency z at time t,

then ujzt = 1 and ujz′t = 0 for all z′ 6= z. Constraint (1c) ensures that all of application i traffic

is divided across various servers at every time interval. Since vijt is the fraction of application i

requests in time interval t that gets assigned to server j, the sum over all servers must be one.

Next, recall that the average workload that arrives at server j must not exceed ργjz at any

time period if the server runs at frequency z. By selecting a ρ < 1 using the process described

in Section 4.2, we ensure that the QoS is met under a stochastic and time-varying environment.

Through constraint (1d) where the LHS is the assigned capacity of server j in time interval t and

the RHS is the total workload that arrives to server j in time interval t we ensure that the mean

workload be no more than ρ times the assigned service capacity. In Section 4.2, we describe the

theoretical underpinnings to justify that constraint (1d) would account for uncertainty, variability

and QoS. Next, notice that xij determines whether or not application i is assigned to server j

(during the entire course of the planning horizon). Constraint (1e) enforces that not more than Cj

applications are assigned to server j. Constraint (1f) ensures that if application i is not assigned to

server j, then no fraction of arriving requests be assigned to that server during any interval of time.
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Further, it is critical that if server j is off during time t, then no traffic (across all applications)

be assigned to that server (that leads to Constraint (1g)). Although Constraints (1d), (1e) and

(1f) imply Constraint (1g), we added Constraint (1g) to tighten the formulation. Constraint (1h)

ensures non-negativity and binary nature of the decision variables.

In the above formulation, we would like to determine the number of decision variables and

number of constraints. For that we make a simplifying assumption that Zj = Z for all j (i.e. the

set of available frequencies are the same for all servers). Then there are a total of |S||A||T | real

decision variables and |S|(|A| + |Z||T |) binary decision variables. Also, the number of constraints

are 3|S||T |+ |A||T |+ |S|+ |A||S||T |, not including the non-negative and binary constraints. It may

be worthwhile getting a perspective of the problem dimension. If we first consider a 1-day planning

horizon with |T | = 24 hourly intervals and all servers with 8 non-zero frequencies, then including the

frequency of zero corresponding to the off state, |Z| = 9. For example, for small-sized clients with 20

applications and 10 servers, we have 4,800 real decision variables, 2,360 binary decision variables,

and 5,810 constraints (not including binary and non-negativity constraints). Also, for medium-

sized clients with 40 applications and 20 servers, there would be 19,200 real decision variables,

5,120 binary decision variables, and 21,220 constraints (not including binary and non-negativity

constraints). Thus for large-sized clients the mathematical program becomes extremely huge.

4.2 Theoretical Foundations Resulting in Constraint (1d)

In this sub-section we use fluid and diffusion limits to describe the methodology to obtain ρ in

constraint (1d) so that it would account for uncertainty, variability and QoS. For details on the

fluid and diffusion scaling, refer to Whitt [32] or Chen and Yao [4]. We first describe the results

in an abstract manner and towards the end of the section, we tie them to our data center context.

Consider a G/G/1 queueing system indexed by a scaling factor n with arrival rate λn and squared

coefficient of variation (SCOV) of inter-arrival times C2
a . Each arrival brings a random amount of

work which is independent and identically distributed (IID) with mean 1/µ and SCOV C2
s . Let fn

be the amount of work that can be processed per unit time, i.e. frequency or speed. Therefore, the

service times have a mean 1
µfn

and SCOV C2
s . We assume that 0 < λn <∞, 0 < fn <∞, C2

a <∞,

C2
s <∞. Also, as n→∞, λn → λ and fn → f such that (1− λn

µfn
)
√
n→ ζ such that 0 ≤ ζ <∞.

Define the virtual delay at time t by V (t) so that if an arrival occurs at time t, it would

experience a random delay V (t) to begin service under a first-in-first-out queue discipline. We

assume that V (0) = 0, which implies an initially empty system (this assumption can be relaxed

but we retain it because it would not affect our eventual analysis). Using Functional Central Limit
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Theorem (see Whitt [32]) it can be shown that the stochastic process {V (nt)√
n
, t ≥ 0} converges to a

Brownian motion with drift −ζ, variance term λ
(µf)2

(C2
a + C2

s ) and a barrier at the origin. Such a

reflected Brownian motion converges to a stationary distribution which is exponential with mean

λ(C2
a+C2

s )
2ζ(µf)2

. Therefore for some positive constant α, we have

lim
n→∞

P{V (nt) > α
√
n} = lim

n→∞
e
− 2α

√
n(1−λn/(µfn))(µf)2

λ(C2
a+C

2
s ) .

Using α
√
n = δ we have

lim
n→∞

P{V (nt) > δ} = e
− 2δ(1−λ/(µf))(µf)2

λ(C2
a+C

2
s ) .

Now consider a single server in a data center that is powered on during a particular one-hour

interval. Arrivals occur at an average rate λ and SCOV of inter-arrival times C2
a . Each arrival

brings a random amount of work which is IID with mean 1/µ and SCOV C2
s . Let f be the amount

of work that can be processed by the server per unit time. Assuming that λ < µf and using the

fact that the inter-arrival times and service times are much smaller than the one-hour interval, we

can use the above result as an approximation for the probability that the virtual delay V (at any

time during the one-hour interval) is greater than δ as

P{V > δ} ≈ e−
2δ(1−λ/(µf))(µf)2

λ(C2
a+C

2
s ) .

The above result is also known as Kingman’s heavy traffic approximation. Using a QoS metric that

the probability of exceeding a virtual delay greater than δ must be no more than ε, we get the QoS

criteria

P{V > δ} ≤ ε.

For an arbitrary server j ∈ S, we select fmin = minz∈Zj γjz as the slowest processing rate when

powered on, and µmin = mini∈A µi the largest average job size. For all i ∈ A, let C2
a,i be the

SCOV of inter-arrival time and C2
s,i be the SCOV of the amount of work each request brings for

application i. Since requests are split among servers running application i, the effective inter-arrival

time SCOV for server j which is the superposition of applications hosted on it would be at most as

large as C2
a,max = max{1,maxi∈AC

2
a,i}. Likewise the SCOV of the effective amount of work due to

all applications on server j can be upper-bounded by C2
s,max which can be obtained by solving the

following mathematical program (with decision variables pi and Xi ∀ i ∈ A and auxiliary variable
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µ):

C2
s,max = Max

{
−1 +

∑
i∈A piXi(C

2
s,i + 1)µ2/µ2

i

}
s.t.

∑
i∈A piXi/µi = 1/µ∑

i∈A piXi = 1∑
i∈AXi ≤ Cj

0 ≤ pi ≤ 1, Xi ∈ {0, 1}, ∀i ∈ A.

The above is based on the fact that if a fraction pi of application i arrives at a server, then the

effective SCOV of the aggregated service times is
{
−1 +

∑
i∈A piXi(C

2
s,i + 1)µ2/µ2

i

}
with 1/µ the

aggregate mean workload.

Let ρ = λ/(fµ) then for any server j, the QoS criteria P{V > δ} ≤ ε would be satisfied if we

select a ρ that satisfies

e
− 2δ(1−ρ)µminfmin
ρ(C2

a,max+C
2
s,max) = ε

as the left hand side of the above expression is larger than P{V > δ}. Thus

ρ =

[
1 +

C2
a,max + C2

s,max

2δµminfmin
loge(1/ε)

]−1

.

For example, when fmin = 512 kbps, 1/µmin = 15 kb, δ = 2 seconds, C2
a,max = 1, C2

a,max = 2 and

ε = 1.15× 10−5, we have ρ = 0.8 as the desired value of λ/(µf). In fact for any ρ < 0.8, the QoS

will be met. Therefore at server j, if the aggregate workload arrival rate λ/µ is lesser than ρ times

the workload processing rate f , the QoS criteria will be satisfied. Although this ρ is truly for server

j, we could remove the subscript by selecting the smallest ρj among all j or just use ρj instead of

ρ in constraint (1d).

This brings us to Constraint (1d) at server j ∈ S for any time interval t ∈ T . The aggregate

workload arrival rate λ/µ =
∑

i∈A
λit
µi
vijt since each application i ∈ A arrives at rate λitvijt during

interval t bringing an average load 1/µi. Likewise the workload processing rate f at server j

in interval t is
∑

z∈Zj ujztγjz. Therefore by satisfying Constraint (1d), we can ensure that the

QoS criterion P{V > δ} ≤ ε would be met under a stochastic environment. In terms of time-

variability within an interval, only the arrival rate is anticipated to vary in an interval, while the

other parameters would remain constant. If the arrival rate λit varies over the interval t, then

either using the largest among the varying rates or considering smaller intervals t during which λit

is more or less a constant, it is possible to guarantee QoS.
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Refer back to Figure 1. Some of the pre-processing described there includes all the analysis

in this sub-section to obtain a suitable ρ. In a similar fashion, based on the infrastructure of the

data center and all available historical information, the parameters in Table 2 can be obtained.

Then based on the MIP solution we can obtain the decisions described in Table 3. The analysis

itself could be somewhat conservative, and so some post-processing can be done to further improve

the energy consumption or QoS or both. We envision the analysis to be performed a few times

with several what-if questions answered to eventually converge to a suitable operating condition.

That said, the remainder of this paper will focus on the processing step described in Figure 1 that

converts the model inputs in Table 2 into model outputs or decisions described in Table 3.

5 Solution Method

As we saw in the previous section, due to the size of the problem we do anticipate solvers taking

a large amount of time to obtain the solutions. In this section we propose a solution approach

for solving the large scale MIP. In particular, we derive a heuristic method that provides good

solutions for large instances of the problem as well as speed up the solution time. The key idea

behind the heuristic method is to choose a “representative single time period” (RSTP) τ ∈ T from

given workload traces and solve a reduced size MIP corresponding to this time period. An RSTP is

determined by considering the workload traces of all the applications at each time period t ∈ T and

computing the total applications workload measure of interest, for example, the minimum, average

or maximum workload. The reduced size or RSTP MIP based on τ is stated as follows:

MIPτ : Min
∑
j∈S

∑
z∈Zj

βjzτujzτ (2a)

s.t.
∑
z∈Zj

ujzτ = 1 ∀j ∈ S, (2b)

∑
j∈S

vijτ = 1 ∀i ∈ A, (2c)

ρ
∑
z∈Zj

ujzτγjz ≥
∑
i∈A

λiτ
µi
vijτ ∀j ∈ S, (2d)

∑
i∈A

xij ≤ Cj ∀j ∈ S (2e)

vijτ ≤ xij ∀i ∈ A, ∀j ∈ S, (2f)∑
i∈A

vijτ ≤ Cj(1− uj0τ ) ∀j ∈ S, (2g)

vijτ ≥ 0, xij ∈ {0, 1}, ujzτ ∈ {0, 1} ∀i ∈ A,∀j ∈ S,∀z ∈ Zj . (2h)

16



Let the application-server assignment solution to problem MIPτ be denoted by x̂ij ,∀i ∈ A,∀j ∈

S. Our desire is to obtain a [x̂ij ] among alternative optimal solutions to MIPτ so that
∑

i

∑
j x̂ij

is minimized. Some commercial solvers such as CPLEX automatically present such a solution due

to the way they perform branch and bound. However, one could add
∑

i

∑
j x̂ij to the objective

function realizing that βizt > 1 ∀ j, z > 0, t (if not, it can be accomplished by scaling appropriately).

Now, let L0 and L1 be index sets for all the application-server pairs (i, j) ∈ A×S such that (i, j) ∈ L0

for x̂ij = 0 and (i, j) ∈ L1 for x̂ij = 1. Since the x̂ij ’s are based on the RSTP τ , we need a solution

that is feasible for all time periods. To get such a solution, we substitute the representative time

period solution x̂ij ,∀i ∈ A,∀j ∈ S into constraints (1e) and (1f) of the original problem MIP1

and only fix the assignments for all (i, j) ∈ L1 but not for all (i, j) ∈ L0. The idea is to now

solve the original problem with application-server assignments based on τ , but with the flexibility

of allowing the model to determine additional application-server assignments if needed, and the

server frequencies (ujzt), and the fraction of arrivals of each application at each server (vjzt) at

each time period t ∈ T . The original problem with the RSTP application-server assignments fixed

for all (i, j) ∈ L1 takes the following form:

MIP2 : Min
∑
j∈S

∑
z∈Zj

∑
t∈T

βjztujzt (3a)

s.t.
∑
z∈Zj

ujzt = 1 ∀j ∈ S, ∀t ∈ T (3b)

∑
j∈S

vijt = 1 ∀i ∈ A,∀t ∈ T (3c)

ρ
∑
z∈Zj

ujztγjz ≥
∑
i∈A

λit
µi
vijt ∀j ∈ S,∀t ∈ T (3d)

∑
(i,j)∈L0

xij ≤ Cj −
∑

(i,j)∈L1

x̂ij ∀j ∈ S (3e)

vijt ≤ xij ∀(i, j) ∈ L0,∀t ∈ T (3f)

vijt ≤ x̂ij ∀(i, j) ∈ L1, ∀t ∈ T (3g)∑
i∈A

vijt ≤ Cj(1− uj0t) ∀j ∈ S,∀t ∈ T (3h)

vijt ≥ 0, ujzt ∈ {0, 1} ∀i ∈ A,∀j ∈ S, ∀z ∈ Zj ,

∀t ∈ T, xij ∈ {0, 1}, ∀(i, j) ∈ L0 (3i)

Observe that constraints (3e) and (3g) explicitly enforce the requirement that xij = 1, ∀(i, j) ∈

L1. An alternative way to achieve this requirement is to simply append it as a constraint to the

original problem MIP1. However, by explicitly representing this requirement as in problem MIP2,
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we reduce the number of decision variables in the original problem by |L1|. Now by solving the

relatively smaller size problem MIP2, we can obtain our heuristic solution. We should note that

problem MIP2 can be infeasible depending on the RSTP τ used. In that case a different RSTP

has to be used until a feasible solution can be found. Based on our computational results, the

solutions provided by MIPτ for all the trace data sets we considered are such that the number of

applications assigned to some servers is less than Cj . Also, the solutions for ujz’s tend to choose

middle frequencies (around the 5th among nine alternatives) most of the time.

Let us now define the parameters needed in determining the RSTP τ . Recall that the main input

data for each application i is a workload trace for all t ∈ T . Therefore, we propose using the overall

maximum workload across all time periods. The aim is to find a time period τ that would provide

a feasible, and preferably, close to optimal assignment of applications to servers (xij ’s). Thus,

in general, we can provide a feasible application-server assignment by using the overall maximum

workload across time to determine τ . Further, determining τ should be computationally easy to do.

Let ωit denote the average workload per second brought by application i, mathematically written

as ωit = λit
µi

. Then the overall workload at time t ∈ T , denoted ωt, is given by ωt =
∑

i∈A ωit.

Therefore, the RSTP corresponding to the overall maximum workload across time, τmax, is

τmax = argmax
t∈T

ωt. (4)

Instead of using the maximum overall workload to determine a RSTP, one can consider using the

overall minimum or average workload, or the total workload corresponding to a set of applications

that contribute a certain percentage (e.g. 80%) to the total workload. Based on our experiments,

the maximum workload provided the best performance as expected. Next, we give a formal outline

of our heuristic. Since this method finds a non-zero assignment of applications to servers, we refer

to it as the ‘Single-Period Heuristic for Initial Non-zero X’ (SPHINX) algorithm.

Basic SPHINX Algorithm:

Step 0. Initialization. Set U ←∞.

Step 1. Determine RSTP τ . Use maximum workload to get τ ← τmax via Equation (4).

Step 2. Form and Solve MIPτ . Use RSTP τ and solve problem MIPτ (2). Let x̂ij , ∀i ∈

A, ∀j ∈ S be the optimal application-server assignment solution. Create the sets L0 and L1.
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Step 3. Form and Solve MIP2. Using the solution x̂ij , ∀i ∈ A,∀j ∈ S from Step 2 and

the sets L0 and L1, form and solve problem (3). If problem (3) is feasible, let z denote the

optimal objective function value and (x, v, u) be the optimal solution vector for the application-

server assignments, fraction of arrivals of an application assigned to a given server, and server

frequencies, respectively. Go to step 4. If the problem is infeasible set z =∞ and go to step 5.

Step 4. Update Incumbent Solution. Set U ← min{z, U}. If U is updated set the

incumbent solution (x∗, v∗, u∗)← (x, v, u).

Step 5. Termination. If U < ∞ stop and report (x∗, v∗, u∗) as the solution. Otherwise, if

U = ∞, no solution could be found using the maximum workload RSTP, go to step 2 and try

a different workload RSTP (e.g. minimum or average).

The intuition behind our heuristic approach is to find a single time period where the aggregated

workload of all the application traces yields application-server assignments that are feasible for all

time periods and allow for varying the server frequencies towards satisfying workload at other times.

That is why we refer to such a single time period to as RSTP. Furthermore, if the single time period

application-server assignments cannot satisfy workload demand at any other time, then we want to

perform additional application-server assignments to meet the workload demand. This is possible

if the RSTP application-server assignments are such that, 1) there is extra capacity on the servers,

i.e.,
∑

i∈A xij ≤ Cj to allow for additional applications to be assigned to some server, and/or 2)

there is enough servers not assigned any applications that can now be assigned applications to

satisfy the workload demand. Thus the SPHINX algorithm is expected to perform well in cases

where the data center has enough server capacity to meet the highest workload demand that can

be received by the data center. In fact this is usually the case in practice. The SPHINX algorithm

may not be expected to perform well when there is not sufficient server capacity and the RSTP

application-server assignments are such that all servers are assigned applications up to Cj and have

to run at the highest frequency. In that case one can consider solving MIP1 directly if possible.

The basic SPHINX algorithm can be extended to allow for using different RSTPs until a

feasible solution can be found. We implemented the SPHINX algorithm and experimented with

several RSTP types. The overall maximum workload based RSTP provided the best performance

followed by the average and minimum, in that order. To provide a benchmark for the SPHINX

algorithm to solve the integrated problem, we considered the traditional approach of separately

making application-server assignments (virtualization) (Petrucci et al. [25], Bertini and Leite [1]),
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dynamically assigning fraction of application arrivals to servers over time (routing), and assigning

server frequencies at each time period (DVFS and on/off). We implemented this approach using a

two-phase heuristic described next.

Two-Phase Heuristic:

Phase One:

Step 1. Sort the applications in nonincreasing order of total workload (i.e. for any i, k ∈ A,

application i has a higher workload than k if
∑

t∈T wit >
∑

t∈T wkt).

Step 2. Assuming all servers will run at the highest frequency at all times, determine the

minimum number of servers ni each of the sorted applications i must be assigned (the number

of servers would also be non-increasing across the sorted applications) to satisfy the worst case

workload, i.e. maxt∈T wit for any application i ∈ A.

Step 3. Choose applications one by one using the sorted list in step 1 and place application

i ∈ A in min(2, ni) servers while ensuring that no more than (Cj − 1) applications are assigned

to each server j ∈ S.

Step 4. Following the order in the sorted applications list in step 1, if ni > 2 then arbitrarily

assign application i to ni−2 servers while making sure that (a) application i ∈ A is not already

assigned to server j ∈ S in step 3, and (b) capacity Cj is not exceeded. Note that if ni ≤ 2,

sufficient copies of application i ∈ A are already assigned to servers in step 3. Set xij = 1 if

application i is assigned to server j and 0 otherwise.

Step 5. Let z∗j = arg maxz γjz for all j, i.e. the index corresponding to maximum speed.

Initially set ujz∗j t = 1 and ujzt = 0 when z 6= z∗j for each server j for all t ∈ T . If xij = 0 then

set vijt = 0 ∀ t ∈ T . Otherwise set vijt = xij(1−uj0t)/(
∑

k∈S xik(1−uk0t)) for all t ∈ T so that

the load from application i is balanced across all powered on servers hosting it.

Phase Two:

Step 1. For each server j ∈ S at each time t ∈ T , compute total workload at each period of

time based on vijt values from Phase One, i.e.
∑

i∈I
λit
µi
vijt.

Step 2. For each server j, compute the minimum server capacity γjz required to satisfy the

constraint
∑

i∈I
λit
µi
vijt ≤ ργjz ∀t ∈ T . Set the corresponding ujzt = 1 and all other ujzt to

zero.
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Step 3. For each t ∈ T , power off servers one by one (starting with the server with the smallest

frequency). Obtain new vijt using step 5 of Phase One and new ujzt via step 2 of Phase Two.

Step 4. Compute the objective value based on the updated ujzt values.

Next we report on our computational study and discuss some insights into our findings regarding

the advantages of using the integrated approach versus the non-integrated approach, i.e. the two-

phase heuristic.

6 Computational Results

In this section we report on several numerical experiments to: (a) test a direct solution method

based on synthetic traces and compare the performance with the SPHINX algorithm; (b) solve

instances with real traces using the SPHINX algorithm; and (c) answer the research questions

raised in Section 3.

6.1 Design of Experiments

Recall the inputs to the MIP are tabulated in Table 2. We designed a set of experiments by

systematically varying the inputs. However, since the number of input variables is prohibitively

large, we set specific values for some of the parameters which we felt would not affect the insights.

In particular, for all our experiments: |A|/|S| = 2 meaning there are twice as many applications

as servers; |T | = 24 corresponding to the 24 hours of a planning horizon of 1 day; there are eight

possible frequencies a server can run at, then including the off state of zero frequency we have

|Zj | = 9 for all j ∈ S; not more that 4 applications can be assigned per server, i.e. Cj = 4 for all

j ∈ S; the target load ρ for the data center is assumed to be 0.8 which corresponds to a medium

traffic intensity from a queueing standpoint.

Although the model allows for a lot of flexibility in terms of cost, including the ability to set

different prices at different times of the day, for the purposes of the experimental design we assumed

that βjzt for a given z stays a constant across servers and across time. We used a cubic order relation

(based on Chen et al. [5]) for βjzt of the form βjzt = k0 + k1z
3, if z > 0 and βj0t = 0 for all j ∈ S

and t ∈ T . The parameters k0 and k1 are constants resulting in

[βj0t βj1t . . . βj8t] = [0.0 60.0 63.0 66.8 71.3 76.8 83.2 90.7 100.0].

Finally, ωit = λit
µi

denotes the average workload per second brought by application i.

21



Thus there are only three sets of parameters that would be varied in the experimental design

|A|, γjz for all j ∈ S and z ∈ Zj , as well as ωit. We select γjz in our experimental design so that

we maintain the ratio

[γj0t : γj1t : . . . : γj8t] = [0 : 519.94 : 583.07 : 646.21 : 709.34 : 772.48 : 835.62 : 898.75 : 965.60]

for all j ∈ S. Also, |A| values we considered were 20, 30, 40 and 50 to illustrate various sizes of

data centers from small to medium-large. Thus our other parameter ωit ends up being the main

driver of the experimental design.

That said, it is critical to notice that there are a large number of ωit values to perform a thorough

design of experiments study. Hence we only considered three summaries. For each application we

considered the variability of ωit across time using the following metric C2
i =

∑
t∈T

(ωit − ωi)2

(|T |−1)(ωi)2
, where

ωi = 1
|T |

∑
t∈T

ωit. Likewise for every time slot we considered the variability of ωit across applications

i ∈ A using the following metric C2
t =

∑
i∈A

(ωit − ωt)2

(|A|−1)(ωt)2
, where ωt = 1

|A|

∑
i∈A

ωit. Finally we considered

the correlation between application i and k for any i ∈ A and k ∈ A such that k 6= i using

Cr(i, k) =

1
|T |

∑
t∈T

(ωitωkt)− ωiωk√∑
t∈T

(ωit − ωi)2

√∑
t∈T

(ωkt − ωk)2
. (5)

Notice that C2
i and C2

t are terms similar to squared coefficient of variation, and Cr(i, k) is

similar to coefficient of correlation between i and k. However, it is crucial to realize that ωit is

not a random variable. It is in fact a deterministic quantity denoting the expected value of the

workload per unit time from application i arriving in time interval t. It is obtained by forecasting

based on historical data. For our design of experiments we consider high and low variability across

applications as well as time. In particular if C2
i or C2

t is around 4 or higher, then we say that the

variability is high across time of applications respectively. Likewise if C2
i or C2

t is around 0.5 or

lower, then we say that the variability is low across time of applications respectively. In a similar

fashion if Cr(i, k) is over 0.8, between 0.4 and -0.4, and below -0.8 we say that applications i and k

are positively correlated, independent (or weakly correlated) and negatively correlated respectively.

Because of very limited access to real data (presented in Section 6.4 and Appendix) we synthet-

ically created workload data that mimic real data in overall form. In our experiments we consider

the whole spectrum of feasible factorial design of experiments with respect to variability (high
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and low across time) and correlations (positive, independent and negative-across-groups). In the

negative across groups case, applications are divided into two positively correlated groups, however

any trace from one group would be negatively correlated with any trace from the other group.

Table 4 summarizes the entire set of test instances we created. We considered two sets of

experiments each of those including two sets of instances. In the first set of experiments, the

number of applications (|A|), gamma values (γjz), and replications were increased while keeping the

average workload (ωit) characteristics constant (test instances 1,2, and 3 in Table 4). Characteristics

of average workload for this set of experiments were chosen to be similar to those present in real

traces, i.e., high variability across applications and low variability across time (HL) with applications

that were weakly correlated (independent). In the second set of experiments, we considered the

whole spectrum of feasible factorial design of experiments especially with respect to variability and

correlations across applications and time (test instance 4 in Table 4). In the table, LL stands for

low variability across applications and low variability across time. Similarly, LH stands for stands

for low variability across applications and high variability across time, and HH stands for stands for

high variability across applications and high variability across time. The number of applications,

replications, and gamma values were kept fixed, i.e., |A| = 20, single replications, and minimum

γjz for feasible MIP instances.

Table 4: Summary of test instances based on simulated traces

Test Set No. of No. of Variability &
Applications Servers Correlation

20 10
1 30 15 HL, Independent

40 20
50 25
20 10

2 30 15 HL, Independent
40 20
50 25
20 10

3 30 15 HL, Independent
40 20
50 25

LH, Positive
LL, Both Positive & Negative
LL, Independent
LH, Positive

4 20 10 HH, Positive
HL, Independent
HL, Positive
HL, Both Positive & Negative

L: Low, H: High

We implemented the SPHINX algorithm in C++ using CPLEX 11.0 Callable library and tested
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it on several instances. In addition to implementing the RSTP based on the maximum workload, we

also implemented one based the average workload for comparison. We also compared the SPHINX

implementations against the CPLEX MIP solver applied to the same set of instances for comparison.

Experiments were run on a Dell Optiplex 755 computer with 2 Intel (R) Core (TM) 2 Quad CPU

Q 9650 processors at 3.00 GHz each with 8.0 GB of RAM. Next we report on our findings.

6.2 Results for Integrated Versus Non-Integrated Approach

The first set of experiments was aimed to address the issue of whether the integrated approach

provides better solutions than the traditional non-integrated approach. Therefore, we conducted

experiments based on simulated synthetic data to address this question. In particular, we con-

sidered a variety of experiments to understand the conditions when the non-integrated approach

would perform reasonably well. However, we only present a limited set of results due to space

restrictions. In fact the results are for cases when the non-integrated approach is expected to

perform well. They are when the application load is correlated with each other (either both positive

and negatively correlated pairs or just positively correlated ones), and when the variability in load

across applications is low (else clustering is unlikely). We consider both low and high variability

across time for all applications.

Notice from Tables 5 and 6 that the objective value for our integrated approach is significantly

better than the non-integrated approach (two-phase heuristic). It is crucial to realize that the

objective of 24,000 for Phase 1 of the two-phase heuristic is the resulting cost due to running

all servers at the maximum speed. Of course the CPU time of the two-phase heuristic is quite

negligible. In summary, the two-phase heuristic is reasonable to get a first cut solution but the

quality of the solution can be significantly improved using the integrated approach. Also notice

from the tables that the SPHINX algorithm performs almost as good as the CPLEX solution in a

much smaller amount of time. Thus we conclude that an integrated approach is worth pursuing

and perform extensive testing next to understand what causes this.

Table 5: Integrated versus non-integrated approach for LL-Both

Objective CPLEX % Gap % Opt. Gap CPU Time (sec.)
CPLEX 18,088 1.33 0.00 25,200.00
SPHINX 18,095 1.37 0.04 3,341.99
Two-Phase Heuristic:
Phase 1 24,000 0.00 32.69 0.19
Phase 2 19,759 0.00 9.24 0.03
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Table 6: Integrated versus non-integrated approach for LH-Positive

Objective CPLEX % Gap % Opt. Gap CPU Time (sec.)
CPLEX 8,926 0.03 0.00 25,200.00
SPHINX 8,933 0.07 0.08 3,600.40
Two-Phase Heuristic:
Phase 1 24,000 0.00 168.87 0.03
Phase 2 12,851 0.00 43.97 0.02

Finding 1 The integrated approach, albeit much slower that the non-integrated approach, results

in a significant gain (up to 40%) in objective function value (i.e. cost per unit time) compared to

the non-integrated approach.

6.3 Comparing Representative Periods: Maximum and Average

To further test the performance of the SPHINX algorithm we applied it to test sets 1 and 4 in Table

4. Figure 2 shows a plot of objective function values obtained by the direct CPLEX MIP solver

and SPHINX using RSTP based on average workload (average-RSTP) and on maximum workload

(maximum-RSTP). As can be seen in the plot, SPHINX maximum-RSTP provides the best results

across all the test instances. CPLEX could not get a feasible solution for the largest test instance

50 APPS (50 applications) within the time limit (25,000 seconds) while the SPHINX algorithms

obtained the same objective value. For test instance HL, Independent, both CPLEX and SPHINX

maximum-RSTP obtained the same solution. However, SPHINX average-RSTP could not solve

this instance. Taking a closer look, for this particular instance the time period with the average

workload is not representative of the workload across the horizon. Thus the application-server

assignment solution based on the representative time period with average workload is not feasible

for the overall problem. The corresponding CPU times for the test sets 1 and 4 are plotted in Figure

3. The CPU time is not reported for instances that could not be solved by a given algorithm. The

average CPU time for SPHINX maximum-RSTP is 5,322 seconds, compared to 6,216 seconds for

SPHINX average-RSTP. CPLEX was run to the time limit of 25,000 seconds as it could not obtain

a solution by the time both the other algorithms had terminated.

We also tested the performance of SPHINX Maximum-RSTP versus the direct solver CPLEX

on instances of the same size but different parameters. A CPU time limit of 10,800 seconds was

imposed. We made ten replications of instances corresponding to test set 3 in Table 4 with 30

applications. The results are reported in Table 7. In the table we report the objective value, MIP

gap and % gap relative to CPLEX. As can be seen in the table, SPHINX maximum-RSTP obtains

lower objective values than CPLEX. In particular, CPLEX could not find a feasible solution for
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Figure 2: Objective values for instances solved using SPHINX and CPLEX

replications 4, 7, and 8. However, SPHINX is able to solve all the replications to within relatively

small MIP gaps. These results are consistent with those reported in Figure 2 in which SPHINX

maximum-RSTP performs consistently better than the direct solver CPLEX for different size test

instances. We obtained similar results even for test instances with 40 and 50 applications with

high-low variability and independent applications.

Table 7: Instance with 30 applications and high-low independent traces with 10 replications

CPLEX MIP Solver SPHINX Maximum-RSTP

Rep Objective MIP Solution Objective MIP Solution
Value Gap Time Value Gap % Gap Time

1 23,586 13.31% 10,800 21,570 3.60 -8.55% 10,800

2 23,297 10.81% 10,800 21,889 3.77 -6.05% 10,800

3 24,388 7.27% 10,800 23,196 2.24 -4.89% 10,800

4 ∞ - 10,800 25,753 0.34 - 10,800

5 29,816 2.83% 10,800 29,183 0.54 -2.12% 10,800

6 23,138 19.24% 10,800 19,908 4.33 -13.96% 10,800

7 ∞ - 10,800 19,882 4.53 - 10,800

8 ∞ - 10,800 26,088 0.67 - 10,800

9 23,486 12.28% 10,800 21,901 5.20 -6.75% 10,800

10 26,599 4.64% 10,800 25,868 1.15 -2.75% 10,800

Finding 2 The time period with the maximum aggregate workload is an ideal choice for represen-

tative time period as it performs the best among any other choice of time period when it comes to

minimizing the energy cost per unit time while satisfying the constraints on resources and capacities.
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Figure 3: Solution time for instances solved using SPHINX

In addition, when the problem is feasible, SPHINX with maximum time period always outperforms

solving the entire problem as an MIP with a reasonable time constraint.

6.4 Detailed Discussion of Results Using Real Traces

We now report the findings from our analysis using real traces from real web-server applications that

are publicly available. This set of real traces consists of 20 applications which we seek to optimally

allocate to 10 servers (see Appendix). In addition to the optimal allocation of application to servers,

we seek the optimal frequency that each server should run at for each time period as well as the

optimal routing strategy. That is, we seek to determine which servers are called upon to satisfy

requests for each application for each time period. By doing so, we can gain insight about our

problem and answer the research questions posed in Section 3. We use |A| = 20 applications and

γj8 = 100. From the tables in the Appendix we can see that for most applications C2
t is higher than

4 and C2
a is lower than 0.5, hence we say that the variability is high across applications and low

across time. Some applications were positive correlated, and some pairs were negatively correlated

but most applications were weakly correlated (independent). Using our MIP, the optimal allocation

of applications to servers for this set of real traces can be obtained, which is presented in Table 8.

Notice, in Table 8, that each server is indexed by j while each application is indexed by i.

Therefore, each element of the table tells us if an application is assigned to a particular server. For

example, we can see that application 3 is assigned to server 4 since the corresponding element for
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Table 8: Allocation of applications to servers

j
i 1 2 3 4 5 6 7 8 9 10
1 1 1 1 0 0 0 1 1 1 1
2 0 1 0 0 1 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0 1
4 0 0 1 0 0 1 0 0 0 0
5 0 0 1 1 0 0 0 1 0 0
6 1 0 0 0 1 0 0 0 0 0
7 0 0 0 0 1 0 0 1 0 0
8 0 0 0 0 0 0 1 1 0 0
9 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 0 1
11 1 0 0 0 0 0 1 0 0 0
12 0 1 0 0 0 0 0 0 0 0
13 0 0 0 1 0 0 0 0 0 0
14 0 0 1 0 0 1 0 0 0 0
15 0 0 0 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 1 0
17 0 0 0 0 0 0 0 0 1 0
18 0 0 0 0 0 1 0 0 0 1
19 0 0 0 0 0 0 0 0 1 0
20 1 0 0 0 0 0 1 0 0 0

i = 3 and j = 4 is equal to 1. Similarly, we can see that application 3 is not assigned to server 1

since the corresponding element for i = 3 and j = 1 is equal to 0. Notice that each element of Table

8 corresponds to values for the decision variable xij . From Table 8 we can see that each server

has 4 applications assigned to it. This is because the parameter Cj was set to 4 while solving this

problem, which limits the number of applications that can be assigned to each server to a value

of 4. Taking a closer look at servers 1, 3, 6, and 9, we can see which applications are assigned to

these servers. Applications 1, 6, 11, and 20 are assigned to server 1, while applications 1, 4, 5, and

14 are assigned to server 3. Additionally, applications 4, 10, 14, and 18 are assigned to server 6,

while applications 1, 16, 17, and 19 are assigned to server 9.

Finding 3 There are no clusters of applications formed that are replicated in many servers.

We now turn our attention to understanding how the frequency at which each server runs at

changes over time. We select a sample from the set of servers to examine how the frequency changes

over time, which can be seen in Figure 4. Figure 4 shows the frequency over time for servers 1, 3,

6 and 9. By looking at Figure 4, we can see that server 1 is off at time periods 5, 6, 7, 9 and 24 i.e.

when frequency index is 0. We can also see that server 1 runs at frequency 5 for a majority of time.

Note that this does not mean that the frequency most often used is 5, but that it means that the

most often used frequency is the 5th frequency from the set of available frequencies. Similarly, we

can also see how the frequency of server 3 changes over time. We can see that server 3’s frequency
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Figure 4: Frequency of servers 1, 3, 6 and 9 over time

ranges from being off (during time periods 1, 4, 6, 7, 10, 11 and 24) to the maximum frequency

index of 8. We also see similar behavior for server 6. From Figure 4 we can see that server 9

behaves in a manner similar to that of server 1. That is, that the majority of the time, server 9 is

run at frequency 5.

Finding 4 Frequency index 5 is the mode. Also, powering on/off and DVFS both occur, and all

frequencies (not just the maximum and minimum) are used.

Now, we discuss the optimal splitting of application requests to servers. Again, by choosing

a sample from the set of applications, we discuss how requests for applications are routed to a

particular set of servers. From Figure 5, we see how requests for application 1 are distributed to

servers 1, 2 and 7. From Figure 5, we can see that requests for application 1 are not routed to

server 1 during time periods 5, 6, 7 and 9. This does not mean that server 1 is off during these

time periods, but that requests for application 1 are satisfied by some other server that houses the

application. In this example, we can see that a fraction of arrivals for application 1 are routed
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Figure 5: Fraction of arrivals of Application 1 on Servers 1, 2 and 7

to servers 2 and 7 during these time periods. Similarly, for server 7, we can see that arrivals of

application 1 are not routed to server 7 during time periods 3 and 23, but instead a fraction of

those arrivals are routed to servers 1 and 2. For application 14, we see a different routing scheme

to servers 3 and 6. The routing of application 14 to servers 3 and 6 can be seen in Figure 6.

Notice that the fraction of arrivals of application 14 routed to server 3 jumps back and forth

between 0 and 1. Similarly, for server 6, the fraction of arrivals also jumps back and forth between

0 and 1. This is because application 14 is only assigned to servers 3 and 6 which can be seen by

from Table 8. From Figure 6, we can see that in time period 2, all arrivals of application 14 are

routed to server 3 while no arrivals are routed to server 6. This is because the fraction of arrivals of

application 14 to server 3 equal 1 while the fraction of arrival of application 14 to server 6 equals 0.

Notice that in time period 8, the fraction of arrivals of application 14 assigned to server 3 is equal

to 0.175 while the fraction of arrivals assigned to server 6 is equal to 0.825, which can be observed

in Figure 6. Since application 14 is only on servers 3 and 6, these fractions must sum to 1, which is
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Figure 6: Fraction of arrivals of Application 14 on Servers 3 and 6

the case. We can see similar routing of application 14 in time periods 15 and 16. For the remaining

time periods, we can see that application 14 is either routed to server 3 or server 6, but not both.

Finding 5 Instead of load balancing, the loads are in fact sometimes as imbalanced as can be for

an application. Applications clearly are not split across servers in a constant fashion across time.

6.5 Answers to the Research Questions

We now address the research questions posed in Section 3. While these results and findings are

illustrated for real traces, we found our conclusions to be consistent across all experiments performed

for simulated traces as well.

1. Are servers clustered across applications? Answer: No.

By examining Table 8 we see that no clusters appear in the assignment of applications. If

clusters were present, we would see two or more columns in the table with the same values for

each row. This shows that no two servers have the same set of applications assigned to them,

hence, no clustering occurs. A heterogeneous mixture of application to server assignment

emerges as opposed to clusters in order to capture the variability in workload across time

and across applications at the same maintaining more or less balanced aggregate load at each

server that is on.

2. Are applications positively or negatively correlated assigned to the same server? Answer: No.

Consider applications 2 and 10 which have a positive correlation coefficient of 0.9622. By

looking at Table 8 we can see that application 2 is assigned to servers 2 and 5, while application

31



10 is assigned to servers 6 and 10. Similarly, consider applications 3 and 14 which have a

negative correlation coefficient of -0.8010. From Table 8, we can see that application 3 is

assigned to servers 4, 5 and 10 while application 14 is assigned to servers 3 and 6. This shows

that applications that are positively correlated are not necessarily assigned to the same set

of servers. Similarly, applications that are negatively correlated are not assigned to the same

set of servers. The workload brought by an application seems to be the most crucial factor in

determining assignments especially when the utilization is fairly high (which is typical when

unnecessary servers are removed). For example, if two correlated applications bring in a large

workload they may not be on the same server due to capacity limitation, while having one of

them bring in a small workload renders their pairing inconsequential.

3. Are assignments based on peak load a good idea? Answer: Yes.

Using the SPHINX algorithm, we have found that in most cases making assignments based

on peak load is, in fact, a good idea. Recall that in the SPHINX algorithm we consider

total workload across all the applications at a given period and use the time period with

maximum total workload (peak) as the representative time period (RSTP). We observe that

80% or more of the accumulative workload at the time period with the maximum workload

across time (Max-RSTP) is achieved by the same subset of applications that account for

a similar percentage of accumulative workload in the workload profile. Thus application-

server assignments based on the RSTP are typically feasible at other time periods. Hence by

judiciously performing operational decisions, the overall cost is minimized.

4. Are servers running at the same frequency in a given time interval? Answer: Yes.

By looking at Figure 4 we can see which frequency servers 1, 3, 6 and 9 run at for each time

interval. With the exception of server 6, other servers predominately run at frequency 5 in

most time intervals, suggesting that servers do more-or-less run at the same frequency in a

given time interval. Given a server j is ‘on’ (i.e. z > 0), the energy cost βjzt is convex in z.

Therefore, it would be optimal to run all the ‘on’ servers at the same frequency if one could

appropriately route applications to result in an aggregated load balance across servers.

5. Is the workload for each application split across servers in a constant fashion over time?

Answer: No.

To achieve a balance of the aggregate load across all the ‘on’ servers, the workload for each

application must be split differently over time to adapt to the time-varying workload across

applications. For example, by examining Figure 5 we can see that the allocation of application
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1 to servers 1, 2 and 7, respectively, is not constant over time. These figures show how

application 1 is routed to the different servers and we can see that application 1 is not

split across servers in a constant fashion. Similarly, by looking at Figure 6, we can see how

application 14 is split across servers 3 and 6, respectively. In this case, we can see that there

are times when all of application 14 is routed to servers 3 and 6. This is indicated in the

figures where the fraction of arrivals is equal to 1. We can see that during time periods 3

through 7 that application 14 is not routed to server 3, but instead it is routed to server 6.

We can see this by noting that the fraction of arrivals for application 14 to server 3 during

time periods 3 to 7 is 0. Meanwhile, the fraction of arrivals of application 14 to server 6

during time periods 3 to 7 is 1.

6. Is it sufficient to just consider powering on/off without doing DVFS? Answer: No.

Although powering off significantly reduces energy consumption, there are some servers that

can never be powered off, especially if they contain applications that are not on any other

servers. Also, when the granularity is large (such as one hour), the QoS criteria would not

be met by merely powering servers on and off. Figure 4 shows how the frequency of servers

1, 3, 6, and 9 are utilized over time. From this figure, we can see that these servers are on

most of the time. Meanwhile, these servers are not run at the highest frequency in each time

period. In fact, the frequency each server runs at varies significantly over time. In this case,

we can see that only server 3 is run at the highest frequency in two time intervals, namely,

time interval 13 and 22.

7. Is the selected frequency during an interval of bang-bang nature, i.e. the highest or lowest

possible frequency? Answer: No.

The optimal frequency to run a server is the lowest possible one for which the capacity

constraints would be satisfied. Also, the granularities are so large that we do not consider

the effects of decisions in one interval to impact the next. In Figure 4 we can see that the

frequency values servers 1, 3, 6, and 9 take on vary over time. For example, consider server 6;

although server 6 is turned off in time intervals 2 and 13, the frequency at which this servers

runs at over time never reaches the maximum frequency. In fact, the frequencies selected

range over the entire range of allowable frequency values, except for the maximum frequency,

and spend the majority of the time at frequencies around the middle or lower portion of

the allowable frequency range. This supports the notion that a bang-bang type policy is

suboptimal.
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8. Is it necessary to consider all the applications while making assignment, routing and frequency

selection? Answer: Yes.

Even though applications that bring higher load are hosted on more servers than applications

that bring in lower load, it is necessary to consider all applications while making assignments,

routing and frequency selections. Not considering some applications, especially those with

lower workloads, can often lead to infeasible solutions. Since the number of applications at

a server, say j, can be at most Cj , by considering only the elephant applications we run the

risk of not allocating the mice applications to any or at most one server (if we ensure the

capacity is not reached). That would result in having to let all the servers powered on all the

time and not perhaps the optimal mix of assignments.

7 Concluding Remarks

Energy consumption can be significantly reduced in data centers by appropriately handling re-

sources in servers. Most previous studies propose the operation of data centers at separate granular-

ities of time, i.e. by considering the strategic problem of mapping applications to servers (possibly

using virtualization) separate from the operational problem of DVFS, routing and powering off

servers. To the best of our knowledge, there is no study that proposes a method that combines both

granularities. This paper uses a unified methodology that combines virtualization, speed scaling,

routing, and powering off servers technologies under a single framework to efficiently operate data

centers.

Our methodology uses mixed integer programming to decide how best to allocate applications

to servers to minimize the average energy cost of operations per unit time. Further, a heuristic

method is designed to reduce the computational time when solving large instances of the problem.

The computational results show that assigning applications to servers based on peak load is a good

idea and that results can be obtained using our methodology in reasonable times. However, we find

that several other assumptions made in the literature are not valid. In particular, applications are

not clustered to form meta-applications which are replicated in multiple servers, server frequencies

are not bang-bang in nature, we need to consider both DVFS and powering on/off, etc.

This work opens up several future research directions. For example, there are several other

systems that exhibit high degree of variability across time and attributes. To manage them in a

holistic and systematic manner so that appropriate strategic decisions are made that are operations-

aware would go a long way in efficiently utilizing such systems. In particular, systems where there
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are conflicting goals such as minimizing energy and maximizing performance at the lowest cost calls

for approaches such as considered in this paper. These results can also be seamlessly extended to

sensor networks, energy-intensive manufacturing enterprises, and building management systems.

Appendix

This appendix gives a summary description of a sample of the traces we used for our experiments,

which are referred to in Sections 6.3 and 6.4. The traces described in Section 6.4 are based on

traces of 20 real world applications. They were collected from publicly available hourly workloads

for various applications in a single day. Figure 7 shows a plot of the traces with the corresponding

numerical data reported in Tables 9 and 10. Since application 1 dominates the figure, it appears as

though the other applications are a constant, but that is not the case (it is only because of scaling

effects). This is evident from Table 9, however, due to space restrictions, we only provide a sample

of this data. Notice the C2
i and C2

t values to the right and bottom of the table to appreciate the

variability. Also, Table 10 provides the values of Cr(i, k) for all i ∈ A and k ∈ A.
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Figure 7: Real traces of hourly workloads for 20 applications for one day
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i t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 . . . t = 24 C2
i

1 552.5430 516.5070 474.4660 450.4430 390.3840 312.3070 366.3600 468.4600 . . . 486.4780 0.1084
2 10.6190 9.5780 10.8270 9.1610 7.2870 7.0790 8.5370 12.9090 . . . 13.1170 0.5516
3 101.7230 127.9480 148.6110 137.4850 149.4050 135.8950 152.5840 150.2000 . . . 88.2130 0.0848
4 51.5520 58.7120 67.3040 54.4160 60.1440 54.4160 55.8480 60.1440 . . . 61.5760 0.0738
5 101.1410 112.4590 97.6080 98.8000 122.4380 109.9750 91.2560 137.3370 . . . 104.4850 0.0206
6 7.7070 8.2890 8.5800 8.4340 9.8880 13.2330 17.3050 19.1950 . . . 6.3980 0.2448
7 7.1110 5.9680 5.1850 4.5740 4.2450 4.2760 4.3700 4.4800 . . . 6.4380 0.1058
8 0.0530 0.0520 0.0370 0.0270 0.0400 0.0220 0.0330 0.0670 . . . 0.0530 0.4796
9 5.0680 2.8680 1.5870 1.1700 0.8630 0.8080 1.1970 1.9770 . . . 6.7390 0.3035

10 3.7680 3.4540 2.8260 2.3550 2.1980 2.3550 2.9830 4.3960 . . . 5.0240 0.2476
11 1.8930 1.5610 1.3720 1.3250 1.4190 1.1830 1.1830 1.3250 . . . 1.8450 0.0990
12 2.0150 2.0620 2.0150 1.9210 2.2020 2.0620 2.2020 2.3900 . . . 1.8270 0.0328
13 0.1670 0.1800 0.2950 0.3460 0.4360 0.5000 0.5520 0.6670 . . . 3.4640 0.5947
14 20.8050 15.9600 13.9650 11.9700 8.2650 8.8350 9.4050 13.1100 . . . 20.8050 0.0966
15 8.7630 8.1250 9.2120 21.6370 21.1350 17.1590 18.8630 18.4370 . . . 8.4180 0.2147
16 0.3330 0.9990 0.3330 1.3320 0.9990 3.3300 3.3300 0.9990 . . . 0.6660 0.4962
17 27.5300 26.7930 19.9100 10.3240 7.1280 8.1120 8.6030 10.3240 . . . 24.8260 0.1956
18 11.8890 13.7800 14.5910 15.4010 16.2120 22.1560 27.2900 35.9360 . . . 11.6180 0.2289
19 10.1660 10.8210 11.8050 10.4930 19.0190 31.1520 28.5290 22.2990 . . . 3.6070 0.3343
20 11.3700 13.0860 15.4460 17.3770 18.6640 6.8650 21.0240 21.4530 . . . 7.5090 0.0985
C2
t 6.8844 6.1308 5.6870 5.6832 4.7343 4.0473 4.3100 4.7485 . . . 6.3182

Table 9: Sample of hourly workload traces for the 20 applications with C2
i and C2

t

Next we present a sample of the synthetic traces we generated for our numerical experiments.

In particular, this is an instance with high variability across applications and low variability across

time (hence HL) which is similar to the real trace. These are referred to in Section 6.3 and is

generated randomly using a geometric Brownian motion with parameters randomly sampled from

a Pareto distribution. They are illustrated in Figure 8.

Next we present a sample of the synthetic traces we generated for our numerical experiments.

These are referred to in Section 6.3 and were generated randomly using a geometric Brownian

motion with parameters randomly sampled from a Pareto distribution. The traces are illustrated

in Figure 8 and are similar to the real traces in that they have high variability across applications

and low variability across time, hence HL. The traces in Figure 8 were generated by maintaining

similar characteristics (such as C2
i and C2

t ) as in the real traces. From Figures 7 and 8, it is clear

that our generated instances resemble the real traces.
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i k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
1 1.0000 0.2793 -0.8112 0.6205 0.4572 -0.7654 0.7694 0.0529 0.6299 0.3920
2 0.2793 1.0000 0.0653 0.7359 0.5091 0.0490 0.4716 0.9046 0.8126 0.9622
3 -0.8112 0.0653 1.0000 -0.4094 -0.1452 0.8474 -0.5055 0.2597 -0.4730 -0.0546
4 0.6205 0.7359 -0.4094 1.0000 0.6027 -0.3156 0.5819 0.5831 0.8218 0.7845
5 0.4572 0.5091 -0.1452 0.6027 1.0000 -0.0761 0.4443 0.3282 0.4485 0.5264
6 -0.7654 0.0490 0.8474 -0.3156 -0.0761 1.0000 -0.5937 0.2629 -0.3564 -0.0096
7 0.7694 0.4716 -0.5055 0.5819 0.4443 -0.5937 1.0000 0.3080 0.6323 0.5540
8 0.0529 0.9046 0.2597 0.5831 0.3282 0.2629 0.3080 1.0000 0.6861 0.8790
9 0.6299 0.8126 -0.4730 0.8218 0.4485 -0.3564 0.6323 0.6861 1.0000 0.8752

10 0.3920 0.9622 -0.0546 0.7845 0.5264 -0.0096 0.5540 0.8790 0.8752 1.0000
11 0.5618 0.8873 -0.2751 0.7507 0.5784 -0.3030 0.6604 0.6769 0.8962 0.8908
12 -0.6919 0.2286 0.9081 -0.2928 0.0662 0.8456 -0.3811 0.3871 -0.2583 0.1519
13 0.6105 0.4864 -0.5618 0.7951 0.4859 -0.3471 0.4467 0.4038 0.7547 0.5701
14 0.7668 0.3156 -0.8010 0.5958 0.2617 -0.6435 0.5669 0.1923 0.7661 0.4031
15 -0.5584 -0.3769 0.6246 -0.6195 -0.1968 0.5117 -0.4709 -0.2985 -0.7132 -0.4422
16 -0.1699 -0.1040 0.0489 -0.0598 0.0064 0.2103 -0.2873 -0.2617 -0.1932 -0.1786
17 0.2862 -0.3021 -0.5878 0.0286 -0.2415 -0.5329 0.1666 -0.2581 0.1397 -0.2304
18 -0.5103 0.3702 0.7508 0.0251 0.2815 0.8702 -0.2803 0.4497 -0.0571 0.3403
19 -0.6745 0.1729 0.8368 -0.2469 0.0038 0.8410 -0.3638 0.3080 -0.3340 0.0553
20 -0.3907 0.2872 0.6956 -0.0930 0.0328 0.6215 -0.2389 0.4428 -0.1210 0.1656
i k = 11 k = 12 k = 13 k = 14 k = 15 k = 16 k = 17 k = 18 k = 19 k = 20
1 0.5618 -0.6919 0.6105 0.7668 -0.5584 -0.1699 0.2862 -0.5103 -0.6745 -0.3907
2 0.8873 0.2286 0.4864 0.3156 -0.3769 -0.1040 -0.3021 0.3702 0.1729 0.2872
3 -0.2751 0.9081 -0.5618 -0.8010 0.6246 0.0489 -0.5878 0.7508 0.8368 0.6956
4 0.7507 -0.2928 0.7951 0.5958 -0.6195 -0.0598 0.0286 0.0251 -0.2469 -0.0930
5 0.5784 0.0662 0.4859 0.2617 -0.1968 0.0064 -0.2415 0.2815 0.0038 0.0328
6 -0.3030 0.8456 -0.3471 -0.6435 0.5117 0.2103 -0.5329 0.8702 0.8410 0.6215
7 0.6604 -0.3811 0.4467 0.5669 -0.4709 -0.2873 0.1666 -0.2803 -0.3638 -0.2389
8 0.6769 0.3871 0.4038 0.1923 -0.2985 -0.2617 -0.2581 0.4497 0.3080 0.4428
9 0.8962 -0.2583 0.7547 0.7661 -0.7132 -0.1932 0.1397 -0.0571 -0.3340 -0.1210

10 0.8908 0.1519 0.5701 0.4031 -0.4422 -0.1786 -0.2304 0.3403 0.0553 0.1656
11 1.0000 -0.0513 0.5235 0.5485 -0.4965 -0.1592 -0.1162 0.0719 -0.1682 0.0265
12 -0.0513 1.0000 -0.4787 -0.6795 0.4938 -0.0103 -0.6086 0.8238 0.7832 0.6417
13 0.5235 -0.4787 1.0000 0.7165 -0.6773 -0.0650 0.2687 -0.1169 -0.3568 -0.2730
14 0.5485 -0.6795 0.7165 1.0000 -0.8010 -0.1601 0.5880 -0.4812 -0.6972 -0.3673
15 -0.4965 0.4938 -0.6773 -0.8010 1.0000 0.2601 -0.6789 0.3784 0.5552 0.4271
16 -0.1592 -0.0103 -0.0650 -0.1601 0.2601 1.0000 -0.3121 0.1997 0.3495 -0.0946
17 -0.1162 -0.6086 0.2687 0.5880 -0.6789 -0.3121 1.0000 -0.6155 -0.6624 -0.5267
18 0.0719 0.8238 -0.1169 -0.4812 0.3784 0.1997 -0.6155 1.0000 0.7742 0.5362
19 -0.1682 0.7832 -0.3568 -0.6972 0.5552 0.3495 -0.6624 0.7742 1.0000 0.5741
20 0.0265 0.6417 -0.2730 -0.3673 0.4271 -0.0946 -0.5267 0.5362 0.5741 1.0000

Table 10: Cr(i, k) values for the real traces
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