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ABSTRACT
Distributed Multi-Agent Systems (DMAS) such as supply chains
functioning in highly dynamic environments need to achieve max-
imum overall utility during operation. The utility from maintain-
ing performance is an important component of their survivability.
This utility is often met by identifying trade-offs between quality
of service and performance. To adaptively choose the operational
settings for better utility, we propose an autonomous and scalable
queueing theory based methodology to control the performance of
a hierarchical network of distributed agents.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, modeling tech-
niques, performance attributes

General Terms
Performance
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1. INTRODUCTION
With the emerging popularity of distributed multi-agent systems

as application platforms, it is necessary that they survive dynamic
and stressful environmental conditions, even partial permanent dam-
age. While the survival notion necessitates adaptivity to diverse
conditions along the dimensions of performance, security and ro-
bustness, delivering the correct proportion of these quantities can
be quite a challenge. From a performance standpoint, a survivable
system can deliver excellent Quality of Service (QoS) even when
stressed. A DMAS could be considered survivable if it can main-
tain at least x% of system capabilities and y% of system perfor-
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mance in the face of z% of infrastructure loss and wartime loads
(x, y, z are user-defined) [1].

We address a piece of the survivability problem by building an
autonomous performance control framework for the DMAS draw-
ing on the idea of composing the bigger society of smaller building
blocks (i.e. agent communities) [3]. Identifying data-flows in the
agent network (similar to [4]) and utilizing the network’s service-
level attributes such as delays, utilization and response times as a
basis for its utility (like in [5]) we build a self-optimizing frame-
work for DMAS. We believe that by using queueing theory we can
analyze data-flows within the agent community as a network of
queues with greater granularity in terms of processing delays and
network latencies and also capitalize on using a building block ap-
proach by restricting the model to the community. We contribute
by engineering a queueing theory based adaptation (control) frame-
work to enhance the performance of the application layer, which
inherently can be visualized as residing over the infrastructure (log-
ical layer or middle-ware) and the physical layer (resources such as
CPU, bandwidth).

2. FRAMEWORK ARCHITECTURE
Building on the ideas of high-level system specifications (or Tech-

Specs) and utilizing queueing network models (QNMs) for per-
formance estimation as in [2] we build a real-time framework for
application-level survivability. This framework is represented in
Figure 1 and consists of activities, modules, knowledge repositories
and information flow through a distributed collection of agents.

2.1 Architecture Overview
When the DMAS is stressed by an amount S by the underly-

ing layers (due to under-allocation of resources) and the environ-
ment (due to increased workloads during wartime conditions), the
DMAS Controller has to examine all its performance-related vari-
ables from set X and the current overall performance P in order
to adapt. The variables that need to be maintained are specified in
the TechSpecs and may include delays, time-stamps, utilization and
their statistics. They are collected in a distributed fashion through
the measurement points MP which are “soft” storage containers
residing inside the agents and contain information on what, where
and how frequently they should be measured. The DMAS Con-
troller knows the set of flows F that traverse the network and the set
of packet types T from the TechSpecs. With {F, T, X, C}, where
C is a suggestion from the DMAS Controller, the Model Builder
can select a suitable queueing model template Q. The Control Set
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Figure 1: Architecture Overview

Evaluator knows the current operating mode (opmode) set O as
well as the set of possible opmodes, OS from TechSpecs. To evalu-
ate the performance due to a candidate opmode set O

′
, the Control

Set Evaluator uses the Queueing Model with a scaled set of op-
erating conditions X

′
. Once the performance P

′
is estimated by

the Queueing Model it can be cached in the performance database
PDB and then sent to the Utility Calculator. The Utility Calcu-
lator computes the domain utility due to (O

′
, P

′
) and caches it in

the utility database, UDB. Subsequently, the optimal opmode set
O∗ is identified and sent to the DMAS Controller. The functional
units of the architecture are distributed but for each community that
forms part of a MAS society, O∗ will be calculated by a single
agent. We now examine the capabilities of the framework.

2.1.1 Self-Monitoring Capability
TechSpecs acts as a distributed structure that contains meta-data

about all variables, X, that have to be monitored in different por-
tions of the community. The data/statistics collected in a distributed
way, is then aggregated to assist in control alternatives by the top-
level controller that each community possesses. Each agent can
look up its own TechSpecs and from time-to-time forward a mea-
surement to its superior. The superior can analyse this information
(eg. calculate statistics such as delay, delay-jitter) and/or add to this
information and forward it again.

2.1.2 Self-Modeling Capability
One of the key features of this framework is that it has the ca-

pability to choose a type of model for representing itself for the
purpose of performance evaluation. The system is equipped with
several queueing model templates that it can utilize to analyze the
system configuration with. The inputs to the Model Builder are the
flows that traverse the network (F ), the types of packets (T ) and
the current configuration of the network. Given we know that there
are n agents interconnected in a hierarchical fashion, this unit rep-
resents the information in the required template format (Q) which
is subsequently used to analyze the current performance.

2.1.3 Self-Evaluating Capability
The evaluation capability allows the MAS to examine its own

performance under a given set of plausible conditions. This pre-

diction of performance is used for the elimination of control alter-
natives that may lead to instabilities. Given that a variety of tasks
traverse the heterogeneous network of agents in predefined routes
(called flows), the processing and wait times of tasks at various
points in the network are not alike because of dissimilar configura-
tions, resource availabilities and/or environmental stresses. Under
these conditions, performance is evaluated in terms of end-to-end
delays for the “sense-plan-respond” cycles.

2.1.4 Self-Controlling Capability
Since tasks can be processed at various pre-defined qualities, op-

modes allow for trading-off quality of service (task quality) for per-
formance (end-to-end response time). The available resources fluc-
tuate depending on stresses S = Se +Sa, where Se are the stresses
from the environment (i.e. multiple contending applications) and
Sa are the application stresses (i.e. increased tasks). Using cur-
rent measured performance P and the measured stress S the DMAS
Controller relates the overall utility (U ) as U(P, S) =

P
wnxn

where xn is the actual utility component and wn is the associated
weight specified by the user. To adjust P to get the best achiev-
able utility under S, the following is done. Since P depends on
O, which is a vector of opmodes collected from the community, we
can use the QNM to find O∗ and hence P∗ that maximizes U(P, S)
for a given S from within the set OS. In words, we find the vector
of opmodes (O∗) that maximizes domain utility at current S. The
utility computation is performed in the Utility Calculator module
using a learned utility model based on UDB.

3. CONCLUSIONS
We combined queueing analysis and application-level control to

engineer a generic framework that is capable of self-optimizing
its domain-specific utility to assure application-level survivability.
While application-level adaptivity yields improvement in utility fur-
ther gains are possible by leveraging underlying layers.
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