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Abstract

We propose an autonomous and scalable queueing theory-based methodology to control the performance of a hierarchical net-
work of distributed agents. Multi-agent systems (MAS) such as supply chains functioning in highly dynamic environments
need to achieve maximum overall utility during operation. Hence, the objective of the control framework is to identify the
trade-offs between quality and performance and adaptively choose the operational settings to posture the MAS for better util-
ity. By formulating the MAS as an open queueing network with multiple classes of traffic we evaluate the performance and
subsequently the utility, from which we identify the control alternative for a localized, multi-tier zone.
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1 Introduction

With the growing view of agent-oriented software sytems [1] and the increased deployment of distributed multi-agent systems
(DMAS) for numerous emerging applications such as computational grids, e-commerce hubs, supply chains and sensor net-
works, we are faced with large-scale distributed agents whose performance needs to be estimated and controlled. Often times,
these DMAS operate in dynamic and stressful environmental conditions, of one type or the other, in which the MAS as whole
must survive. While survival notion necessitates adaptivity to diverse conditions along the dimensions of performance, security
and robustness, delivering the correct proportion of these quantities can be quite a challenge. In this paper, we address a piece
of this problem by building an autonomous performance control framework for MAS.

While building large multi-agent societies (such as UltraLog [2]), it is desirable that the associated adaptation framework
be genericandscalable. One way to do this is to utilize a methodology similar to Jung and Tambe [3], where the bigger
society is composed of smaller building blocks, in this case, corresponding to communities of agents. Although, strategies for
co-operativeness and distributed POMDP to have been utilized to analyze performance in [3], an increase in the number of
variables in each agent can quickly render POMDP ineffective even in reasonable sized agent communities due to the state-
space explosion problem. In [4], Rana and Stout identify data-flows in the agent network and model scalability with Petri
nets, but their focus is on identifying synchronization points, deadlocks and dependency constraints with coarse support for
performance metrics relating to delays and processing times for the flows. In a recent architecture for autonomic computing,
Tesauro et al. [5] build a real-time MAS-based framework that is self-optimizing based on application-specific utility. While
[3, 4] motivate the need to estimate performance of large DMAS using a building block approach, [5] justifies the need to use
domain specific utility whose basis should be the network’s service-level attributes such as delays, utilization and response
times.

We believe that by using queueing theory we can analyze data-flows within the agent community with greater granularity in
terms of processing delays and network latencies and also capitalize on using a building block approach by restricting the model
to the agent community. Queueing theory has been widely used in networks and operating systems [6]. However, the authors
have not seen the application of queueing to MAS modeling and analysis. Since, agents lend themselves to being conveniently
represented as a network of queues, we concentrate on engineering a queueing theory based adaptation (control) framework to
enhance theapplication-level performance.

Inherently, the DMAS can be visualized as a multi-layered system as is depicted in Figure 1a. The top-most layer is where
the application resides, usually conforming to some organization such as mesh, tree etc. The infrastructure layer not only
abstracts away many of the complexities of the underlying resources (such as CPU, bandwidth), but more importantly provides
services (such as Message Transport) and aiding agent-agent services (such as naming, directory etc.). The bottom most layer
is where the actual computational resources, memory and bandwidth reside. Most studies in the literature do not make this
distinction and as such control is not executed in a layered fashion. Some studies such as [7, 8], consider controlling attributes
in the physical or infrastructural layers so that some properties (eg. survivability) could result and/or the facilities provided by
these layers are taken advantage of. Often, this requires rewiring the physical layer, availability of a infrastructure level service
or the ability of the application to share information with underlying layers in a timely fashion for control purposes. In this
work, we consider control only due to application-level trade-offs such as quality of service versus performance and assume that
infrastructure level services (such as load-balancing, priority scheduling) or physical level capabilities (such as rewiring) are not
possible. This does not exclude the possibility that in future we can combine all approaches to achieve a multi-layered control.



Our contribution in this work is to combine queueing analysis and application-level control to engineer a generic framework
that is capable of self-optimizing its domain-specific utility.
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Figure 1: MAS framework

1.1 Problem Statement

Typically, the top-most layer in the computing infrastructure (here the DMAS-based application) possesses maximum trans-
parency to system’s overall utility, control-knobs and domain knowledge. The utility of the application is the combined benefit
along several conflicting (eg. completeness and timeliness [9, 2]) and/or independent (eg. confidentiality and correctness [9, 2])
dimensions, which the application tries to maximize in a best-effort sense through trade-offs. Understandably, in a distributed
multi-agent setting, mechanisms to measure, monitor and control this multi-criteria utility function become hard and ineffi-
cient, especially under conditions of scale-up. Given that the application does not change its high-level goals, task-structure or
functionality in real-time, it is beneficial to have a framework that assists in the choice of operational modes (oropmodes) in a
distributed way. Hence, the research objective of this work is to design and develop a generic, real-time framework for DMAS,
that utilizes a queueing network model for performance evaluation and a learned utility model to select an appropriate control
alternative.

1.2 Solution Methodology

The focus of this research is to adjust the application-level parameters oropmodeswithin the distributed agents to make an
autonomous choice of operational parameters for agents in a reasonable-sized domain (called an agent community). The choice
of opmodesis based on the perceived application-level utility of the combined system (i.e. the whole community) that current
environmental conditions allow. We assume that the application’s utility depends of the choice ofopmodesat the agents
constituting the community because theopmodesdirectly affect the performance. A queueing network model is utilized to
predict the impact of DMAS control settings and environmental conditions on steady-state performance (in terms of end-to-end
delays in tasks), which in turn is used to estimate the application-level utility. After evaluating and ranking several alternatives
from among the feasible set of operational settings on the basis of utility, the best choice is picked.

2 Architecture of the Performance Control Framework

We implement the performance control framework for the Continuous Planning and Execution(CPE) Society which is a com-
mand and control MAS built onCougaar (DARPA Agent Platform [10]). While we describe the functionality of the components
of the framework (Figure 1b) in this section, we highlight the autonomic capabilities that are built into the system.

2.1 Overview of Application (CPE) Scenario

In our set-up, the primary building block consists of three tiers in the application layer. CPE embodies a complete military
logistics scenario with agents emulating roles such as suppliers, consumers and controllers all functioning in a dynamic and
hostile (destructive) external environment. Embedded in the hierarchical structure of CPE are both command and control,
and superior-subordinate relationships. The subordinates compile sensorupdatesand furnish them to superiors. This enables
the superiors to perform the designated function of creatingplans(for maneuvering and supply) as well ascontrol directives



for downstream subordinates. Upon receipt of plans, the subordinates execute them. The supply agents replenish consumed
resources periodically. This high level system definition is the functionality of CPE that it seeks to perform repeatedly with
maximum utility while residing in the application layer.As part of the application-level adaptivity features, a set ofopmodes
are built into the system.Opmodesallow individual tasks (such asplans, updates, control)to be executed at differentqualities
or to be processed at different rates. We assume thatTechSpecsfor the CPE scenario are available to be utilized by the control
framework. The framework that accomplishes the aforementioned goal of CPE in a distributed fashion while performing at a
maximum possible level of utility is represented in Figure 1b.

2.2 Self-Monitoring Capability

Any system that wants to control itself should possess a clear specification of the scope of the variables it has to monitor. The
TechSpecsis a distributed structure that supports this purpose by housing all variables,X, that have to be monitored in different
portions of the community (or sub-system). The data/statistics collected in a distributed way, is then aggregated to assist in
control alternatives by the top-level controller that each community will possess.

The attributes that need to be tracked are formulated in the form ofmeasurement points(MP ). The measurement points are
“soft” storage containers residing inside the agents and contain information on what, where and how frequently they should
be measured. Each agent can look up its ownTechSpecsand from time-to-time forward that to its superior. The superior can
analyse this information (eg. calculate statistics such as delay, delay-jitter) and/or add to this information and forward it again.
We have measurement points for time-periods, time-stamps, operating-modes, control and generic vector-based measurements.
These measurement points can be chained for tracking information for a flow such that information is tagged-on at every point
the flow traverses. For the sake of reliability, the information that is contained in these agents is replicated at several points, so
that when packets do not reach on time or not reach at all, previously stored packets can be utilized for control purposes.

2.3 Self-Modeling Capability

One of the key features of this framework is that it has the capability to choose a type of model for representing itself for the
purpose of performance evaluation. The system is equipped with several queueing model templates that it can utilize to analyze
the system with. The type of model that is utilized at any given moment is based on accuracy, computation time and history of
effectiveness. For example, a simulation based queueing model may be very accurate but cannot complete evaluating enough
alternatives in limited time, in which case an analytical model (such as BCMP, QNA [11]) is preferred.

The inputs to the model builder are the flows that traverse the network (F ), the types of packets (T ) and the current configuration
of the network. If at a given time, we know that there aren agents interconnected in a hierarchical fashion then the role of
this unit is to represent that information in the required template format (Q). The current number of agents is known to the
controller by tracking the measurement points. For example, if there is no response from an agent for a sufficient period of time,
then for the purpose of modeling, the controller may assume the agent to be non-existent. In this way dynamic configurations
can be handled. On the other hand,TechSpecsdo mandate connections according to superior-subordinate relationships thereby
maintaining the flow structure at all times. Once the modeling is complete, the MAS has to capability to analyze its current
performance using the selected type of model. The MAS does have the flexibility, to choose another model template for a
different iteration.

2.4 Self-Evaluating Capability

The evaluation capability, the first step in control, allows the MAS to examine its own performance under a given set of plausible
conditions. This prediction of performance is used for the elimination of control alternatives that may lead to instabilities. Our
notion of performance evaluation is similar to [5]. While Tesauro et al. [5] compute the resource level utility functions (based
on the application manager’s knowledge of system performance) that can be combined to obtain a globally optimal allocation of
resources, we predict the performance of the MAS as a function of its operating modes in real-time (withinQueueing Model) and
then use it to calculate its global utility. By introducing a level of indirection, we may get some desirable properties (explained
in Section 4.2) because we separate an application’s domain-specific utility computation from performance prediction (or
analysis). This theoretically enables us to predict the performance ofanyapplication whoseTechSpecsare clearly defined and
then compute the application-specific utility. In both cases, control alternatives are picked based on best-utility. We discuss
the notion of control alternatives in Section 2.5. Also, our performance metrics (and hence utility) are based on service level
attributes such as end-to-end delay and latency, which is a desirable attribute of autonomic systems [5].

Whenplan, updateandcontrol tasks (as mentioned in Section 2.1) flow in this heterogeneous network of agents in predefined
routes (calledflows), the processing and wait times of tasks at various points in the network are not alike. This is because
the configuration (number of agents allocated on a node), resource availability (load due to other contending software) and
environmental conditions at each agent is different. In addition, the tasks themselves can be of varying qualities or fidelities
that affects the time taken to process that task. Under these conditions, performance is estimated on the basis of the end-to-end
delay involved in a “sense-plan-respond” cycle.



Table 1: Notation

Symbol Description

N Total # of nodes in the community
λij Average arrival rate of classj at nodei

1/µijk Average processing time of classj at nodei at qualityk

M Total number of classes
Ti Routing probability matrix for classi

Wijk Steady state waiting time for classj at nodei at qualityk
Qij Set of qualities at which a classj task can be processed at nodei

The primary performance prediction tool that we use are called Queueing Network Models (QNM) [6]. The QNM is the rep-
resentation of the agent community in the queueing domain. As the first step of performance estimation, the agent community
needs to be translated into a queueing network model. Table 1 provides the notations used is this section. Inputs and outputs
at a node are regarded as tasks. The rate at which tasks of classj are received at nodei is captured by the arrival rate (λij).
Actions by agents consume time, so they get abstracted as processing rates(µij). Further, each task can be processed at a
qualityk ∈ Qij , that causes the processing rates to be represented asµijk. Statistics of processing times are maintained at each
agent in the Performance Database (PDB) to arrive at a linear regression model between qualityk andµijk. Flows get associ-
ated with classes of traffic denoted by the indexj. If a connection exists between two nodes, this is converted to a transition
probabilitypij , wherei is the source andj is the target node. Typically, we consider flows originating from the environment,
getting processed and exiting the network making the agent network an open queueing network [6]. Since we may typically
have multiple flows through a single node, we consider multi-class queueing networks where the flows are associated with a
class. Performance metrics such as delays for the “sense-plan-respond” cycle is captured in terms of average waiting times,
Wijk. As mentioned earlier,TechSpecsis a convenient place where information such as flows andQij can be embedded.

The choice of QNM depends on the number of classes, arrival distribution and processing discipline as well as a suggestion
C by theDMAS controllerthat makes this choice based upon history of prior effectiveness. Some analytical approaches to
estimate performance can be found in [6, 11]. In the context of agent networks, Jackson and BCMP queueing networks have
been applied to estimate the performance in [12]. By extending this work we provide several templates of queueing models
(such as BCMP, Whitt’s QNA [11], Jackson, M/G/1, a simulation) that can be utilized for performance prediction.

2.5 Self-Controlling Capability

In contrast to [5], we deal with optimization of the domain utility of a MAS that is distributed, rather than allocating resources in
an optimal fashion tomultipleapplications that have a good idea of their utility function (through policies). As mentioned before
opmodesallow for trading-off quality of service (task quality and response time) and performance. We are assuming there is a
maximum ceilingR on the amount of resources, and the available resources fluctuate depending on stressesS = Se+Sa, where
Se are the stresses from the environment (i.e. multiple contending applications, changes in the infrastructural or physical layers)
andSa are the application stresses (i.e. increased tasks). TheDMAS controller receives fromMP (measurement points) a
measurement of the actual performanceP and a vector of other statistics (X) about task processing times. Also at the top-level
the overall utility (U ) is U(P, S) =

∑
wnxn is known wherexn is the actual utility component andwn is the associated

weight. We cannot changeS, but we can adjustP to get better utility. SinceP depends onO, which is a vector of opmodes
collected from the community, we can use the QNM to findO∗ and henceP ∗ that maximizesU(P, S) for a givenS. In words,
we find the vector ofopmodes(O∗) that maximizes domain utility at currentS and updateO. This computation is performed in
theUtility Calculator module using a utility model that is learned and stored in the Utility Database (UDB). This formulation
although independently found matches the self-optimization notion in [5]. But some differences exist as follows. Tesauro et al.
[5] assume that the system’s knowledge includes a performance model, which we do not assume. We use a queueing network
model to estimate the performance in real-time for any set ofopmodesO′ by taking the current set ofopmodesO and scaling
them appropriately based on observed histories (X) to X ′ in theControl Set Evaluator. Also, we deal with a single MAS with
an overall utility function for the entire distributed functionality (within the community). Because of the interactions involved
and complexity of performance modeling[3, 4], it may be time-consuming to utilize inferencing and learning mechanisms in
real-time. This is why we use an analytical queueing network to get the performance estimate quickly. Another difference is
that in [5], they assume operating system support which may not be true in many MAS-based situations because of mobility,
security and real-time constraints. Furthermore, in addition to the estimation of performance, the queueing model may have
the capability to eliminate instabilities from a queueing sense, which is not apparent in the other approach. But inspite of these
differences, it is interesting to see that self-controlling capability can be achieved, with or without explicit layering, in a couple
of real-world applications.
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Figure 3: Sample results

3 Empirical Evaluation on CPE Test-bed

We utilized the prototype CPE framework to run 36 experiments at two stress levels (S = 0.25 and 0.75). The scenario
consisted of 14 agents, besides a world agent that created random scenarios in military logistics for the agents to react to. There
were three layers of hierarchy with a three-way branching at each level and one supply node. The community’s utility function
was based on the achievement of real goals in military engagements such as terminating or damaging the enemy and reducing
the penalty involved in consuming resources such as fuel or sustaining damage. We also assumed for the model selection
process that the external arrival was Poisson and the service times were exponentially distributed. In order to cater to general
arrival rates, our framework contains a QNA- and simulation-based model. Using this assumption a BCMP or M/G/1 queueing
model could be utilized. We used the Cougaar based default control without additional support from our framework as the
baseline (denoted asDefault AandDefault B) and found that controlling the agent community using our framework (denoted
ascontrolled) was beneficial in the long run. The overview of the results is provided in Figure 2.

At both stress levels, the controlled scenario performed better that the default as shown in Figure 3. We did observe oscillations
in the instantaneous utility and we attribute this to the impreciseness of the prediction of stresses. Stresses vary relatively fast
in the order of seconds while the control granularity was of the order of minutes. Since this is a military engagement situation
following no pre-determined stress patterns, it is hard to cope with in the higher stress case. We think that this could be the
reason why our utility falls in the latter case.



4 Conclusions and Future Work

4.1 Conclusions

In this paper, we were able to successfully control a real-time MAS to achieve overall better utility in the long run using
application-level trade-offs between quality of service and performance. We utilized a queueing network based framework for
performance analysis and subsequently used a learned utility model for computing the overall benefit to the MAS (i.e. commu-
nity). While Tesauro et al. [5] have found a similar construction to improve utility in multiple applications, we concentrated
on optimizing the utility of a single distributed application using queueing theory. We think that the approaches are comple-
mentary, with this study providing empirical evidence to support the observation in [1] that agents can be used to optimize
distributed application environments, including themselves, through flexible high-level (i.e. application-level) interactions.

4.2 Discussion and Future Work

We believe that keeping the building-blocks small and the number of interactions (between performance and utility models)
minimal may assist in making the framework moreflexibleandscalable.For example, if system size increases, we can consider
a superior agent orhuman userto be at the next higher level controlling the weights in the utility function without affecting the
performance model. The larger system with supervisory control would then be analyzed using another higher-level QNM or a
network of networks.TechSpecshas assisted this effort to a large extent, re-emphasizing the well-foundedseparation principle
(separating knowledge/policy and mechanism) in the computing field. While we think that the aforementioned architectural
principles have been well-utilized, we hope to broaden the layered control approach to encompass the infrastructural-level
control into the framework. Another avenue for improvement is to design self-protecting mechanisms within our framework so
that the security aspect of the framework is reinforced.
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