
 1

Abstract—As information networks grow larger in size due to

automation or organizational integration, it is important to
provide simple decision-making mechanisms for each entity or
groups of entities that will lead to desirable global performance.
In this paper, we study a large-scale information network
consisting of distributed software components linked together
through a task flow structure and design a resource control
mechanism for minimizing completion time. We define load index
which represents component’s workload. When resources are
allocated locally proportional to the load index, the network can
maximize the utilization of distributed resources and achieve
optimal performance in the limit of large number of tasks.
Coordinated resource allocation throughout the network emerges
as a result of using the load index as global information. To clarify
the obscurity of “large number of tasks” we provide a quantitative
criterion for the adequacy of the proportional resource allocation
for a given network. By periodically allocating resources under
the framework of model predictive control, a closed-loop policy
reactive to each current system state is formed. The designed
resource control mechanism has several emergent properties that
can be found in many self-organized systems such as social or
biological systems. Though it is localized requiring almost no
computation, it realizes desirable global performance adaptive to
changing environments.

Index Terms—Distributed information networks, resource
allocation, completion time, adaptivity, scalability.

I. INTRODUCTION
ritical infrastructures are increasingly becoming dependent
on networked systems in many domains due to automation

or organizational integration. The growth in complexity and
size of software systems is leading to the increasing importance
of component-based architecture [1][2]. A component is a

Manuscript received June 1, 2006. This work was supported in part by
DARPA under Grant MDA 972-01-1-0038.

S. Lee is with the School of Industrial Engineering, Purdue University, West
Lafayette, IN 47907 USA (phone: 765-494-5419; fax: 765-494-1299; e-mail:
lee46@purdue.edu).

S. Kumara is with the Department of Industrial and Manufacturing
Engineering, Pennsylvania State University, University Park, PA 16802 USA
(e-mail: skumara@psu.edu).

N. Gautam is with the Department of Industrial and Systems Engineering,
Texas A&M University, College Station, TX 77843 USA (e-mail:
gautam@tamu.edu).

reusable program element and component technology utilizes
the components so that developers can build systems needed by
simply defining their specific roles and wiring them together. In
networks with component-based architecture, each component
is highly specialized for specific tasks. We study a large-scale
information network (with respect to the number of
components as well as machines) comprising of distributed
software components linked together through a task flow
structure. A problem given to the network is decomposed in
terms of root tasks for some components and those tasks are
propagated through a task flow structure to other components.
Since a problem can be decomposed with respect to space,
time, or both, a component can have multiple root tasks that can
be considered independent and identical in their nature. The
service provided by the network is to produce a global solution
to the given problem, which is an aggregation of the partial
solutions of individual tasks. Quality of Service (QoS) of the
network is determined by the time for generating the global
solution, i.e. completion time.

For a given topology, components are sharing resources and
the network can control its behavior through resource
allocation, i.e. allocating resources of each machine to the
components residing in that machine. In this paper we design a
resource control mechanism of such networks for minimizing
the completion time. Though similar problems exist in
multiprocessor scheduling literature [3]-[11], they have
limitations in addressing this novel resource control problem.
They commonly consider the cases where each component only
has to process one task after all of its predecessors complete
their tasks. In contrast, a component in the networks under
consideration processes multiple tasks in parallel with its
successors or predecessors.

To address this kind of complex networks there is a need to
facilitate some simple but effective control mechanisms. Many
self-organized systems such as social and biological systems
exhibit emergent properties. Though entities act with a simple
mechanism without central authority, these systems are
adaptive and desirable global performance can often be
realized. The control mechanism designed in this paper has
such properties, and hence it is applicable to large-scale
networks working in a dynamic environment.

The organization of this paper is as follows. After discussing
the motivation and related work in Section II, we formally
define the resource control problem in detail in Section III. The

Self-Organized Resource Allocation for
Minimizing Completion Time in Large-Scale

Distributed Information Networks
Seokcheon Lee, Soundar Kumara, and Natarajan Gautam

C

 2

control mechanism is designed in Sections IV and we provide a
criterion for the adequacy of the designed control mechanism in
Section V. Section VI presents empirical results, and
conclusions and future work are discussed in Section VII.

II. MOTIVATION AND RELATED WORK

A. UltraLog Networks
UltraLog networks (dtsn.darpa.mil/ixo/programs.asp?id=61)

[12]-[17], implemented in Cougaar (Cognitive Agent
Architecture: www.cougaar.org) developed by DARPA
(Defense Advanced Research Project Agency), are the
next-generation military logistics information systems. In
Cougaar, a software system comprises of agents and an agent of
components (called plugins). The task flow structure in these
systems is that of components as a combination of intra-agent
and inter-agent task flows. Each agent in an UltraLog network
represents an organization of military supply chain, and has a
set of components specialized for each functionality
(allocation, expansion, aggregation, inventory management,
message transport, etc) and class (ammunition, water, fuel, etc).

The objective of an UltraLog network is to produce a
logistics plan for a given military operation, which is an
aggregate of individual schedules built by components. An
operation is transformed into logistics requirements and the
requirements are decomposed into root tasks (one task per day)
for designated components. As a result, a component can have
hundreds of root tasks depending on the horizon of the
operation and thousands of tasks as the root tasks are
propagated. As the scale of operation increases, there can be
thousands of agents (tens of thousands of components) in
hundreds of machines working together to generate a logistics
plan. The system makes initial planning and continuous
replanning to cope with logistics plan deviations or operational
plan changes. Initial planning and replanning are the instances
of the current research problem.

One of the important performance criteria of these networks
is the (plan) completion time. This metric directly affects the
performance of the military operations. The question is how to
manage the resources of the networks in order to minimize the
completion time.

B. Scheduling
The resource control problem under consideration is a

scheduling problem. In general, a scheduling problem is
allocating limited resources to a set of tasks to optimize a
specific objective. One widely studied objective is completion
time (also called makespan) as in the problem we have
considered. Though there are a variety of formulations and
algorithms available in multiprocessor scheduling literature
[3]-[11], they have limitations in addressing the scheduling
problem under consideration. They commonly consider
so-called workflow applications where each component only
has to process one task after all of its predecessors complete

their tasks1. In contrast, a component in the networks under
consideration processes multiple tasks in parallel with its
successors or predecessors. The critical path used to determine
the completion time, is not valid in the scheduling problem we
are addressing.

Though it is not easy to find a problem exactly same as ours,
it is possible to convert our problem into a job shop scheduling
problem. In a job shop, there are a set of jobs and a set of
machines. Each job has a set of serial operations and each
operation should be processed on a specific machine. A job
shop scheduling problem is sequencing the operations in each
machine by satisfying a set of job precedence constraints such
that the completion time is minimized. Our problem can be
transformed into the job shop scheduling problem. However,
job shop scheduling problems are in general intractable.
Though the job shop scheduling problem is polynomially
solvable when there are two machines and each job has two
operations, it becomes NP-hard on the number of jobs even if
the number of machines or operations is more than two
[18][19]. Considering that the task flow structure of our
networks is arbitrary, our scheduling problem is NP-hard on the
number of components in general. The increase of the number
of tasks makes the problem even harder. To address this
complex scheduling problem there is a need to facilitate some
simple but effective scheduling algorithms.

III. PROBLEM SPECIFICATION
In this section we formally define the problem in a general

form by detailing network model and resource allocation. We
concentrate on computational CPU resources assuming that the
system is computation-bounded. (The notations used
repetitively throughout the paper are summarized in
Appendix.)

A. Network Model
The network is composed of a set A of components and a set

N of machines. Kn denotes a set of components that reside in
machine n sharing the machine’s CPU resource. Task flow
structure of the network, which defines precedence relationship
between components, is an arbitrary directed acyclic graph. A
problem given to the network is decomposed in terms of root
tasks for some components and those tasks are propagated
through the task flow structure. Each component processes one
of the tasks in its queue (which has root tasks as well as tasks
from predecessor components) and then sends it to successor
components. We denote the number of root tasks and expected
CPU time2 per task of component i as <rti, Pi> respectively. Fig.
1 shows an example network in which there are four
components residing in three machines. Components A1 and A2
resides in N1 and each of them has 100 root tasks. A3 in N2 and

1 We will discuss in Section VII how the work in this paper can be applied to

the workflow applications when there are multiple jobs to be processed in
batch.

2 The distribution of CPU time can be arbitrary though we use only expected
CPU time in the control mechanism.

 3

A4 in N3 have no root tasks, but each of them has 100 tasks from
the corresponding predecessors, namely A1 and A2
respectively.

B. Resource Allocation
When there are multiple components in a machine, the

network needs to control its behavior through resource
allocation. In the example network, machine N1 has two
components and the system performance can depend on its
resource allocation to these two components. There are several
CPU scheduling algorithms for allocating a CPU resource
amongst multiple threads. Among the scheduling algorithms,
proportional CPU share (PS) scheduling [20]-[23] is known for
its simplicity, flexibility, and fairness. In PS scheduling,
threads are assigned weights and resource shares are
determined proportional to the weights. Excess CPU time from
some threads is allocated fairly to other threads. We adopt PS
scheduling as resource allocation scheme because of its
generality in addition to the benefits mentioned above. We
define resource allocation variable set w = {wi(t): i∈A, t≥0} in
which wi(t) is a non-negative weight of component i at time t. If
total managed weight of a machine n is ωn, the boundary
condition for assigning weights over time can be described as:

0)t(wwhere)t(w in

i
i ≥=∑

∈

ω
nK

. (1)

C. Problem Definition
The service provided by the network is to produce a global

solution to a given problem, which is an aggregate of partial
solutions of individual tasks. QoS is determined by completion
time taken to generate the global solution. In this paper we
design a resource control mechanism to minimize the
completion time T though resource allocation w as in (2).

Tminarg

w
 (2)

IV. RESOURCE CONTROL MECHANISM DESIGN
There are two representative optimal control approaches in

dynamic systems: Dynamic Programming (DP) and Model
Predictive Control (MPC). Though DP gives optimal
closed-loop policy it has inefficiencies in dealing with

large-scale systems especially when systems are working in
finite time horizon. In MPC, for each current state, an optimal
open-loop control policy is designed for finite-time horizon by
solving a static mathematical programming model [24]-[26].
The design process is repeated for the next observed state
feedback forming a closed-loop policy reactive to each current
system state. Though MPC does not give absolute optimal
policy in stochastic environments, the periodic design process
alleviates the impacts of stochasticity. Considering the
characteristics of the problem under consideration, we choose
MPC framework. The networks are large-scale and work in
finite time horizon.

Under the MPC framework, we need to build a mathematical
programming model which is essentially a scheduling problem
formulation. However, we pursue directly an optimal resource
allocation policy without explicit formulation of the
mathematical programming model. One important
characteristic of the networks under consideration is that each
component processes tasks in parallel with its predecessors or
successors. In this section, we investigate the impacts of the
parallelism on the optimal resource allocation policy in the
limit of large number of tasks. For theoretical analysis, we
assume a hypothetical weighted round-robin server for CPU
scheduling though it is not strictly required in practice. The
hypothetical server has idealized fairness as the CPU time
received by each thread in a round is infinitesimal and
proportional to the weight of the thread. But, the arguments we
will make do not seem to be invalid because they are based on
worst-case analysis and quantum size is relatively infinitesimal
compared to working horizon in reality.

A. Effects of Resource Allocation
The completion time T is the time taken to generate the

global solution, i.e., to process all the tasks of a network. Let Tn
and Ti be the completion times of machine n and component i.
Then, the relationships as in (3) hold.

.TMaxT,TMaxTMaxT i

i
ni

i
n

n nKAN ∈∈∈
=== (3)

A component’s instantaneous resource availability RAi(t) is

the available fraction of a resource when the component
requests the resource at time t. Service time Si(t) is the time
taken to process a task at time t and has a relationship with
RAi(t) as:

 i
tSt

t
i PdRA

i
=∫

+)(
)(ττ . (4)

When RAi(t) remains constant, Si(t) becomes:

)(

)(
tRA

P
tS

i

i
i = . (5)

Now, consider the example network in Fig. 1. In the network

only N1 has the chance to allocate its resource since it has two
residing components. TN1 is invariant to resource allocation and
equal to 300 (=100*1+100*2). But, TA1 and TA2 can vary

A 1

A 2 A 4

A 3
<100, 1>

<100, 2>

<0, 2>

<0, 3>
N1

N2

N3

Fig. 1. An example network composed of four components in three machines.
Components A1 and A2 reside in N1 and each of them has 100 root tasks. A3 in
N2 and A4 in N3 have no root tasks, but each of them has 100 tasks from the
corresponding predecessors.

 4

depending on the resource allocation of N1. When the resource
is allocated equally to the components, both RAA1(t) and RAA2(t)
are equal to 0.5 initially. As A1 completes at t=200
(=100*1/0.5), A2 starts utilizing the resource fully from then,
i.e. RAA2(t)=1 for t≥200. So, A2 completes 50 tasks at t=200
(=50*2/0.5) and remaining 50 tasks at t=300 (=200+50*2/1).
A3 completes at t=202 (=200+1*2/1) because task inter-arrival
time from A1 is equal to its service time. As A4’s service time is
less than task inter-arrival time (=4) for t≤200, A4 completes 49
tasks at t=200 with one task in queue arriving at t=200. From
t=200, task inter-arrival time from A2 becomes reduced to 2
which is less than A4’s service time. So, tasks become
accumulated till t=300 and A4 completes at t=353
(=200+51*3/1). In this way we trace exact system behavior
under three resource allocation strategies as shown in Fig. 2.

The network cannot complete at less than t=300 because

each of N1 and N3 requires 300 CPU time. When the resource is
allocated with 1:2 ratio, the completion time T is minimal close
to 300. The ratio is proportional to each component’s total
required CPU time, i.e., 1:2 ≡ 100*1:100*2. One interesting
question is whether the proportional allocation can give the best
performance regardless of the parameters of A3 and A4. The
answer is yes. If a component A1 is allocated more resource
than the proportional allocation, TA3 is dominated by the
maximal of TA1 and A3’s total CPU time. But, the first quantity
is less than TN1 and the second quantity is an invariant. So,
allocating more resource than the proportional allocation
cannot help reducing the completion time of the network.
However, if a component is allocated less resource than the
proportional allocation, its successor’s task inter-arrival time is
stepwise decreasing. As a result, the successor underutilizes
resources and can increase the completion time of the network.
Therefore, the proportional allocation leads the network to
efficiently utilize distributed resources and consequently helps
minimizing the completion time of the network, though it is

localized independent of the successors’ parameters.

B. Optimal Resource Allocation
To generalize the arguments for arbitrary network

configurations, we define Load Index LIi which represents
component i’s total CPU time required to process its tasks. As a
component needs to process its own root tasks as well as
incoming tasks from its predecessors, its number of tasks Li is
identified as in (6) where i denotes the immediate predecessors
of component i. Then, LIi is represented as in (7).

 ∑

∈

+=
ia

aii LrtL (6)

 iii PLLI = (7)

Also, we define a term called task availability as an indicator

of relative preference for task arrival patterns. A component’s
task availability for an arrival pattern is higher than for another
if cumulative number of arrived tasks is larger than or equal to
over time. A component prefers a task arrival pattern with
higher task availability since it can utilize more resources.
Consider a network and reconfigure it such that all components
have their tasks in their queues at t=0. Each component has
maximal task availability in the reconfigured network and the
completion time of the reconfigured network forms the lower
bound TLB of a network’s completion time T given by:

∑
∈

∈
=

nK
N

i
i

n

LB LIMaxT . (8)

Now, convert a network into a network with infinitesimal

tasks. Each root task is divided into r infinitesimal tasks and
each Pi is replaced with Pi/r. Then, the load index of each
component is the same as the original network but tasks are
infinitesimal. We denote the completion time of the network
with infinitesimal tasks as T´.

Theorem 1. T´ equals to TLB when each machine allocates its

resource proportional to its residing components’ load
indices as:

0tallfor
LI

LI
w)t(w)i(n

p
p

i
ii ≥==

∑
∈

ω

n(i)K

, (9)

where n(i) denotes a machine in which component i resides.

Proof. Instantaneous resource availability RAi(t) is more3 than or

equal to assigned weight proportion as:

3 because excess resources of some components are utilized by others in

proportional CPU share scheduling.

 wA1 : wA2
 1 : 1 1 : 2 1 : 4

TA1 200 300 300
TA2 300 300 250
TA3 202 302 352
TA4 353 303 302.5
T 353 303 352

Time

RA

300 200

1:1

0 100 250 50 150

1

1/2

1/5
1/3

2/3

4/5

1:2

1:4

RA

Time 300200

1:1

0 100 25050 150

1

1/2

1/5
1/3

2/3

4/5
1:2

1:4

(b) Resource availability of A1 (c) Resource availability of A2

(a) Completion time

Fig. 2. Effects of resource allocation. Depending on the resource allocation of
machine N1, each of components A1 and A2 follows different resource
availability profile as in (b) and (c). Consequently, the differences result in
different completion times as in (a).

 5

 0tfor
)t(w

)t(RA
)i(n

i
i ≥≥

ω
. (10)

Then, under the proportional resource allocation policy,
service time Si(t) is less than or equal to TLB/Li over time as
shown in (11). Therefore, any component can complete at
less than or equal to TLB if it receives infinitesimal tasks at a
constant interval or more preferably.

0tfor)t(S
L

T

)t(S
T
LI

)t(S
LI

LI
)t(S

w

d
)(w

d)(RAP

i
i

LB

iLB
i

i

p
p

i
i

)i(n

i

)t(St

t)i(n

i)t(St

t
ii

ii

≥≥⇒

≥==

≥=

∑

∫∫

∈

++

n(i)K

ω

τ
ω

τ
ττ

 (11)

The components with no predecessors will generate
infinitesimal tasks at a constant interval or more preferably in
0≤t≤TLB since they have all the tasks in their queues at t=0.
Consequently, all the components will receive and generate
tasks at a constant interval in 0≤t≤TLB or more preferably.
Therefore, the network completes at TLB under the
proportional allocation policy. �

From Theorem 1 we can conjecture that a network can

achieve a performance close to TLB under proportional
allocation in the limit of large number of tasks. We propose the
proportional allocation as an optimal resource allocation
policy. Though the proportional allocation is localized, the
network can maximize the utilization of distributed resources
and achieve desirable performance. Coordinated resource
allocation throughout the network emerges as a result of using
the load index as global information. If machines do not follow
the proportional allocation policy, some components can
receive their tasks less preferably resulting in underutilization
and consequently increased completion time as have shown in
the previous subsection.

Another important property of the proportional allocation
policy is that it is itself adaptive. Suppose there are some
stressors sharing resources together with the components. Let
ωn

s be the amount of shared resources by a stressor in machine
n. Then, the lower bound performance Ts

LB under stress is given
by (12). We denote the completion time under stress as Ts´.

 ∑
∈

∈

+
=

nK
N

i
i

n

s
nn

n

LB
s LIMaxT

ω
ωω

 (12)

Theorem 2. Ts´ equals to Ts

LB under proportional allocation.

Proof. RAi(t) becomes:

0tfor
)t(w

)t(RA s
)i(n)i(n

i
i ≥

+
≥

ωω
. (13)

Then, (11) results in (14) under proportional allocation.

0tfor)t(S
L

T
i

i

LB
s ≥≥ (14)

Therefore, the network completes at Ts

LB under proportional
allocation. �

Theorem 2 depicts that the proportional allocation policy is

optimal independent of the stress environments. Though we do
not consider the environments explicitly, the policy gives lower
bound performance adaptively. This characteristic is especially
important when the system is vulnerable to unpredictable stress
environments. Modern networked systems can be easily
exposed to various adverse events such as accidental failures
and malicious attacks, and the space of stress environment is
high-dimensional and also evolving [27]-[29].

C. Resource Control Mechanism
Consider current time as t. To update load index as the

system moves on, we slightly modify it to represent total CPU
time for the remaining tasks as:

iiii P)t(L)t(R)t(LI += , (15)

in which Ri(t) denotes remaining CPU time for a task in process
and Li(t) the number of remaining tasks excluding a task in
process. After identifying initial number of tasks Li(0)=Li, each
component updates it by counting down as they process tasks.
Following the MPC framework, a resource manager of each
machine periodically collects current LIi(t) from residing
components and allocates resources proportional to the indices
as in (16). Since the resource allocation policy is purely
localized there is no need for synchronization between
machines.

)i(n

p
p

i
i

)t(LI
)t(LI

)t(w ω
∑
∈

=

n(i)K

 (16)

V. ADEQUACY CRITERION
There are several desirable properties of the proportional

resource allocation policy. Though it is localized requiring
almost no computation, it realizes desirable global performance
adaptive to changing environments. However, though such
properties hold in the limit of large number of tasks, such
largeness does not hold in reality. So, we define a general
criterion by which one can evaluate if the properties will hold
for a given network. For this purpose we characterize upper
bound performance of a network under proportional allocation.

 6

Theorem 3. Under proportional allocation, a network’s upper
bound TUB of completion time T is given by:

]LI/LIP[MaxMaxTT

i
i

p
pi

e

LBUB ∑ ∑
∈ ∈

∈∈
+=

J K
SJE

n(i)
e

, (17)

where E denotes a set of components which have no successor
and Se a set of task paths to component e. A task path to
component e is a set of components in a path from a
component with no predecessor to component e, and does not
include component e.

Proof. From (11) we can induce the lowest upper bound Si
UB of

Si(t) as:

i
p

pi
UB
i LI/LIPS ∑

∈

=
n(i)K

. (18)

So, a component e∈E (with no successors) can receive tasks
at a constant interval of TLB/Le from maximal task traveling
time to the component as in (19) in the worst case.
Consequently, the component e can complete at least at (20)
and the upper bound TUB is the maximal of the bounds.

 ∑
∈

∈
J

SJ e i

UB
iSMax (19)

 ∑

∈
∈

+
J

SJ e i

UB
i

LB SMaxT � (20)

So, a network can achieve a performance in TLB ≤ T ≤ TUB

under the proportional resource allocation policy. We define
adequacy criterion as in (21) which is the ratio between TLB and
TUB. If this criterion is close to one, i.e. the upper bound is close
to the lower bound, one can ensure the optimality of the
proportional resource allocation policy. The example network
in Fig. 1 is quite adequate because the adequacy criterion is
0.99 (300/303). Note that the adequacy can be high even
though the number of tasks for some components is small.

 UB

LB

T
TAdequacy = (21)

VI. EMPIRICAL RESULTS
We ran several experiments using a discrete-event simulator

to validate the resource control mechanism designed.

A. Experimental Design
We consider a network presented in [33], which is a

small-size UltraLog network discussed earlier. The network is
composed of sixteen components in five clusters, C1, C2, C3, C4,
and C5 as shown in Fig. 3. The components in a cluster are not
separable to different machines. There are three machines

available N = {N1, N2, N3} with ωn=1 for all n∈N. We consider
two network topologies: Top-A and Top-B. In Top-A, KN1 =
{C1, C2}, KN2 = {C3, C5}, and KN3 = {C4}. In Top-B, KN1 = {C1,
C5}, KN2 = {C2, C3}, and KN3 = {C4}. To implement
proportional CPU share scheduling we use a weighted
round-robin server in which CPU time received by each
component in a round is equal to its assigned weight. If a
component’s queue becomes empty before utilizing all of the
received CPU time, the server goes to the next component

immediately.
The components without predecessors, A1, A2, A4, A5, A6,

and A13, are assigned equal number NRT of root tasks, i.e. rti =
NRT for i ∈ {A1, A2, A4, A5, A6, A13} and rti = 0 otherwise. To
observe the impact of the number of tasks, we vary the NRT
with 20, 21, 22, 23, 24, 25, 26, 27, 28, and 29. CPU time per task Pi
is equal to 1 for all i ∈ A, and the distribution of Pi can be
deterministic or exponentially distributed. While using a
stochastic distribution we repeat 30 experiments.

Two resource control policies are used for each experimental
condition. Table II shows these control policies. In round-robin

allocation policy (RR) the components in each machine are
assigned equal weights over time. In contrast, proportional
allocation policy (PA) allocates resources proportional to the
load indices periodically (every 100 time units).

C3

C4

C2

C5

C1

A1

A2

A3 A7

A8

A9

A10

A12

A4 A6

A11

A13 A14

A5

A15 A16

Top-A: {C1, C2} {C3, C5} {C4}
Top-B: {C1, C5} {C2, C3} {C4}

Fig. 3. Experimental network composed of sixteen components in five
clusters. There are three machines and two network topologies, Top-A and
Top-B, are considered.

TABLE II

CONTROL POLICIES FOR EXPERIMENTATION
Control policy Description

RR Round-Robin allocation
PA Proportional allocation

 7

B. Numerical Results
Numerical results from the experimentation are shown in Fig.

4. For each NRT in each topology, lower bound TLB and upper
bound TUB are computed from (8) and (17). The bounds are
used to compute the adequacy criterion described in (21). The
adequacy tends to increase with the increase of the number of
tasks. So, the network under PA policy can achieve close
performance to TLB when the number of tasks is large. The
completion times under RR and PA policies in deterministic
and stochastic environments are represented in time units as
well as in ratios to TLB.

As one can observe, PA policy outperforms RR policy in all
different conditions, supporting the effectiveness of the
proportional resource allocation policy. The network under RR
policy is considered as the one without control and the

implementation of the control with PA policy improves the
performance of the network. Also, the performance under PA
policy is almost same as TLB when the number of tasks is large
in all different conditions, validating the argument we have
made. We argued that the network under PA policy can achieve
TLB in the limit of large number of tasks.

 There exist large gaps between the completion time and TLB
when NRT is small. However, notice that the performance
rapidly converges into TLB with the increase of the number of
tasks, as shown in Fig. 4(a) for Top-A and Fig 4(b) for Top-B
(note that the scale of x-axis is logarithmic). This observation
indicates that the PA policy can be beneficial even though the
network has low adequacy with relatively small number of
tasks.

 Deterministic Exponential
 Adequacy RR PA RR PA

Topology NRT TLB TUB (%) T T/TLB (%) T T/TLB (%) T T/TLB (%) T T/TLB (%)
Top-A 20 20.00 73.00 27.40 27.00 135.00 24.05 120.25 28.53 142.67 26.06 130.30

 21 40.00 93.00 43.01 51.00 127.50 45.10 112.75 52.26 130.64 46.97 117.42
 22 80.00 133.00 60.15 99.00 123.75 85.30 106.63 98.17 122.71 86.69 108.36
 23 160.00 213.00 75.12 195.00 121.88 163.00 101.88 196.00 122.50 168.54 105.34
 24 320.00 373.00 85.79 387.00 120.94 323.00 100.94 386.29 120.72 334.31 104.47
 25 640.00 693.00 92.35 771.00 120.47 643.00 100.47 765.20 119.56 649.65 101.51
 26 1280.00 1333.00 96.02 1539.00 120.23 1283.00 100.23 1536.16 120.01 1291.30 100.88
 27 2560.00 2613.00 97.97 3075.00 120.12 2563.00 100.12 3086.25 120.56 2580.44 100.80
 28 5120.00 5173.00 98.98 6147.00 120.06 5123.00 100.06 6163.53 120.38 5131.10 100.22
 29 10240.00 10293.00 99.49 12291.00 120.03 10243.00 100.03 12325.30 120.36 10247.50 100.07

Top-B 20 18.00 55.50 32.43 23.00 127.78 22.00 122.22 24.36 135.32 22.74 126.34
 21 36.00 73.50 48.98 44.00 122.22 42.15 117.09 44.75 124.31 41.32 114.77
 22 72.00 109.50 65.75 86.00 119.44 78.15 108.55 85.65 118.96 78.12 108.50
 23 144.00 181.50 79.34 170.00 118.06 150.15 104.27 169.99 118.05 150.70 104.65
 24 288.00 325.50 88.48 338.00 117.36 294.15 102.14 338.86 117.66 298.09 103.50
 25 576.00 613.50 93.89 674.00 117.01 582.15 101.07 666.59 115.73 582.98 101.21
 26 1152.00 1189.50 96.85 1346.00 116.84 1158.10 100.53 1337.48 116.10 1154.47 100.21
 27 2304.00 2341.50 98.40 2690.00 116.75 2310.10 100.26 2675.55 116.13 2297.95 99.74
 28 4608.00 4645.50 99.19 5378.00 116.71 4614.10 100.13 5362.45 116.37 4611.99 100.09
 29 9216.00 9253.50 99.59 10754.00 116.69 9222.10 100.07 10748.85 116.63 9236.41 100.22

 NRT: number of root tasks, RR: Round-Robin allocation, PA: Proportional allocation

(a) Numerical results

90

100

110

120

130

140

1 10 100 1000

NRT

T
 (

%
)

Exponential

Deterministic

90

100

110

120

130

140

1 10 100 1000

NRT

T
 (

%
)

Exponential

Deterministic

 (b) Top-A (c) Top-B

Fig. 4. Experimental results: (a) Completion times in different experimental conditions; (b) Completion time as a function of NRT in topology Top-A,
represented in ratio to TLB; (c) Completion time as a function of NRT in topology Top-B, represented in ratio to TLB.

 8

VII. CONCLUSIONS
We designed a simple but effective resource control

mechanism for the novel information networks composed of
large number of distributed software components. The resource
control mechanism has several desirable properties. First, it is
localized as each machine can make decisions independent of
others. Second, it requires almost no computation. Third,
nevertheless the network can achieve a desirable performance.
Fourth, it is itself adaptive to the stress environments without
explicit considerations. Such emergent properties can be found
in many self-organized systems such as social or biological
systems. Though entities act with a simple mechanism without
central authority, desirable global performance can often be
realized. When a large-scale network is working in a dynamic
environment under the control mechanism, it is really a
self-organized system.

It would be valuable to investigate the impact of control
period. The designed resource control mechanism requires
periodic updating of load indices and weights. With reduced
control period, one can expect better performance in stochastic
environments because of the alleviation of the impacts of
stochasticity. Fig. 5 shows the performance of the network as a
function of control period with NRT = 50 in topology Top-B.
The performance tends to improve with the decrease of the
control period, though the improvement is less than 1%.
However, the reduction of the control period will lead to
consuming more resources for the control purposes, resulting
in increased completion time. Therefore, there exists some
tradeoff in the optimality of the control periods. To find
optimal control period, we need to reinforce the prediction
model with the control period incorporated.

The work in this paper can also be extended to the network
topology problem. A network topology problem assigns
components to available machines with a set of constraints.
Some components may not be separable to different machines
and may be allowed to specific machines. Though the network
topology problem is intertwined with the resource allocation
problem in general, the proportional allocation policy we have
addressed completely separates them. Under the proportional
allocation policy, the performance of a topology can be
estimated by the maximal of total CPU time of each machine.
Therefore, the network topology problem becomes the easiest
multiprocessor scheduling problem, i.e., an assignment of
independent clusters (cluster: a set of inseparable components)
to machines. The topology Top-B in the experimentation is the
optimal one which minimizes the completion time. The optimal
topology significantly outperforms non-optimal one Top-A by
about 10%.

This topology problem is known as NP-complete [30][31]
and there are diverse heuristic algorithms available in the
literature. Eleven heuristics were selected and examined with
various problem configurations in [32]. They are Opportunistic
Load Balancing, Minimum Execution Time, Minimum
Completion Time, Min-min, Max-min, Duplex, Genetic
Algorithm, Simulated Annealing, Genetic Simulated
Annealing, Tabu, and A*. Though Genetic Algorithm always
gave the best performance, if algorithm execution time is also

considered, it was shown that the simple Min-min heuristic
performs well in comparison to others.

The workflow applications in [3]-[11] can be addressed
using the work in this paper, when they process multiple jobs in
batch. Suppose there are m jobs assigned to a workflow
application. Each component without predecessors will have m
root tasks, whereas each component with predecessors will
have no root tasks but it has m tasks to process incoming from
its predecessors. When a component has multiple predecessors,
it processes kth task only after all the kth tasks of its predecessors
arrive. For example, when we consider the example network in
Fig. 1 from the viewpoint of workflow applications, there are
100 jobs in batch and every component has 100 tasks to process.
The optimality of the proportional allocation policy also holds
when the number of jobs in batch is large, and hence the
resource control mechanism designed in this paper can be
directly used to determine resource allocation and consequently
network topology of the workflow applications. Though the
workflow research focuses on a single job, there will be some
situations where batch processing is more desirable. For
example, one may want to process multiple images altogether
because they are available at the same time.

APPENDIX. NOTATIONS

Sets
A: a set of components
N: a set of machines
Kn: a set of components in machine n
i: immediate predecessors of component i
n(i) : a machine in which component i resides

Variables
wi(t): weight of component i at time t
T: completion time

Parameters
rti: number of root tasks of component i
Pi: expected CPU time per task of component i
ωn: total managed weight of machine n
TLB: lower bound of completion time T

100.0

100.4

100.8

101.2

101.6

102.0

0 200 400 600 800 1000 1200

Control Period

T
 (

%
)

Fig. 5. Completion time as a function of control period with NRT = 50 in
topology Top-B.

 9

TUB: upper bound of completion time T under proportional resource allocation
Ts

LB: lower bound of completion time T under stress
RAi(t): instantaneous resource availability of component i at time t
Ri(t): remaining CPU time for a task in process of component i at time t
Li(t): number of remaining tasks of component i at time t, Li(0)=Li

Functions
LIi(t): load index, component i’s total CPU time required at time t, LIi(0)=LIi

REFERENCES
[1] B. Meyer, “On to components,” IEEE Computer, vol. 32, no. 1, pp.

139-140, 1999.
[2] P. Clements, “From subroutine to subsystems: component-based software

development,” in Component Based Software Engineering, A. W. Brown,
Ed. IEEE Computer Society Press, 1996, pp. 3-6.

[3] Y. K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys, vol.
31, no. 4, 406-471, 1999.

[4] V. S. Adve and M. K. Vernon, “Parallel program performance prediction
using deterministic task graph analysis,” ACM Transactions on Computer
Systems, vol. 22, no. 1, 94-136, 2004.

[5] T. Hagras and J. Janecek, “A fast compile-time task scheduling heuristic
for homogeneous computing environments,” Int. J. of Computers and
Their Applications, vol. 12, no. 2, 76-82, 2005.

[6] T. Hagras and J. Janecek, “A high performance, low complexity algorithm
for compile-time task scheduling in heterogeneous systems,” Parallel
Computing, vol. 31, no. 7, 653-670, 2005.

[7] M. M. Eshaghian and Y. C. Wu, “Mapping heterogeneous task graphs
onto heterogeneous system graphs,” in Proc. 6th Heterogeneous
Computing Workshop, 1997, pp. 147-161.

[8] H. El-Rewini, H. H. Ali, and T. Lewis, “Task scheduling in
multiprocessor systems,” Computer, vol. 28, no. 12, 27-37, 1995.

[9] D. C. Li and N. Ishii, “Scheduling task graphs onto heterogeneous
multiprocessors,” in Proc. IEEE Region 10’s Ninth Annual International
Conference, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp.
556-563.

[10] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for grid
computing,” SIGMOD Record, vol. 34, no. 3, pp. 44-49, 2005.

[11] F. Dong and S. G. Akl, “Scheduling algorithms for grid computing: state
of the art and open problems,” School of Computing, Queen’s University,
Kingston, Ontario, Tech. Rep. 2006–504, Jan. 2006.

[12] M. Brinn, J. Berliner, A. Helsinger, T. Wright, M. Dyson, S. Rho, and D.
Wells, “Extending the limits of DMAS survivability: the UltraLog
Project,” IEEE Intelligent Systems, vol. 19, no. 5, pp. 53-61, 2004.

[13] D. Moore, W. Wright, and R. Kilmer, “Control surfaces for Cougaar,” in
Proc. First Open Cougaar Conference, 2004, pp. 37-44.

[14] W. Peng, V. Manikonda, and S. Kumara, “Understanding agent societies
using distributed monitoring and profiling,” in Proc. First Open Cougaar
Conference, 2004, pp. 53-60.

[15] H. Gupta, Y. Hong, H. P. Thadakamalla, V. Manikonda, S. Kumara, and
W. Peng, “Using predictors to improve the robustness of multi-agent
systems: design and implementation in Cougaar,” in Proc. First Open
Cougaar Conference, 2004, pp. 81-88.

[16] D. Moore, A. Helsinger, and D. Wells, “Deconfliction in ultra-large MAS:
issues and a potential architecture,” in Proc. First Open Cougaar
Conference, 2004, pp. 125-133.

[17] R. D. Snyder and D. C. Mackenzie, “Cougaar agent communities,” in
Proc. First Open Cougaar Conference, 2004, pp. 143-147.

[18] T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: complexity
and approximation,” Operations Research, vol. 26, pp. 36-52, 1978.

[19] J. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine scheduling
problems,” Annals of Discrete Mathematics, vol. 1, pp. 343-362, 1977.

[20] I. Stoica, H. Abdel-Wahab, J. Gehrke, K. Jeffay, S. K. Baruah, and C. G.
Plexton, “A proportional share resource allocation algorithm for
real-time, time-shared systems,” in Proc. 17th IEEE Real-Time Systems
Symposium, 1996, pp. 288-299.

[21] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” Internetworking Research and Experience, vol. 1,
pp. 3-26, 1990.

[22] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: flexible
proportional-share resource management,” in Proc. First Symposium on
Operating System Design and Implementation, 1994, pp. 1-11.

[23] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng, “Group ratio
round-robin: O(1) proportional share scheduling for uniprocessor and
multiprocessor systems,” in Proc. 2005 USENIX Annual Technical
Conference, Anaheim, CA, 2005.

[24] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE
Control Systems, vol. 20, no. 3, pp. 38-52, 2000.

[25] M. Morari and J. H. Lee, “Model predictive control: past, present and
future,” Computers and Chemical Engineering, vol. 23, no. 4, pp.
667-682, 1999.

[26] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
technology,” Control Engineering Practice, vol. 11, pp. 733-764, 2003.

[27] S. Jha and J. M. Wing, “Survivability analysis of networked systems,” in
Proc. 23rd Int. Conf. Software engineering, 2001, pp. 307-317.

[28] A. P. Moore, R. J. Ellison, and R. C. Linger, “Attack modeling for
information security and survivability,” Software Engineering Institute,
Carnegie Mellon University, Pittsburg, PA, Tech. Note
CMU/SEI-2001-TN-001, 2001.

[29] F. Moberg, “Security analysis of an information system using an attack
tree-based methodology,” M.S. thesis, Automation Engineering Program,
Chalmers University of Technology, Sweden, 2000.

[30] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” J. of the ACM, vol. 24, no.
2, pp. 280-289, 1977.

[31] D. Fernandez-Baca, “Allocating modules to processors in a distributed
system,” IEEE Transactions on Software Engineering, vol. 15, no. 11, pp.
1427-1436, 1989.

[32] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund, “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,” J.
of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810-837, 2001.

[33] S. Lee and S. Kumara, “Estimating global stress environment by
observing local behavior in a multiagent system,” in Proc. IEEE Int. Conf.
Automation Science and Engineering, 2005, pp. 215-219.

Seokcheon Lee is currently a visiting assistant professor in the School of
Industrial Engineering at Purdue University. Previously, he worked as a
research associate in the Industrial Engineering Department at the Pennsylvania
State University after he had received his Ph.D. in the same department in 2005.
He received M.S. and B.S. degrees in Industrial Engineering from the Seoul
National University, South Korea, in 1993 and 1991 respectively. His research
interests include distributed control methodologies from economics, swarm
intelligence, learning, and complex network theory, in the areas of computer
and communication networks, supply chain and manufacturing systems, and
integrated systems resulting from emerging computing technologies.

Soundar Kumara is a distinguished professor in the Industrial Engineering
Department at the Pennsylvania State University. He also holds joint
appointments with the School of Information Sciences and Technology and the
Department of Computer Science and Engineering. He received his Ph.D. in
Industrial Engineering from the Purdue University and M. Tech. in Industrial
Engineering from the Indian Institute of Technology, India. His research
interests include intelligent systems, sensor data fusion, process data
monitoring and diagnostics, and applied chaos theory and logistics.

Natarajan Gautam is an associate professor in the Industrial and Systems
Engineering Department as well as in the Electrical Engineering Department at
Texas A&M University. He received his Ph.D. and M.S. degrees in Operations
Research from the University of North Carolina at Chapel Hill in 1997 and
1995 respectively. His research interests include optimal design, control and
performance evaluation of stochastic systems, with special emphasis on service
engineering, using techniques in queueing theory, applied probability, and
optimization.

