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Abstract

The paper presents a two-stage stochastic program to model a routing prob-
lem involving an Unmanned Aerial Vehicle (UAV) in the context of patrolling
missions. In particular, given a set of targets and a set of satellite targets cor-
responding to each target, the first stage decisions involve finding the sequence
in which the vehicle has to visit the set of targets. Upon reaching each target,
the UAV collects information and if the operator of the UAV deems that the
information collected is not of su�cient fidelity, then the UAV has to visit all
the satellite targets corresponding to that target to collect additional informa-
tion before proceeding to visit the next target. The problem is solved using
a progressive hedging algorithm and extensive computational results corrobo-
rating the e↵ectiveness of the proposed model and the solution methodology is
presented.

Keywords: two-stage stochastic program, progressive-hedging, integer
programming, routing, unmanned aerial vehicles

1. Introduction

The use of small Unmanned Aerial Vehicles (UAVs) has seen a tremendous
increase in the past decade for both civilian applications [1, 2] viz., precision
agriculture [3, 4], forest fire monitoring and management [5], ocean bathymetry
[6] etc. and military applications [7] viz., monitoring, surveillance, border patrol,
intelligence, and reconnaissance (see [8, 9] and references therein). The primary
reason for this increase is attributed to the low fixed and operational costs,
ease of use, payload capacity, and ability to fly low-altitude missions. There is
extensive work in the literature [10] that examines specific applications and de-
velops algorithms ranging from higher level path planning to lower level control
algorithms and the integration of the aforementioned applications. Higher level
path planning algorithms are o✏ine algorithms that are used to obtain paths
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for the vehicles a few hours prior to the start of the mission; in the optimiza-
tion literature, this corresponds to vehicle routing problems (VRP) for UAVs.
The lower level control algorithms are online algorithms that perform real-time
trajectory adjustments and vehicle speed changes based on the environment at
play. Most of the literature in small UAVs have had an application-specific focus
because each application tends to impose its own unique set of constraints that
need to be handled separately. One application of small UAVs that has received
little attention in literature, in terms of higher level path planning, is that of
patrolling [11]. Patrolling applications are essentially data collection missions
and despite the term patrolling having a military application connotation, sim-
ilar application exists even in a civilian context like precision agriculture, crop
health monitoring [3]. Such missions are typically associated with uncertainty
in the information collected from pre-specified targets. It also entails re-routing
to visit additional nearby locations near the pre-specified targets to improve the
fidelity of the information gathered. Hence, higher level planning algorithms
that take into account this information uncertainty and plan vehicle routes are
needed for such applications. There have been several attempts in the last few
years to build platforms for operating small UAVs in data gathering missions
pertaining to precision agriculture [3], mapping disaster recovery [12], etc. To
make things concrete, consider the application of precision farming where the
UAV visits a particular target to obtain images of the crops. Suppose the im-
ages indicate that the crops at that location are damaged or have an unusual
pattern in leaf color, then the mission control would want the vehicle to inspect
additional nearby locations to gather more information to come up with robust
conclusions on the crop health. If nothing unusual is observed then the vehicle
is expected to continue its mission. In this article, we address the problem of
higher level planning that can occur very frequently in almost all data gathering
applications that is informally defined as follows:

Given a set of targets, a source, a destination, and a UAV, the objective of
the problem is to find a path for the UAV that starts at the source, terminates
at the destination, and visits each target exactly once, such that the following
conditions are satisfied (i) if the information collected at a particular target (un-
certain) is not su�cient, the UAV has to visit one [13] or more satellite targets
corresponding to the visited target, before proceeding towards the next target in
the path and, (ii) the sum of the cost of the path and the expected additional
travel cost to visit the satellite targets is a minimum.

We shall refer to the above problem as the single vehicle data gathering
problem (SVDGP). The uncertainty in the SVDGP is associated with the in-
formation collected at a particular target. This uncertainty is modeled using
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a probability distribution and we do not make assumption on the exact form
of the distribution. Rather, we assume that the distribution permits sampling.
This makes the problem setting very general and increases its applicability to
a very large pool of civilian and military applications detailed in the previous
paragraphs. We formulate the SVDGP as a two-stage decision making problem
where the first stage (“here-and-now”) decisions are made before of the mission
under the face of uncertainty and the second stage, recourse decisions are made
once the mission starts and uncertainty is revealed. Despite the fact that a
multi-stage setting would provide more modeling power to such data-gathering
missions, we avoid this setting as it comes at a cost of computational burden
and complexity of presentation. Nevertheless, we note that the formulation and
the algorithms presented in this paper can be extended to a multi-stage setting.

1.1. Related Work

The literature contains many variants of UAV routing problems, and algo-
rithms that can obtain optimal solutions and heuristics have been extensively
studied for these variants. For ease of exposition, we will analyze the work
done in the literature using the following two categories: (1) deterministic UAV
routing approaches and (2) stochastic approaches.

As far as deterministic approaches are concerned, plenty of optimization
models and algorithms to compute optimal solutions, and fast heuristics to
compute good feasible solutions have received extensive attention over the past
decade. As mentioned in the introduction, most of the literature concerning de-
terministic approaches small UAV routing have had an application-specific focus
because each application tends to impose its own unique set of constraints that
need to be handled separately. In most of the approaches, the concerned rout-
ing problems are modeled as variants of the single traveling salesman problem
(TSP), multiple TSP, or some variants of the Vehicle Routing Problems (VRPs)
with additional constraints to model the specific mission at hand; for instance
see [14, 15, 16]. An interested reader is referred to [17] for an extensive survey on
optimization approaches for deterministic drone routing problems. To the best
of our knowledge, the only work in the literature that addresses the specific
application of patrolling is that of [11] where the authors propose an integer
programming formulation to model the patrolling problem as a deterministic
multiple TSP and present heuristics to solve the same.

When compared to the deterministic approaches, literature that focuses on
modeling uncertainty in the missions and developing algorithms to solve stochas-
tic variants of the problems concerning UAVs are scarce and very recent. Two-
stage stochastic programming formulations have been explored in the context of
single and multiple drone delivery problems [18, 19, 20, 21]. To the best of our
knowledge, apart from our preliminary conference article that introduces a sim-
pler variant of the SVDGP with only one satellite location per target [13], there
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is no work in the literature that explores such formulations and algorithms in
the context of data gathering missions. In [13], we formulate the SVDGP with
only one satellite location per target [13] to make the second stage optimization
problem a linear program; this in turn enables a simple solution algorithm to
compute the optimal two-stage solution. In this paper, we explore a general and
more practical setting where there are multiple satellite locations per target that
need to be visited to obtain high fidelity information in the target under con-
sideration. The formulation, as presented in the subsequent sections, contains
binary variables in both the first as well as the second stage and we present the
progressive hedging algorithm [22] to solve this problem. The rest of the article
is organized as follows: in Sec. 2, we present the formal problem statement af-
ter introducing the necessary notations, in Sec. 3, we mathematically formulate
the SVDGP as a two-stage stochastic program and present the algorithm to
solve the same in Sec. 4; finally in Sec. 5, we present the computational results
followed by conclusions and future research directions in Sec. 6.

2. Problem Statement

Before we present the formal problem statement, we introduce some nota-
tions that will be used throughout the rest of the article. We are given a set
of n targets T̂ = {t1, . . . , tn}, a source s, and a destination d. For ease for
exposition, we will assume that s = d = t0 and remark that the formulations
and algorithms can be extended easily to the case where they are distinct. We
also let T = T̂ [ {t0}. As detailed in the previous section, the decision making
process is two-staged. The first-stage decision for the mission is to compute
a path for the UAV that starts and ends at t0 and visits each target in the
set T̂ and collects information. The information can be anything and usually
depends on the application at hand. Also associated with each target k 2 T
is a set of peripheral locations Sk whose purpose is as follows: suppose the
UAV visits the target k and collects some information, then depending on the
fidelity of this information, it may have to visits some additional set of locations
(peripheral or satellite location set Sk) to either validate the collected infor-
mation or to gather more information to aid in the decision making process.
The decision on whether the UAV needs to visit these peripheral targets are
recourse decisions and are taken after the realization of uncertainty is revealed.
For the purpose of this article, we assume |Sk|, the cardinality of Sk for each
k = 1, . . . , n, is m, where m > 2 and S0 = ;. We shall, from here on, refer to
the set V = T

S
S1

S
· · ·

S
Sn as the set of vertices. Given these notations, the

SVDGP is formulated on a graph G = (V,E) where E denotes the edge set; we
delegate the definition of the edge set E to the Sec. 3. We note that G can be
a directed or an undirected graph and the formulation and the algorithms pre-
sented in this article are applicable to both cases. To keep the exposition fairly
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general, we will assume that the graph is directed and that the cost of traveling
between any pair of targets is asymmetric i.e., given (i, j) 2 V , cij 6= cji. The
cost of traversing an edge (i, j) 2 E can be anything ranging from distance
to travel time. We also assume that this cost of traversal between any pair of
vertices is known a-priori or can be pre-computed. Since the focus of the article
is to develop a model to account for uncertainty in a systematic way, in the
next section, we detail the uncertainty model associated with the information
collected at each target.

2.1. Uncertainty Modeling

The uncertainty in the problem arises from the fidelity of information col-
lected at any target i 2 T . Based on the information collected at target i, the
UAV may or may not have to visit the peripheral locations in the set Si before
proceeding to visit the next target in the route. Hence, we associate with each
target i 2 T , a Bernoulli random variable with probability pi which denotes the
probability that the information collected at target i is not of su�cient fidelity.
For the target t0, we assume that pi = 0, where i 2 {t0}. For ease of exposition,
we assume that the random variables corresponding to any pair of targets, is
independent of each other. However, this can be relaxed or changed and the
uncertainty can also be modeled using a Markov chain. The uncertainty in this
information collected over all the targets is modeled as a binary scenario vector
of size |T | where the component corresponding to target i 2 T takes a value 1
with a probability pi. These realizations of uncertainty are captured in a count-
able set of scenarios ⌦, in which each element ! 2 ⌦ occurs with probability
p!. Each element ! 2 ⌦ is a |T |-dimensional binary vector where each element
is 1 with a probability pi. We let !i denote the ith component of !. In this
particular case, given that the probabilities pi and pj associated with any pair
of targets (i, j) are independent, the probability of occurrence of the scenario !
is given by

p! =
nY

i=0

{1(!i = 1) · pi + 1(!i = 0) · (1� pi)} (1)

where, the function 1(·) is the indicator function.
If we let F denote the set of all feasible first-stage paths for the UAV, the

first-stage cost is the cost of the path and for any feasible path in F , the second-
stage decision is a set of recourse decisions which is a set of routes through the
peripheral targets based on the fidelity of information collected at the targets.
The second-stage decisions are scenario-dependent and the second-stage cost
is given by the expected additional cost of traversal for the UAV to visit the
peripheral targets. The goal of the SVDGP is to find a path that minimizes the
sum of the first and second-stage costs.
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3. Mathematical Formulation

We remark that when there is no uncertainty associated with the problem
and when the information gathered at every target i 2 T is already of su�cient
fidelity, then no peripheral targets need to be visited by the vehicle and the
first-stage problem reduces to a asymmetric TSP on the set T . For the SVDGP,
if the information associated with a target i 2 T is not of su�cient fidelity,
the UAV needs to visits the peripheral targets in the set Si before proceeding
towards the next target. To formulate this problem as a two-stage stochastic
program, we first define two edge sets E1 and E2 for the first and the second-
stages respectively. The edge set E1 includes edges that are permissible for the
vehicle in the first-stage i.e., any edge between every pair of vertices in the set T .
The second-stage edge set E2 includes the edges that the vehicle is permissible
to traverse in the second stage i.e., apart from containing all the edges in the
set E1, it includes the edges from every target i 2 T to every peripheral target
in the set Si, from every peripheral target in the set [iSi to every target in
the set T and for every i 2 T , between any pair of peripheral targets in the set
Si. For any edge in the set (i, j) 2 E1 [ E2, cij denotes the cost of traversal
of that edge. Also, given a subset of vertices V̂ , we define �1+(V̂ ) = {(i, j) 2
E1 : j /2 V̂ and i 2 V̂ } and �2+(V̂ ) = {(i, j) 2 E2 : j /2 V̂ and i 2 V̂ } as
the set of outgoing edges in the first and second stage edge set, respectively.
Similarly, given V̂ ⇢ V , we let �1�(V̂ ) = {(j, i) 2 E1 : j /2 V̂ and i 2 V̂ }
and �2�(V̂ ) = {(j, i) 2 E2 : j /2 V̂ and i 2 V̂ } as the set of incoming edge.
Furthermore, when V̂ = {i} i.e., a singleton, we simply write �1+(i) instead of
to �1+({i}). Finally, given two disjoint subsets of vertices V1, V2 ⇢ V , we define
�(V1 ! V2) = {(i, j) 2 E2 : i 2 V1, j 2 V2}.

3.1. Objective function

Given the above notations, we introduce binary first-stage decision variables
xij for each (i, j) 2 E1, denoting the presence of the edge (i, j) in the first-
stage solution and another set of binary second-stage decision variables yij for
each (i, j) 2 E2 denoting the presence of the edge (i, j) in the second stage.
We let x and y denote the vector of first and second stage decision variables,
respectively. Finally, given a subset of edges Ê1 ⇢ E1 and Ê2 ⇢ E2, we let
x(Ê1) and y(Ê2) denote the sums

P
(i,j)2Ê1 xij and

P
(i,j)2Ê2 yij , respectively.

Now, the objective for the two-stage stochastic programming formulation for
the SVDGP is given by:
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min C, where C ,
X

(i,j)2E1

cijxij + E⌦ [�(x,!)] (2)

=
X

(i,j)2E1

cijxij +
X

!2⌦

p!�(x,!)

Here, �(x,!) is the additional traversal cost required to visit the peripheral
targets given a scenario ! 2 ⌦.

3.2. First-stage constraints

Since the first-stage solution is a feasible tour through the set of targets in
T , the constraints in this stage are the TSP constraints which are given below:

x(�1+(i)) = 1 8i 2 T, (3a)

x(�1�(i)) = 1 8i 2 T, (3b)

x(�1+(S)) > 1 8S ⇢ T, |S| > 2, and (3c)

xij 2 {0, 1} 8(i, j) 2 E1. (3d)

Here, Eqs. (3a) and (3b) are the in-degree and out-degree constraints that
enforce exactly one edge to enter and leave each target in the set T . Eq. (3c)
ensures that there are no sub-tours in the solution, and finally Eq. (3d) enforces
the binary restrictions on the decision variables xij .

3.3. Second-stage formulation

The second-stage model for a fixed first-stage solution x and the realization
of uncertainty ! 2 ⌦ is as follows:

�(x,!) = min
X

(i,j)2E2

cijyij�
X

(i,j)2E1

cijyij(1� !i) (4a)

subject to:

y(�2+(i)) = 1 8i 2 T, (4b)

y(�2�(i)) = 1 8i 2 T, (4c)

y(�2+(j)) = !i 8j 2 Si, i 2 T, (4d)

y(�2�(j)) = !i 8j 2 Si, i 2 T (4e)

yij = xij(1� !i) 8(i, j) 2 E1 (4f)

y(�(Si ! {j})) = xij!i 8i, j 2 T, (4g)

y(�2+(S)) > 1 8S ⇢ V, |S| > 2, S \ T 6= ; and (4h)

yij 2 {0, 1} 8(i, j) 2 E2. (4i)
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The objective in Eq. (4a) minimizes the additional cost of visiting the periph-
eral targets if information collected at a particular target is not of su�cient
fidelity. The first summation is the total cost of the route including the addi-
tional peripheral target visits and the second term is the cost of the edges that
are present both in the first and the second stage solutions. The Eqs. (4b) and
(4c) are the in-degree and out-degree constraints for the targets in the set T .
The Eqs. (4d) and (4e) ensure that if the information collected at any target
i 2 T is not of su�cient fidelity i.e., !i = 1, then the peripheral targets in the
set Si have to be visited by the vehicle. The Eq. (4f) ensures that if an edge
(i, j) 2 E1 is traversed by the vehicle in the first stage and if !i = 0, then this
edge is necessarily used in the second stage by setting yij = 1 and if an edge
(i, j) 2 E1 is not used by the vehicle in the first stage, then it is also not used
in the second stage. Eq. (4g) ensures that given a target i 2 T with !i = 1
and given that j 2 T is the target that vehicle visits immediately after i in the
first stage solution, the vehicle has to collect additional information from all the
peripheral targets in the set Si before visiting the next target j. Together, Eqs.
(4f) and (4g) also ensure that the sequence in which the vehicle visits the targets
in the first-stage solution given by x remains unchanged in the second-stage.
The Eq. (4h) eliminate sub-tours in the second-stage solution and finally, the
Eq. (4i) impose binary restrictions on the decision variables yij .

4. Solution Methodology

This section details the description of our approach to solve the two-stage
mathematical formulation of the SVDGP presented in Sec. 3. The formulation,
as presented, contains binary decision variables both in the first and the second
stages. We leverage the Progressive hedging (PH) algorithm proposed by Rock-
afellar and Wets [23] to solve the SVDGP; PH is also referred to as scenario
decomposition in the literature [22] since it decomposes stochastic programs by
scenarios i.e., samples of the realization of the uncertainty in the problem. PH
is a well-known algorithm for solving multistage stochastic convex optimization
problems [24]. In fact, PH possesses strong theoretical convergence properties
when all decision variables in the convex multistage stochastic program are con-
tinuous. In the presence of discrete variables, a wealth of recent theoretical and
empirical research [25, 26, 27] has shown that the PH algorithm can prove to
be a very robust heuristic to solve stochastic programs, specifically the case of
pure binary programs in both stages of the formulation even in the case that
the number of scenarios is prohibitively large. These algorithmic features of
PH make its application ideal for the the SVDGP. To that end, the subsequent
sections detail the techniques involved in the PH approach and present findings
that shows its impact as an e↵ective heuristic to solve the practically relevant
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SVDGP. In the forthcoming paragraphs, we present an overview of the PH
algorithm specifically for the SVDGP.

4.1. Algorithm Overview

Before, we present the overview of the algorithm, we restate the two-stage
stochastic program for the SVDGP in a concise manner as follows:

min
X

(i,j)2E1

cijxij +
X

!2⌦

p!�(x,!) (5a)

subject to: x 2 Q (5b)

where, Q = {x : x satisfies Eq. (3)}. The concise formulation, as presented in
Eq. (5), is the well-known extensive form of the two-stage stochastic program
[28] in Sec. 3. The PH is a scenario-decomposition algorithm that uses a
separate set of first-stage decision variables for each scenario to perform parallel
solves i.e., for each ! 2 ⌦, it introduces decision variables x! and implicitly
enforces the non-anticipativity constraints (x = x! 8! 2 ⌦) via penalization;
these constraints avoid allowing the first-stage decision vector x to depend on
the scenario. The basic PH algorithm takes as input two parameters (i) a
penalty factor, ⇢ > 0 and (ii) a termination threshold, ". Given ⇢ and ", the
pseudo-code for the PH algorithm is as follows:

In Step 6 of Algorithm 1, the function h·, ·i denotes the dot product of the two
vectors. Furthermore, we notice that the computations in Steps 2 and 6 involve
solving multiple mixed-integer linear programs, one for each scenario in the set ⌦
and that the solves are completely parallelizable. The quadratic penalty term (or
the proximal term [22]) penalizes the non-anticipativity constraints and ensures
that it is satisfied as the algorithm terminates. For every iteration k, the term ✏k

is also refered to as the “residual”. We used a constant value of ⇢ equal to 0.50
and a value of epsilon was set to 1⇥10�5 for all the computational experiments.
These values were chosen by trial-and-error. No further experiments were done
to compute an e↵ective ⇢ value or establish termination criterion as a way to
speed up the algorithm once preliminary results showed that the algorithm ran
and converged successfully with the chosen values of ⇢ and ✏ for our particular
problem. The following sections show the results obtained by adopting this
approach to our two stage formulation of the problem.

5. Computational Results

The PH algorithm for the SVDGP was implemented using the C++ pro-
gramming language, and CPLEX 12.8 was used as the underlying solver to
solve the multiple MILPs that occur in each iteration of the PH algorithm. All
the computational experiments were performed using an 2.9 GHz Intel Core
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Algorithm 1 Progressive Hedging: A pseudo-code

Initialization:

1: k  0 . iteration count

2: For every ! 2 ⌦, xk
!  argminx2Q

P
(i,j)2E1 cijxij + �(x,!)

3: xk  
P

!2⌦ p!xk
!

4: For every ! 2 ⌦, wk
! , ⇢ · (xk

! � x!) . wk
! is a weight vector

Iteration update:

5: k  k + 1

Decomposition:

6: For every ! 2 ⌦,

xk
!  argmin

x2Q

0

@
X

(i,j)2E1

cijxij + hwk�1
! ,xi+ ⇢

2

��x� xk�1
��2 + �(x,!)

1

A

Aggregation:

7: xk  
P

!2⌦ p!xk
!

Weight update:

8: For every ! 2 ⌦, wk
! , wk�1

! + ⇢ · (xk
! � x!)

Termination criterion check:

9: ✏k , P
!2⌦ p!

��xk
! � xk

��

10: if ✏k > " then

11: Go to Step 5

12: else

13: Terminate with xk as the first-stage solution

14: end if

10



i7 processor with 16 GB RAM. The performance of the algorithm was tested
on randomly generated test instances. The instances generation procedure is
detailed in the subsequent section.

5.1. Instance Generation

All the targets, the satellite locations, the source, and the destination were
all generated on a 100 ⇥ 100 grid. The source and the destination vertices for
all the instances were located at (5, 5) and (95, 95), respectively. The number of
targets n were varied from 10 to 40 in steps of 5. For each target, the locations
of its corresponding satellites were also randomly generated within a maximum
pre-specified radius, R, from the target location; the value of R was chosen
from the set {5, 10} units. The number of satellite locations per target, m was
chosen from the set {3, 5, 7, 9}. Now, as for the vehicle itself, we assume that the
vehicle is a fixed-wing drone with a minimum turn-radius of 5 units. For this
fixed-wing drone, the cost of traversal between any pair of targets is assumed
to be the shortest the path taken by the vehicle to go from one target to the
other. This path length is in-turn a function of the heading angle of the drone
at each target. To that end, we generate random heading angles for every target
and its corresponding satellite location and then compute the length using the
well-known result by Dubins [29]. We remark that the shortest path computed
using the result in [29] is asymmetric. Given this instance generation procedure,
the total number of instances was 56 and all computational experiments were
performed on this set of 56 instances. A subset of these instances are used for
each of the computational experiments and the subset of chosen instances for
each experiment is presented in the respective sections.

5.2. PH Algorithm Parameters and Scenario Generation

The PH algorithm has two main input parameters, ⇢ and ✏, whose values
are set to 0.5 and 1 ⇥ 10�5, respectively. The uncertain scenarios for each
run of the problem are generated using a vector of Bernoulli random variable,
one for each target. Across a majority of the experiments in the subsequent
sections, the probability that the information collected at a particular target
is of su�cient fidelity is assumed to be 0.5 for every target. For a few other
computation experiments other probability values are used and these values are
presented when the corresponding experiment is described. For the source and
the destination, we set this probability to 0 and required number of scenarios
are generated from this vector of Bernoulli random variables. The number
of scenarios was varied from a minimum value of 10 to a maximum value of
200 across all experiments. Each randomly generated scenario, ! is a binary
vector indicating if the information collected at a particular target is of su�cient
fidelity or not. In the subsequent paragraphs, we present the results for the
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various computational experiments perform to evaluate the PH algorithm on
the SVDGP. Before we present the results obtained using the PH algorithm,
we remark that when the full two-stage stochastic formulation in Sec. 3 was
provided to CPLEX with a time-limit of three hours, all problem instances with
number of targets greater than 50 and number of scenarios greater than 20
timed-out. Hence, we do not present any results that show that CPLEX was
not able to solve the full problem as stated in Sec. 3.

E↵ect of increasing the number of scenarios. Here, we present the first set of
results to demonstrate the scalability of the PH algorithm for the SVDGP with
increasing number of scenarios. To that end, for this experiment, the instances
with value of n 2 {10, 15, 20, 25, 30, 35, 40}, m = 5, R = 5 are chosen. For
each of these instances, the number of scenarios are varied in the set |⌦| 2
{10, 25, 50, 100, 200}. The results for this set of experiments is shown in Tables
1 and 2. It is observed from the tables that the PH algorithm is e↵ectively
able to solve all the instances with up to 100 scenarios within two hours of
computation time.

|⌦| n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

10 0.24 1.05 4.06 281.30 60.40 13.99 351.94

25 0.59 2.71 12.99 564.80 134.28 47.31 1084.65

50 0.95 4.85 21.86 1766.95 262.78 95.25 3121.86

100 2.02 9.94 46.57 5025.31 598.94 191.47 7256.49

200 4.28 19.07 57.45 9304.92 1133.70 336.65 16315.99

Table 1: Computation time (in seconds) taken by the PH algorithm for increasing number of

targets and number of scenarios.

|⌦| n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

10 1 1 1 16 9 1 14

25 1 1 1 14 10 1 15

50 1 1 2 26 11 1 22

100 1 1 1 34 12 1 23

200 1 1 1 30 12 1 25

Table 2: Number of iterations taken to obtain convergence of the PH algorithm for increasing

number of targets and number of scenarios.

The Fig. 2 shows the feasible first stage (Fig. 1a) and a second stage
solution (Fig. 1b) for one particular realization of the random variable for a
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(a) First stage solution for a 10-target instance.
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(b) The solution to the two-stage problem for one particular realization of the uncertainty. The
black lines are the path that is same as the first stage solution and the orange routes correspond
to the additional visits to the satellite locations corresponding to the targets where the fidelity of
information collected was not su�cient.

Figure 1: The solution provided by the PH algorithm for a 10-target instance.

10-target instance. Notice that the paths taken by the vehicle are not straight
lines because we assume that the vehicle is a fixed-wing aircraft with a minimum
turn-radius of 5 units.
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E↵ect of increasing the number of satellite locations per target. The second
set of results are aimed at demonstrating the scalability of the algorithm with
increasing number of satellite locations per target. To that end, for this experi-
ment, the instances with value of n 2 {10, 15, 20, 25, 30, 35, 40}, m = {3, 5, 7, 9},
R = 5, and |⌦| = 100 (generated using a probability of 0.5) are chosen and
the results are reported in Tables 3 and 4. Though the expectation is for the
computation time and the number of iterations to increase with increasing value
of m, it is not really the case for this problem, as observed from Tables 3 and 4.
Furthermore, we also observe that for the 40-target instances, the computation
time is much greater than two hours.

m n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

3 1.68 6.34 21.90 185.49 92.15 66.25 2777.89

5 2.02 9.94 46.57 5025.31 598.94 191.47 7256.49

7 5.82 33.55 63.68 162.63 1605.04 6082.88 9404.69

9 22.38 57.53 870.38 1422.58 412.64 7152.56 2325.88

Table 3: Computation time (in seconds) taken by the PH algorithm for increasing number of

targets and number of satellite locations per target.

m n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

3 1 1 1 11 1 1 20

5 1 1 2 34 12 1 23

7 1 1 1 1 7 19 20

9 1 1 6 6 1 8 1

Table 4: Number of iterations taken to obtain convergence of the PH algorithm for increasing

number of targets and number of satellite locations per target.

E↵ect of increasing the pre-specifed radius for the satellite locations. This set
of results presents the variation in the computation time and the number of
iterations for the PH algorithm to converge when the pre-specified radius in
which the satellite locations are present is varied in the set {5, 10}. The re-
sults present the change in computation time and number of iterations for
n = {10, 15, 20, 25, 30, 35, 40} and when m = 5, |⌦| = 100 (generated using
a probability of 0.5). The Tables 5 and 6 present the computation times and
the number of iterations for the above instances, respectively. Again, no clear
trend exists between the value of R and the computation time or the number
of iterations taken for the PH algorithm to converge; nevertheless, the trivial
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trend that can be observed from the two tables is that greater the number of
iterations the greater the computation time.

R n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

5 2.023 9.943 46.569 5025.308 598.943 191.472 7256.488

10 45.824 762.224 23.985 98.602 736.891 1284.960 2022.578

Table 5: Computation time (in seconds) taken by the PH algorithm for values of R.

R n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

5 1 1 2 34 12 1 23

10 13 37 1 1 10 12 7

Table 6: Number of iterations taken by the PH algorithm for varying values of R.

E↵ect of changing the probabilities in the scenario generation. This set of re-
sults is aimed at examining the e↵ect of changing the probabilities that the
information collected at any target is not of su�cient fidelity. We choose a spe-
cific instance with n = 20, m = 5, and R = 5 units. There is no specific reason
for this choice and the results for all the other instances followed the same trend.
To that end, the probabilities that we choose to generate 100 scenarios for this
particular instance is given by {0.0, 0.2, 0.5, 0.8, 1.0}. We remark that when the
probability is 0.0, it basically means that the information collected at all the
targets is of su�cient fidelity and this reduces the SVDGP to computing a trav-
eling salesman tour through the set of targets. On the other hand, if all the
probabilities take a value 1.0, then the information collected at every target is
not of su�cient fidelity and the SVDGP reduces to a TSP the set of targets and
their satellite locations with additional sequencing constraints i.e., the satellite
locations have to be visited immediately after their respective target visits. The
Table 7 presents both the computation time and the number of iterations for
this experiment. The computation time for the case when the probability value
is 0.0 is the least as solving a TSP with 20 targets is substantially fast. On the
other end of the spectrum, the computation time for case with a probability
value of 1.0 is the maximum as it reduces to the problem of solving a TSP with
120 vertices and additional sequencing constraints. Also, for these two cases,
the recourse action is obtained directly by solving the TSP or the TSP with
additional sequencing constraints and hence, the number of iterations for the
PH algorithm to converge for these two cases will always be equal to one.
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p time (seconds) # iter

0 4.88 1

0.2 39.62 5

0.5 45.79 2

0.8 89.38 1

1 269.26 1

Table 7: Computation time and number of iterations for di↵erent values of probabilities. Here

p represents the probability that the information collected at the target is not of su�cient

fidelity for any target, and # iter is the number of iterations taken by the PH algorithm to

converge.

PH algorithm residual statistics. This set of results shows the changes in the
residual of the PH algorithm (i.e., ✏k in Algorithm 1) for varying number of
scenarios. We remark that this residual function is not a strictly decreasing
function. For this experiment, the instance with n = 40, m = 5, and R = 5 was
chosen. As far as the scenarios are concerned, all of them were created using a
probability value of 0.5. The Fig. 2 shows the residual values for varying number
of scenarios. All the results presented thus far illustrate the e↵ectiveness of the
PH algorithm in computing heuristic solutions to the SVDGP with uncertainty
in the fidelity of information collected.
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Figure 2: Residual value progress for the PH algorithm. The value of (n,m,R) for the instance

for this set of runs is given by (40, 5, 5), respectively.
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6. Conclusion

This article introduces a single vehicle routing problem that arises in the con-
text of UAV routing and other vehicle path planning applications. It presents a
two-stage stochastic programming formulation and a corresponding algorithm
for the problem where there might be a need to visit additional peripheral lo-
cations to collect information of good fidelity for the purposes of any particular
mission to account for the uncertainty of the information collected at any par-
ticular target. This problem can be extended to a multi-stage setting using the
same framework. This is the first attempt to solve such a sequential stochastic
programming problem in this context and there is scope to work on this further
to develop and refine distributed computing algorithms to solve it for a multi-
stage setting while reducing the computational times. In addition, this could
be easily extended to the case of a multi-vehicle setting as well. Finally, the use
of Markov Decision Processes could also be investigated in developing powerful
heuristics for this problem.
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