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Abstract—As information networks grow larger in size due to 

automation or organizational integration, it is important to 
provide simple decision-making mechanisms for each entity or 
groups of entities that will lead to desirable global performance. 
In this paper, we study a large-scale information network 
consisting of distributed software components linked together 
through a task flow structure and design a resource control 
mechanism for minimizing completion time. We define load index 
which represents component’s workload. When resources are 
allocated locally proportional to the load index, the network can 
maximize the utilization of distributed resources and achieve 
optimal performance in the limit of large number of tasks. 
Coordinated resource allocation throughout the network emerges 
as a result of using the load index as global information. To clarify 
the obscurity of “large number of tasks” we provide a quantitative 
criterion for the adequacy of the proportional resource allocation 
for a given network. By periodically allocating resources under 
the framework of model predictive control, a closed-loop policy 
reactive to each current system state is formed. The designed 
resource control mechanism has several emergent properties that 
can be found in many self-organized systems such as social or 
biological systems. Though it is localized requiring almost no 
computation, it realizes desirable global performance adaptive to 
changing environments. 

 
 

Index Terms—Distributed information networks, resource 
allocation, completion time, adaptivity, scalability. 
 

I. INTRODUCTION 
ritical infrastructures are increasingly becoming dependent 
on networked systems in many domains due to automation 

or organizational integration. The growth in complexity and 
size of software systems is leading to the increasing importance 
of component-based architecture [1][2]. A component is a 
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reusable program element and component technology utilizes 
the components so that developers can build systems needed by 
simply defining their specific roles and wiring them together. In 
networks with component-based architecture, each component 
is highly specialized for specific tasks. We study a large-scale 
information network (with respect to the number of 
components as well as machines) comprising of distributed 
software components linked together through a task flow 
structure. A problem given to the network is decomposed in 
terms of root tasks for some components and those tasks are 
propagated through a task flow structure to other components. 
Since a problem can be decomposed with respect to space, 
time, or both, a component can have multiple root tasks that can 
be considered independent and identical in their nature. The 
service provided by the network is to produce a global solution 
to the given problem, which is an aggregation of the partial 
solutions of individual tasks. Quality of Service (QoS) of the 
network is determined by the time for generating the global 
solution, i.e. completion time.  

For a given topology, components are sharing resources and 
the network can control its behavior through resource 
allocation, i.e. allocating resources of each machine to the 
components residing in that machine. In this paper we design a 
resource control mechanism of such networks for minimizing 
the completion time. Though similar problems exist in 
multiprocessor scheduling literature [3]-[11], they have 
limitations in addressing this novel resource control problem. 
They commonly consider the cases where each component only 
has to process one task after all of its predecessors complete 
their tasks. In contrast, a component in the networks under 
consideration processes multiple tasks in parallel with its 
successors or predecessors. 

To address this kind of complex networks there is a need to 
facilitate some simple but effective control mechanisms. Many 
self-organized systems such as social and biological systems 
exhibit emergent properties. Though entities act with a simple 
mechanism without central authority, these systems are 
adaptive and desirable global performance can often be 
realized. The control mechanism designed in this paper has 
such properties, and hence it is applicable to large-scale 
networks working in a dynamic environment.  

The organization of this paper is as follows. After discussing 
the motivation and related work in Section II, we formally 
define the resource control problem in detail in Section III. The 
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control mechanism is designed in Sections IV and we provide a 
criterion for the adequacy of the designed control mechanism in 
Section V. Section VI presents empirical results, and 
conclusions and future work are discussed in Section VII. 

 

II. MOTIVATION AND RELATED WORK 

A. UltraLog Networks 
UltraLog networks (dtsn.darpa.mil/ixo/programs.asp?id=61) 

[12]-[17], implemented in Cougaar (Cognitive Agent 
Architecture: www.cougaar.org) developed by DARPA 
(Defense Advanced Research Project Agency), are the 
next-generation military logistics information systems. In 
Cougaar, a software system comprises of agents and an agent of 
components (called plugins). The task flow structure in these 
systems is that of components as a combination of intra-agent 
and inter-agent task flows. Each agent in an UltraLog network 
represents an organization of military supply chain, and has a 
set of components specialized for each functionality 
(allocation, expansion, aggregation, inventory management, 
message transport, etc) and class (ammunition, water, fuel, etc).  

The objective of an UltraLog network is to produce a 
logistics plan for a given military operation, which is an 
aggregate of individual schedules built by components. An 
operation is transformed into logistics requirements and the 
requirements are decomposed into root tasks (one task per day) 
for designated components. As a result, a component can have 
hundreds of root tasks depending on the horizon of the 
operation and thousands of tasks as the root tasks are 
propagated. As the scale of operation increases, there can be 
thousands of agents (tens of thousands of components) in 
hundreds of machines working together to generate a logistics 
plan. The system makes initial planning and continuous 
replanning to cope with logistics plan deviations or operational 
plan changes. Initial planning and replanning are the instances 
of the current research problem. 

One of the important performance criteria of these networks 
is the (plan) completion time. This metric directly affects the 
performance of the military operations. The question is how to 
manage the resources of the networks in order to minimize the 
completion time. 

B. Scheduling 
The resource control problem under consideration is a 

scheduling problem. In general, a scheduling problem is 
allocating limited resources to a set of tasks to optimize a 
specific objective. One widely studied objective is completion 
time (also called makespan) as in the problem we have 
considered. Though there are a variety of formulations and 
algorithms available in multiprocessor scheduling literature 
[3]-[11], they have limitations in addressing the scheduling 
problem under consideration. They commonly consider 
so-called workflow applications where each component only 
has to process one task after all of its predecessors complete 

their tasks1. In contrast, a component in the networks under 
consideration processes multiple tasks in parallel with its 
successors or predecessors. The critical path used to determine 
the completion time, is not valid in the scheduling problem we 
are addressing. 

Though it is not easy to find a problem exactly same as ours, 
it is possible to convert our problem into a job shop scheduling 
problem. In a job shop, there are a set of jobs and a set of 
machines. Each job has a set of serial operations and each 
operation should be processed on a specific machine. A job 
shop scheduling problem is sequencing the operations in each 
machine by satisfying a set of job precedence constraints such 
that the completion time is minimized. Our problem can be 
transformed into the job shop scheduling problem. However, 
job shop scheduling problems are in general intractable. 
Though the job shop scheduling problem is polynomially 
solvable when there are two machines and each job has two 
operations, it becomes NP-hard on the number of jobs even if 
the number of machines or operations is more than two 
[18][19]. Considering that the task flow structure of our 
networks is arbitrary, our scheduling problem is NP-hard on the 
number of components in general. The increase of the number 
of tasks makes the problem even harder. To address this 
complex scheduling problem there is a need to facilitate some 
simple but effective scheduling algorithms. 

 

III. PROBLEM SPECIFICATION 
In this section we formally define the problem in a general 

form by detailing network model and resource allocation. We 
concentrate on computational CPU resources assuming that the 
system is computation-bounded. (The notations used 
repetitively throughout the paper are summarized in 
Appendix.) 

A. Network Model 
The network is composed of a set A of components and a set 

N of machines. Kn denotes a set of components that reside in 
machine n sharing the machine’s CPU resource. Task flow 
structure of the network, which defines precedence relationship 
between components, is an arbitrary directed acyclic graph. A 
problem given to the network is decomposed in terms of root 
tasks for some components and those tasks are propagated 
through the task flow structure. Each component processes one 
of the tasks in its queue (which has root tasks as well as tasks 
from predecessor components) and then sends it to successor 
components. We denote the number of root tasks and expected 
CPU time2 per task of component i as <rti, Pi> respectively. Fig. 
1 shows an example network in which there are four 
components residing in three machines. Components A1 and A2 
resides in N1 and each of them has 100 root tasks. A3 in N2 and 

 
1 We will discuss in Section VII how the work in this paper can be applied to 

the workflow applications when there are multiple jobs to be processed in 
batch.  

2 The distribution of CPU time can be arbitrary though we use only expected 
CPU time in the control mechanism. 
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A4 in N3 have no root tasks, but each of them has 100 tasks from 
the corresponding predecessors, namely A1 and A2 
respectively. 

 

 
B. Resource Allocation 
When there are multiple components in a machine, the 

network needs to control its behavior through resource 
allocation. In the example network, machine N1 has two 
components and the system performance can depend on its 
resource allocation to these two components. There are several 
CPU scheduling algorithms for allocating a CPU resource 
amongst multiple threads. Among the scheduling algorithms, 
proportional CPU share (PS) scheduling [20]-[23] is known for 
its simplicity, flexibility, and fairness. In PS scheduling, 
threads are assigned weights and resource shares are 
determined proportional to the weights. Excess CPU time from 
some threads is allocated fairly to other threads. We adopt PS 
scheduling as resource allocation scheme because of its 
generality in addition to the benefits mentioned above. We 
define resource allocation variable set w = {wi(t): i∈A, t≥0} in 
which wi(t) is a non-negative weight of component i at time t. If 
total managed weight of a machine n is ωn, the boundary 
condition for assigning weights over time can be described as: 

 
0)t(wwhere)t(w in

i
i ≥=∑

∈

ω
nK

.          (1) 

C. Problem Definition 
The service provided by the network is to produce a global 

solution to a given problem, which is an aggregate of partial 
solutions of individual tasks. QoS is determined by completion 
time taken to generate the global solution. In this paper we 
design a resource control mechanism to minimize the 
completion time T though resource allocation w as in (2). 

 
Tminarg

w
              (2) 

 

IV. RESOURCE CONTROL MECHANISM DESIGN 
There are two representative optimal control approaches in 

dynamic systems: Dynamic Programming (DP) and Model 
Predictive Control (MPC). Though DP gives optimal 
closed-loop policy it has inefficiencies in dealing with 

large-scale systems especially when systems are working in 
finite time horizon. In MPC, for each current state, an optimal 
open-loop control policy is designed for finite-time horizon by 
solving a static mathematical programming model [24]-[26]. 
The design process is repeated for the next observed state 
feedback forming a closed-loop policy reactive to each current 
system state. Though MPC does not give absolute optimal 
policy in stochastic environments, the periodic design process 
alleviates the impacts of stochasticity. Considering the 
characteristics of the problem under consideration, we choose 
MPC framework. The networks are large-scale and work in 
finite time horizon.  

Under the MPC framework, we need to build a mathematical 
programming model which is essentially a scheduling problem 
formulation. However, we pursue directly an optimal resource 
allocation policy without explicit formulation of the 
mathematical programming model. One important 
characteristic of the networks under consideration is that each 
component processes tasks in parallel with its predecessors or 
successors. In this section, we investigate the impacts of the 
parallelism on the optimal resource allocation policy in the 
limit of large number of tasks. For theoretical analysis, we 
assume a hypothetical weighted round-robin server for CPU 
scheduling though it is not strictly required in practice. The 
hypothetical server has idealized fairness as the CPU time 
received by each thread in a round is infinitesimal and 
proportional to the weight of the thread. But, the arguments we 
will make do not seem to be invalid because they are based on 
worst-case analysis and quantum size is relatively infinitesimal 
compared to working horizon in reality. 

A. Effects of Resource Allocation 
The completion time T is the time taken to generate the 

global solution, i.e., to process all the tasks of a network. Let Tn 
and Ti be the completion times of machine n and component i. 
Then, the relationships as in (3) hold. 
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A component’s instantaneous resource availability RAi(t) is 

the available fraction of a resource when the component 
requests the resource at time t. Service time Si(t) is the time 
taken to process a task at time t and has a relationship with 
RAi(t) as: 
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When RAi(t) remains constant, Si(t) becomes: 
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Now, consider the example network in Fig. 1. In the network 

only N1 has the chance to allocate its resource since it has two 
residing components. TN1 is invariant to resource allocation and 
equal to 300 (=100*1+100*2). But, TA1 and TA2 can vary 

  
A 1  

A 2  A 4   

A 3     
<100, 1>   

<100, 2>   
  

<0, 2>  

<0, 3>   
N1  

 

 

N2

N3

 
Fig. 1.  An example network composed of four components in three machines.
Components A1 and A2 reside in N1 and each of them has 100 root tasks. A3 in 
N2 and A4 in N3 have no root tasks, but each of them has 100 tasks from the 
corresponding predecessors. 
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depending on the resource allocation of N1. When the resource 
is allocated equally to the components, both RAA1(t) and RAA2(t) 
are equal to 0.5 initially. As A1 completes at t=200 
(=100*1/0.5), A2 starts utilizing the resource fully from then, 
i.e. RAA2(t)=1 for t≥200. So, A2 completes 50 tasks at t=200 
(=50*2/0.5) and remaining 50 tasks at t=300 (=200+50*2/1). 
A3 completes at t=202 (=200+1*2/1) because task inter-arrival 
time from A1 is equal to its service time. As A4’s service time is 
less than task inter-arrival time (=4) for t≤200, A4 completes 49 
tasks at t=200 with one task in queue arriving at t=200. From 
t=200, task inter-arrival time from A2 becomes reduced to 2 
which is less than A4’s service time. So, tasks become 
accumulated till t=300 and A4 completes at t=353 
(=200+51*3/1). In this way we trace exact system behavior 
under three resource allocation strategies as shown in Fig. 2. 

 

 
The network cannot complete at less than t=300 because 

each of N1 and N3 requires 300 CPU time. When the resource is 
allocated with 1:2 ratio, the completion time T is minimal close 
to 300. The ratio is proportional to each component’s total 
required CPU time, i.e., 1:2 ≡ 100*1:100*2. One interesting 
question is whether the proportional allocation can give the best 
performance regardless of the parameters of A3 and A4. The 
answer is yes. If a component A1 is allocated more resource 
than the proportional allocation, TA3 is dominated by the 
maximal of TA1 and A3’s total CPU time. But, the first quantity 
is less than TN1 and the second quantity is an invariant. So, 
allocating more resource than the proportional allocation 
cannot help reducing the completion time of the network. 
However, if a component is allocated less resource than the 
proportional allocation, its successor’s task inter-arrival time is 
stepwise decreasing. As a result, the successor underutilizes 
resources and can increase the completion time of the network. 
Therefore, the proportional allocation leads the network to 
efficiently utilize distributed resources and consequently helps 
minimizing the completion time of the network, though it is 

localized independent of the successors’ parameters. 

B. Optimal Resource Allocation 
To generalize the arguments for arbitrary network 

configurations, we define Load Index LIi which represents 
component i’s total CPU time required to process its tasks. As a 
component needs to process its own root tasks as well as 
incoming tasks from its predecessors, its number of tasks Li is 
identified as in (6) where i denotes the immediate predecessors 
of component i. Then, LIi is represented as in (7). 
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Also, we define a term called task availability as an indicator 

of relative preference for task arrival patterns. A component’s 
task availability for an arrival pattern is higher than for another 
if cumulative number of arrived tasks is larger than or equal to 
over time. A component prefers a task arrival pattern with 
higher task availability since it can utilize more resources. 
Consider a network and reconfigure it such that all components 
have their tasks in their queues at t=0. Each component has 
maximal task availability in the reconfigured network and the 
completion time of the reconfigured network forms the lower 
bound TLB of a network’s completion time T given by: 
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Now, convert a network into a network with infinitesimal 

tasks. Each root task is divided into r infinitesimal tasks and 
each Pi is replaced with Pi/r. Then, the load index of each 
component is the same as the original network but tasks are 
infinitesimal. We denote the completion time of the network 
with infinitesimal tasks as T´. 

 
Theorem 1. T´ equals to TLB when each machine allocates its 

resource proportional to its residing components’ load 
indices as: 
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where n(i) denotes a machine in which component i resides. 

 
Proof. Instantaneous resource availability RAi(t) is more3 than or 

equal to assigned weight proportion as:  
 

 
3 because excess resources of some components are utilized by others in 

proportional CPU share scheduling. 

 wA1 : wA2 
 1 : 1 1 : 2 1 : 4 

TA1 200 300 300 
TA2 300 300 250 
TA3 202 302 352 
TA4 353 303 302.5 
T 353 303 352 

 

Time 

RA 

300 200 

1:1 
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Time 300200
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0 100 25050 150 
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1/2 

1/5 
1/3 

2/3 

4/5 
1:2 

1:4 

(b) Resource availability of A1 (c) Resource availability of A2 

(a) Completion time 

 

Fig. 2.  Effects of resource allocation. Depending on the resource allocation of 
machine N1, each of components A1 and A2 follows different resource 
availability profile as in (b) and (c). Consequently, the differences result in 
different completion times as in (a). 
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Then, under the proportional resource allocation policy, 
service time Si(t) is less than or equal to TLB/Li over time as 
shown in (11). Therefore, any component can complete at 
less than or equal to TLB if it receives infinitesimal tasks at a 
constant interval or more preferably. 
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The components with no predecessors will generate 
infinitesimal tasks at a constant interval or more preferably in 
0≤t≤TLB since they have all the tasks in their queues at t=0. 
Consequently, all the components will receive and generate 
tasks at a constant interval in 0≤t≤TLB or more preferably. 
Therefore, the network completes at TLB under the 
proportional allocation policy.     � 
 
From Theorem 1 we can conjecture that a network can 

achieve a performance close to TLB under proportional 
allocation in the limit of large number of tasks. We propose the 
proportional allocation as an optimal resource allocation 
policy. Though the proportional allocation is localized, the 
network can maximize the utilization of distributed resources 
and achieve desirable performance. Coordinated resource 
allocation throughout the network emerges as a result of using 
the load index as global information. If machines do not follow 
the proportional allocation policy, some components can 
receive their tasks less preferably resulting in underutilization 
and consequently increased completion time as have shown in 
the previous subsection. 

Another important property of the proportional allocation 
policy is that it is itself adaptive. Suppose there are some 
stressors sharing resources together with the components. Let 
ωn

s be the amount of shared resources by a stressor in machine 
n. Then, the lower bound performance Ts

LB under stress is given 
by (12). We denote the completion time under stress as Ts´. 
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Theorem 2. Ts´ equals to Ts

LB under proportional allocation. 
  
Proof. RAi(t) becomes:  
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Then, (11) results in (14) under proportional allocation.  
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Therefore, the network completes at Ts

LB under proportional 
allocation.     � 
 
Theorem 2 depicts that the proportional allocation policy is 

optimal independent of the stress environments. Though we do 
not consider the environments explicitly, the policy gives lower 
bound performance adaptively. This characteristic is especially 
important when the system is vulnerable to unpredictable stress 
environments. Modern networked systems can be easily 
exposed to various adverse events such as accidental failures 
and malicious attacks, and the space of stress environment is 
high-dimensional and also evolving [27]-[29]. 

C. Resource Control Mechanism 
Consider current time as t. To update load index as the 

system moves on, we slightly modify it to represent total CPU 
time for the remaining tasks as: 

 
iiii P)t(L)t(R)t(LI += ,          (15) 

 
in which Ri(t) denotes remaining CPU time for a task in process 
and Li(t) the number of remaining tasks excluding a task in 
process. After identifying initial number of tasks Li(0)=Li, each 
component updates it by counting down as they process tasks. 
Following the MPC framework, a resource manager of each 
machine periodically collects current LIi(t) from residing 
components and allocates resources proportional to the indices 
as in (16). Since the resource allocation policy is purely 
localized there is no need for synchronization between 
machines.  
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V. ADEQUACY CRITERION 
There are several desirable properties of the proportional 

resource allocation policy. Though it is localized requiring 
almost no computation, it realizes desirable global performance 
adaptive to changing environments. However, though such 
properties hold in the limit of large number of tasks, such 
largeness does not hold in reality. So, we define a general 
criterion by which one can evaluate if the properties will hold 
for a given network. For this purpose we characterize upper 
bound performance of a network under proportional allocation. 
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Theorem 3. Under proportional allocation, a network’s upper 
bound TUB of completion time T is given by: 
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where E denotes a set of components which have no successor 
and Se a set of task paths to component e. A task path to 
component e is a set of components in a path from a 
component with no predecessor to component e, and does not 
include component e. 
 

Proof. From (11) we can induce the lowest upper bound Si
UB of 

Si(t) as: 
 

i
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So, a component e∈E (with no successors) can receive tasks 
at a constant interval of TLB/Le from maximal task traveling 
time to the component as in (19) in the worst case. 
Consequently, the component e can complete at least at (20) 
and the upper bound TUB is the maximal of the bounds. 
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So, a network can achieve a performance in TLB ≤ T ≤ TUB 

under the proportional resource allocation policy. We define 
adequacy criterion as in (21) which is the ratio between TLB and 
TUB. If this criterion is close to one, i.e. the upper bound is close 
to the lower bound, one can ensure the optimality of the 
proportional resource allocation policy. The example network 
in Fig. 1 is quite adequate because the adequacy criterion is 
0.99 (300/303). Note that the adequacy can be high even 
though the number of tasks for some components is small. 
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VI. EMPIRICAL RESULTS 
We ran several experiments using a discrete-event simulator 

to validate the resource control mechanism designed. 

A. Experimental Design 
We consider a network presented in [33], which is a 

small-size UltraLog network discussed earlier. The network is 
composed of sixteen components in five clusters, C1, C2, C3, C4, 
and C5 as shown in Fig. 3. The components in a cluster are not 
separable to different machines. There are three machines 

available N = {N1, N2, N3} with ωn=1 for all n∈N. We consider 
two network topologies: Top-A and Top-B. In Top-A, KN1 = 
{C1, C2}, KN2 = {C3, C5}, and KN3 = {C4}. In Top-B, KN1 = {C1, 
C5}, KN2 = {C2, C3}, and KN3 = {C4}. To implement 
proportional CPU share scheduling we use a weighted 
round-robin server in which CPU time received by each 
component in a round is equal to its assigned weight. If a 
component’s queue becomes empty before utilizing all of the 
received CPU time, the server goes to the next component 

immediately. 
The components without predecessors, A1, A2, A4, A5, A6, 

and A13, are assigned equal number NRT of root tasks, i.e. rti = 
NRT for i ∈ {A1, A2, A4, A5, A6, A13} and rti = 0 otherwise. To 
observe the impact of the number of tasks, we vary the NRT 
with 20, 21, 22, 23, 24, 25, 26, 27, 28, and 29. CPU time per task Pi 
is equal to 1 for all i ∈ A, and the distribution of Pi can be 
deterministic or exponentially distributed. While using a 
stochastic distribution we repeat 30 experiments. 

Two resource control policies are used for each experimental 
condition. Table II shows these control policies. In round-robin 

allocation policy (RR) the components in each machine are 
assigned equal weights over time. In contrast, proportional 
allocation policy (PA) allocates resources proportional to the 
load indices periodically (every 100 time units). 
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Top-A: {C1, C2} {C3, C5} {C4} 
Top-B: {C1, C5} {C2, C3} {C4} 

 
Fig. 3.  Experimental network composed of sixteen components in five 
clusters. There are three machines and two network topologies, Top-A and 
Top-B, are considered. 

 
TABLE II 

CONTROL POLICIES FOR EXPERIMENTATION 
Control policy Description 

RR Round-Robin allocation 
PA Proportional allocation 
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B. Numerical Results 
Numerical results from the experimentation are shown in Fig. 

4. For each NRT in each topology, lower bound TLB and upper 
bound TUB are computed from (8) and (17). The bounds are 
used to compute the adequacy criterion described in (21). The 
adequacy tends to increase with the increase of the number of 
tasks. So, the network under PA policy can achieve close 
performance to TLB when the number of tasks is large. The 
completion times under RR and PA policies in deterministic 
and stochastic environments are represented in time units as 
well as in ratios to TLB.  

As one can observe, PA policy outperforms RR policy in all 
different conditions, supporting the effectiveness of the 
proportional resource allocation policy. The network under RR 
policy is considered as the one without control and the 

implementation of the control with PA policy improves the 
performance of the network. Also, the performance under PA 
policy is almost same as TLB when the number of tasks is large 
in all different conditions, validating the argument we have 
made. We argued that the network under PA policy can achieve 
TLB in the limit of large number of tasks. 

 There exist large gaps between the completion time and TLB 
when NRT is small. However, notice that the performance 
rapidly converges into TLB with the increase of the number of 
tasks, as shown in Fig. 4(a) for Top-A and Fig 4(b) for Top-B 
(note that the scale of x-axis is logarithmic). This observation 
indicates that the PA policy can be beneficial even though the 
network has low adequacy with relatively small number of 
tasks.  

 
 
 

     Deterministic Exponential 
    Adequacy RR PA RR PA 

Topology NRT TLB TUB (%) T T/TLB (%) T T/TLB (%) T T/TLB (%) T T/TLB (%)
Top-A 20 20.00 73.00 27.40 27.00 135.00 24.05 120.25 28.53 142.67 26.06 130.30

 21 40.00 93.00 43.01 51.00 127.50 45.10 112.75 52.26 130.64 46.97 117.42
 22 80.00 133.00 60.15 99.00 123.75 85.30 106.63 98.17 122.71 86.69 108.36
 23 160.00 213.00 75.12 195.00 121.88 163.00 101.88 196.00 122.50 168.54 105.34
 24 320.00 373.00 85.79 387.00 120.94 323.00 100.94 386.29 120.72 334.31 104.47
 25 640.00 693.00 92.35 771.00 120.47 643.00 100.47 765.20 119.56 649.65 101.51
 26 1280.00 1333.00 96.02 1539.00 120.23 1283.00 100.23 1536.16 120.01 1291.30 100.88
 27 2560.00 2613.00 97.97 3075.00 120.12 2563.00 100.12 3086.25 120.56 2580.44 100.80
 28 5120.00 5173.00 98.98 6147.00 120.06 5123.00 100.06 6163.53 120.38 5131.10 100.22
 29 10240.00 10293.00 99.49 12291.00 120.03 10243.00 100.03 12325.30 120.36 10247.50 100.07

Top-B 20 18.00 55.50 32.43 23.00 127.78 22.00 122.22 24.36 135.32 22.74 126.34
 21 36.00 73.50 48.98 44.00 122.22 42.15 117.09 44.75 124.31 41.32 114.77
 22 72.00 109.50 65.75 86.00 119.44 78.15 108.55 85.65 118.96 78.12 108.50
 23 144.00 181.50 79.34 170.00 118.06 150.15 104.27 169.99 118.05 150.70 104.65
 24 288.00 325.50 88.48 338.00 117.36 294.15 102.14 338.86 117.66 298.09 103.50
 25 576.00 613.50 93.89 674.00 117.01 582.15 101.07 666.59 115.73 582.98 101.21
 26 1152.00 1189.50 96.85 1346.00 116.84 1158.10 100.53 1337.48 116.10 1154.47 100.21
 27 2304.00 2341.50 98.40 2690.00 116.75 2310.10 100.26 2675.55 116.13 2297.95 99.74
 28 4608.00 4645.50 99.19 5378.00 116.71 4614.10 100.13 5362.45 116.37 4611.99 100.09
 29 9216.00 9253.50 99.59 10754.00 116.69 9222.10 100.07 10748.85 116.63 9236.41 100.22

     NRT: number of root tasks, RR: Round-Robin allocation, PA: Proportional allocation 
 

(a) Numerical results 
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  (b) Top-A                                 (c) Top-B 

Fig. 4.  Experimental results: (a) Completion times in different experimental conditions; (b) Completion time as a function of NRT in topology Top-A, 
represented in ratio to TLB; (c) Completion time as a function of NRT in topology Top-B, represented in ratio to TLB. 
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VII. CONCLUSIONS 
We designed a simple but effective resource control 

mechanism for the novel information networks composed of 
large number of distributed software components. The resource 
control mechanism has several desirable properties. First, it is 
localized as each machine can make decisions independent of 
others. Second, it requires almost no computation. Third, 
nevertheless the network can achieve a desirable performance. 
Fourth, it is itself adaptive to the stress environments without 
explicit considerations. Such emergent properties can be found 
in many self-organized systems such as social or biological 
systems. Though entities act with a simple mechanism without 
central authority, desirable global performance can often be 
realized. When a large-scale network is working in a dynamic 
environment under the control mechanism, it is really a 
self-organized system. 

It would be valuable to investigate the impact of control 
period. The designed resource control mechanism requires 
periodic updating of load indices and weights. With reduced 
control period, one can expect better performance in stochastic 
environments because of the alleviation of the impacts of 
stochasticity. Fig. 5 shows the performance of the network as a 
function of control period with NRT = 50 in topology Top-B. 
The performance tends to improve with the decrease of the 
control period, though the improvement is less than 1%. 
However, the reduction of the control period will lead to 
consuming more resources for the control purposes, resulting 
in increased completion time. Therefore, there exists some 
tradeoff in the optimality of the control periods. To find 
optimal control period, we need to reinforce the prediction 
model with the control period incorporated. 

The work in this paper can also be extended to the network 
topology problem. A network topology problem assigns 
components to available machines with a set of constraints. 
Some components may not be separable to different machines 
and may be allowed to specific machines. Though the network 
topology problem is intertwined with the resource allocation 
problem in general, the proportional allocation policy we have 
addressed completely separates them. Under the proportional 
allocation policy, the performance of a topology can be 
estimated by the maximal of total CPU time of each machine. 
Therefore, the network topology problem becomes the easiest 
multiprocessor scheduling problem, i.e., an assignment of 
independent clusters (cluster: a set of inseparable components) 
to machines. The topology Top-B in the experimentation is the 
optimal one which minimizes the completion time. The optimal 
topology significantly outperforms non-optimal one Top-A by 
about 10%.   

This topology problem is known as NP-complete [30][31] 
and there are diverse heuristic algorithms available in the 
literature. Eleven heuristics were selected and examined with 
various problem configurations in [32]. They are Opportunistic 
Load Balancing, Minimum Execution Time, Minimum 
Completion Time, Min-min, Max-min, Duplex, Genetic 
Algorithm, Simulated Annealing, Genetic Simulated 
Annealing, Tabu, and A*. Though Genetic Algorithm always 
gave the best performance, if algorithm execution time is also 

considered, it was shown that the simple Min-min heuristic 
performs well in comparison to others. 

The workflow applications in [3]-[11] can be addressed 
using the work in this paper, when they process multiple jobs in 
batch. Suppose there are m jobs assigned to a workflow 
application. Each component without predecessors will have m 
root tasks, whereas each component with predecessors will 
have no root tasks but it has m tasks to process incoming from 
its predecessors. When a component has multiple predecessors, 
it processes kth task only after all the kth tasks of its predecessors 
arrive. For example, when we consider the example network in 
Fig. 1 from the viewpoint of workflow applications, there are 
100 jobs in batch and every component has 100 tasks to process. 
The optimality of the proportional allocation policy also holds 
when the number of jobs in batch is large, and hence the 
resource control mechanism designed in this paper can be 
directly used to determine resource allocation and consequently 
network topology of the workflow applications. Though the 
workflow research focuses on a single job, there will be some 
situations where batch processing is more desirable. For 
example, one may want to process multiple images altogether 
because they are available at the same time. 

 

APPENDIX.   NOTATIONS 
 
Sets 
A: a set of components 
N: a set of machines 
Kn: a set of components in machine n 
i: immediate predecessors of component i 
n(i) : a machine in which component i resides 
 
Variables 
wi(t): weight of component i at time t 
T: completion time 
 
Parameters 
rti: number of root tasks of component i 
Pi: expected CPU time per task of component i 
ωn: total managed weight of machine n 
TLB: lower bound of completion time T 
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Fig. 5.  Completion time as a function of control period with NRT = 50 in 
topology Top-B. 
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TUB: upper bound of completion time T under proportional resource allocation 
Ts

LB: lower bound of completion time T under stress 
RAi(t): instantaneous resource availability of component i at time t 
Ri(t): remaining CPU time for a task in process of component i at time t 
Li(t): number of remaining tasks of component i at time t, Li(0)=Li 
 
Functions 
LIi(t): load index, component i’s total CPU time required at time t, LIi(0)=LIi 
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