
  
Abstract— This paper presents a control-theoretic 

approach to performance management of Internet Web 
servers to meet Service Level Agreements (SLA). In 
particular, a CPU frequency management problem is 
studied to provide response time guarantees with minimal 
energy cost. A linear uncertain model and a 
Linear-Parameter-Varying (LPV) system are derived 
based on first-principles analysis of transient and 
steady-state queueing dynamics from the allocated CPU 
resource to request response time.  The LPV modeling 
utilizes the workload arrival and service parameters as 
scheduling variables, which allows the Web server to 
meet the response time SLA in the presence of 
dynamically changing load conditions. Using real Web 
server workloads, the performance of an LPV- ∞H  
controller is compared to that of a linear controller 
designed at the high-percentile load parameters and a 
G/G/1-queueing based nonlinear optimization. The 
proposed LPV modeling and control framework can be 
generalized to incorporate more sophisticated workload 
models and more complicated server environments. In 
addition, due to the LPV nature of Web systems with 
respect to load conditions, the proposed approach can be 
applied to a variety of resource management problems 
and used for middleware design. 

I. INTRODUCTION 
High-performance computer systems are widely used in 

today’s commercial (Web, database, e-commerce) and 
scientific server environments. The high demand on 
automatically managing server resources, under dynamically 
changing load and operating conditions, strongly motivates 
feedback-based control schemes. Compared to using 
trial-and-error methods for tuning system parameters, 
control-theoretic approaches provide a rigorous mathematical 
foundation and systematic mechanisms in the design of 
feedback-control systems. There has been increasing research 
effort in applying control theoretic approaches to the 
performance management for computer systems, though 
mostly in the area of network systems and congestion control. 
The research on application of control theory to software 
systems such as Web, email, database, and storage servers has 
just started [3], [5-9], [11], [13] (see the survey paper [2], [10] 
and references therein). There exists substantial difference 
between performance management of a communication 
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network system and of an Internet server system, e.g., the 
difference in modeling request service demand. Requests in a 
network system are fixed-size packets; the service time of a 
request at a link (leaving a router) corresponds to the 
transmission time of the packets. Thus service time for each 
request is more or less constant (depending on the link 
bandwidth). In contrast, service demand in a Web/storage 
server system could be highly varied or even depend on 
locality and access pattern.     

Most of the existing work for performance management of 
Internet server systems adopts system-identification based 
linear-time-invariant (LTI) modeling and classical PID 
control ([2-3], [8], to name a few). Due to the inherent 
nonlinear dependence of request response time on resource 
allocation variables as well as the demand on adaptation to 
time-varying load conditions, nonlinear modeling and design 
are motivated to improve system performance. An adaptive 
controller was designed for the performance control of 
differentiated caching services [11], where an online 
identified linear model was built using a recursive 
least-squares algorithm. A fuzzy-logic control is used to 
optimize performance of an Apache Web server in [7]. For 
the admission control of an Internet Web server, our previous 
paper [12] presented an LPV design based on direct LPV 
system identification using empirical data, where workload 
intensity was utilized as the scheduling variable. The present 
paper studies the performance/power management of 
computer server systems under the context of Internet hosting 
centers; the objective is to dynamically manage server CPU in 
meeting response time SLA with minimal energy cost. 
Starting with a first-principles analysis of transient and 
steady-state queueing dynamics, this paper approximates the 
dynamics from CPU frequency to response time by a 
Linear-Parameter-Varying system with request arrival and 
service demand parameters as scheduling variables. LPV 
control has the advantage that it does not require a priori 
information on scheduling variables but their online 
measurements, thus no prediction is needed for workload 
arrival and service demand. Compared to the adaptive control 
in [11], the LPV modeling provides analytical functional 
expression of system dynamics on load conditions, which 
allows the corresponding design to explicitly utilize load 
information and existing work on workload characterization.    

Major contributions of this paper are: 1) A 
Linear-Parameter-Varying model is derived based on 
first-principles analysis of system dynamics and then an 
LPV- ∞H  robust control is designed; 2) using real Web 
server workloads, we show that the LPV- ∞H  control design 
outperforms linear control designs and a G/G/1-queueing 
based nonlinear optimization. The general framework of this 
LPV modeling and control can be applied to many resource 
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allocation problems for managing hosting centers due to the 
LPV-nature of system dynamics with respect to load. 

II. PROBLEM DESCRIPTION AND SERVER SYSTEM MODEL 
A. Performance/Power Management of a Hosting Center  

This paper investigates the performance management of 
computer server systems under the context of Internet hosting 
centers. A hosting center operates thousands of servers to 
house multiple applications. A guaranteed level of 
performance, which is referred to as Quality of Service (QoS) 
delivered to end customers, is often part of a Service-Level 
Agreement between the service provider and application 
owners. On one hand, a hosting center needs to make revenue 
by provisioning sufficient resources (CPU, memory, and I/O 
bandwidth) for each application to meet performance SLA in 
the presence of dynamically varying load conditions. On the 
other hand, a hosting center needs to reduce operational costs 
to maximize profit.  

Particularly, we are interested in the performance/power 
management problem – to meet performance SLA with 
minimal power consumption. A hosting center can use 
different mechanisms to manage power cost: e.g., allocating 
appropriate number of servers to each application and turning 
off unused servers; dynamical control of server CPU 
frequency using the dynamic voltage/frequency scaling 
(DVS) mechanism, which is allowed by most processors 
today. The latter scheme may not be able to save as much 
energy as turning off a server completely, but it has the 
advantage of allowing requests to be served while at a lower 
CPU speed (with no or less performance degradation); 
further, it takes less time for the server to recover to its normal 
CPU frequency than rebooting a machine.   

Traditional performance management for server systems 
relies on worst-case estimates of load and resource 
availability thus provisions resources to meet peak demands. 
Since the worst-case resource demand is likely to be 
significantly higher than its normal usage, static optimization 
based on peak loads could cause server resources to be 
heavily underutilized most of time, while over-provisioning 
service capacity for worst-case load could incur economically 
unfavorable operational costs. Therefore, it is desirable to 
design control algorithms for the server to adapt to workload 
behavior. 
 Consequently, the objective of the performance/power 
management for a hosting center is to dynamically allocate an 
appropriate number of servers to each application and to 
control each server’s CPU frequency such that the target 
response time of each application is met with minimal energy 
consumption / operational cost. 
 
B. Server System Model and Problem Formulation 
 Consider a hosting center that operates identical servers to 
support multiple applications at any time. Each server is 
equally capable of running any application and it is devoted 
to a particular application while each application may span on 
multiple servers. By the DVS scheme, each server can operate 
at one (may change over time) of a set of discrete CPU 
frequency levels between a maximum frequency and a 
minimum frequency.  

We decompose the above-described performance/power 
management problem into two subproblems: 1) dynamically 
determine an aggregate frequency for each application that 
can meet response time guarantee when there is a single 
server per application running at this frequency, and 2) solve 
a server allocation problem, which determines the number of 
servers for each application and the operating CPU frequency 
of each individual server to provide the aggregate CPU 
frequency obtained from the first subproblem.  

Since this paper is aimed to develop a nonlinear 
control-theoretic modeling and design for server performance 
management, we focus on the first subproblem, i.e., 
dynamical control of the aggregate CPU frequency to meet 
target response time with minimal CPU usage (noting that the 
CPU power consumption of a server is proportional to the 
cubic power of the CPU frequency). In the rest of the paper, 
the aggregate CPU frequency is often referred to as CPU 
frequency. In our previous work [5], a linear ARX model was 
built using system identification to characterize the dynamics 
from server’s CPU frequency to request response time; then a 
linear optimal control combined with an on-line optimization 
algorithm was applied to this performance/power 
management problem. In this paper, we develop a 
first-principles based LPV modeling and control design. 

III. DERIVATION OF FIRST-PRINCIPLES MODELS 
Consider a Web server that serves http requests in a single 

queue with first-come first-serve manner, as depicted by Fig. 
1. Let t∆  be the sampling interval, and let )(kN s  denote the 
number of jobs in the system at time tk∆ .  Since the number 
of jobs in the system at tk ∆+ )1(  is the sum of the initial 
number of jobs in system at tk∆ and the number of arrival 
requests ( k

arrivn ) minus the number of requests serviced 

( k
srvedn ) in [ ]tktk ∆+∆ )1(, , we have  

 +−+=+ })({)1( k
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k
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Fig.1. A queueing system structure 

 The mean arrival rate, )(kλ , and mean service rate, )(kµ ,   
in [ ]tktk ∆+∆ )1(,  are computed as 

tnk k
arriv ∆= /)(λ , tnk k

srved ∆= /)(µ        (2) 
We approximate (1) by removing the projection to the 
positive plane {}+⋅  in the modeling for control design (while 
we keep the projection in simulation), which leads to 
 tkkkNkN ss ∆−+=+ ))()(()()1( µλ         (3) 
The average response time )(kT  can be approximated by 

)(
)(

)(
k
kN

kT s

µ
=                  (4) 

q 



 
 

 

Note that the mean service rate is defined as the reciprocal of 
the mean service time, which conventionally denotes the 
mean time it takes a server operated at certain CPU frequency 
to process a request (here for CPU demand). In this paper, the 
DVS scheme allows the CPU frequency of a server to be a 
tunable parameter; further, the request service time on a 
server is assumed to be inversely proportional to this server’s 
CPU frequency. Let )(ku  denote the CPU frequency (GHz), 
and let )(ks denote the mean service time on a server 
operating at the unit CPU frequency. Then the service rate 

)(kµ  satisfies  

)(
)()(

ks
kuk =µ                   (5) 

Plug (5) into (3) and (4), we have  
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which is a nonlinear time-varying system with output variable 
)(kT , state variable )(kN s , and control variable )(ku .  

 
A. A Linearized Model 

We first derive a linearization of (6) and (7) around an 
equilibrium point. By observing (6) and (7), the equilibrium 
condition satisfies 
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Define  
)(ˆ)( kNNkN sss += , )(ˆ)( kTTkT += , )(ˆ)( kuuku +=  (9) 

Then the linearized model around ),,( uTN s  and ),( sλ  can 
be written as, 
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s
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This can be treated as a linear time-invariant model if 
constant ),( sλ  and T are considered (which can be 
computed as the average over the entire workload duration). 
 
B. A Linear-Parameter-Varying Model Derived Using 
Jacobian Linearization  

Based on Jacobian linearization, an LPV model can be 
derived by linearizing (6-7) around the equilibrium trajectory 

)()()( kskku λ= , )()(/)()( kTkskuTkN s λ== , where the 
“-“ and index k are used to denote “steady-state” values in the 
kth sampling interval, while the target response time T  is the 
same across all intervals. Following a similar procedure as in 
Section III.A, we derive the LPV model as follows: 
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The scheduling parameters )(kλ  and )(ks  used in Section 
IV-VI are approximated by the mean arrival rate )(kλ  and 

service time )(ks in the kth sampling interval. We can also 
update the scheduling parameters using average arrival rate 
and service time computed over a longer time period, e.g., 
multiple sampling periods, since the load is often considered 
to vary in a much slower time scale than system dynamics.   

IV. MODEL VALIDATION 
A. Workload Description and Simulation Setup    

The workload used in this paper is a real http trace from the 
Web Caching Project group [1]. Fig. 2 plots the request 
arrival rate and file size (KB) for this one-day trace. Modeling 
and control designs have been evaluated using a simulator 
built on top of the CSIM simulation package. In 
implementing the simulator, it has been assumed that the 
static http requests hit in the cache. Then microbenchmarks 
were run for requests (which hit in the cache) with different 
file size on a server machine to obtain request service times at 
the highest operating frequency. The relationship between 
file sizes and service times is verified to be more or less linear 
– the service time is proportional to the file size. Similar 
experiments have also been conducted on a laptop with DVS 
capabilities to confirm that the service time is inversely 
proportional to the CPU operating frequency, in terms of 
which the service times obtained from Laptop DVS 
frequencies are then scaled for the server-class CPU in the 
simulation model. 

The target response time T  is set to be 20 sec. We choose a 
2-minute sampling period for implementing the models and 
feedback control design. However, for the purpose of better 
visibility in a limited space, some of the figures in the rest of 
the paper are plotted using a 10-minute sampling periods. 
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Fig.2. Workload (a) arrival rates; (b) request file size (KB). 

We first study how analytical models derived in Section III 
capture system dynamics. In validating the derived 
control-oriented models, different trajectories of the CPU 
frequency )(ku  can be specified to process the workload, 
then the model-predicted response time )(kT  will be 
compared with that obtained from the simulation 
corresponding to the same )(ku . Fig. 3 plots the simulated 
versus the LPV model (12-13) predicted response time )(kT  
resulting from the )(ku  which is set to be proportional to the 
product of arrival rate )(kλ  and service demand )(ks . From 
Fig. 3, we can see that the LPV model is able to capture the 
real system dynamics, especially when the response time is 
adequately large. It is noted that the prediction loses accuracy 
when response time is relatively small after Hour 20; this 
deterioration in prediction corresponds to situations where 
the server is experiencing extreme light load which degrades 



 
 

 

the approximation of (1) by (3).   

V. CONTROL DESIGN 
Based on the first-principles models, (8-11) or (12-13), we 

dynamically control the CPU frequency )(ku  so that the 

response time )(kT  will meet the target value T in the 
presence of time-varying load conditions with minimal CPU 
usage. We present a linear controller that is designed at a high 
percentile value of load conditions, and an LPV- ∞H  robust 
controller with scheduling parameters specified in terms of 
the mean arrival rate )(kλ  and service demand )(ks .   
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Fig.3. Validation of the LPV model. 

A. A Linear Controller Designed at High-Percentile Load 
Conditions 

Consider the linearized model (10-11), which represents a 
linear time-invariant model with coefficients defined in terms 
of a nominal (equilibrium) condition. In order to meet 
response time SLA for varying load conditions, a linear 
uncertain model is studied by identifying bounds for the 
uncertain parameters λ  and s . Essentially we consider a 
linear robust control problem. Rather than design a linear 
robust controller using worst-case values of arrival rate λ  
and service demand s for λ  and s , we design the linear 
controller using the high-percentile values of λ  and s. The 
latter is motivated by the cumulative distribution of request 
service demand; it is noted that the worst-case value of file 
size is more than ten times the 95-percentile value, which is 
more than ten times the mean value. Thus designing at a 
high-percentile value of the load condition may save 
significantly in resource provisioning. 

We formulate a Linear Quadratic (LQ) control problem 
optimizing the cost function as follows: 

))(ˆ)(ˆ( 2

1

2 kurkTrJ u
k

T ⋅+⋅= ∑
∞

=
           (14) 

where Tr  and ur  are weights for meeting the response time 
SLA and minimizing control (CPU) energy. By (10-11), the 
optimization is subject to the following dynamic equation, 
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where the subscript “ %α ” represents the α -percentile 

value. In order to reduce steady-error in meeting target 
response time, we augment the system (15-16) by adding an 

integrator. Define a new state variable, ∑
−

=
=

1

1
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then we have  
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The state feedback control law for CPU frequency )(ku is 
then computed as, 
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where the feedback gain 1k  and 2k are calculated by solving 
the LQ problem defined by (14-17).  

B. LPV- ∞H  Control Design 

By utilizing the time-varying load parameters as 
scheduling parameters, the Linear-Parameter-Varying control 
design is expected to improve performance with efficient 
control usage. The LPV control can be classified as a 
generalized gain-scheduling control. It designs a 
parameter-dependent controller )(δK  to stabilize an 
augmented Linear-Parameter-Varying plant )(δaugP  for all 

admissible parameter trajectories δ , minimizing the effect of 
the exogenous inputs on the controlled variables in certain 
norm. The augmented plant )(δaugP  includes the actual 

LPV system )(δP  to be controlled as well as auxiliary 
weighting functions representing closed-loop performance 
criteria. For an affine parameter-dependent plant )(δP , the 
design of an affine parameter-dependent controller )(δK  is 
often reduced to solving a set of parameter-dependent Linear 
Matrix Inequalities (LMIs) [4]. 

Define scheduling parameters )(/1:)(1 kk λδ = , 
)(/1:)(2 ksk =δ , and ))()(/(1:)(3 kskk λδ = , the model 

(12-13) then becomes an affine parameter-dependent plant. 
Note that the scheduling parameters defined in this way are 
not independent, which may cause the resulting design more 
conservative, but it allows the direct application of existing 
affine parameter-dependent LPV control designs without 
resorting to the polynomial parameter-dependent LPV.  

We formulate an LPV- ∞H control design problem, where 
the performance specifications on minimizing tracking error 
of meeting target response time and reducing control action 
are addressed through the design of weighting functions eW  
and uW , respectively. In order to apply the LPV- ∞H control 
design from [4], low-pass filters are appended to both input 
and output channels of the original LPV plant. The cutoff 
bandwidth of the low-pass filters should be much higher than 
the feedback sampling frequency so that the system 
performance would not be affected. With a bit abuse of 
notion, we let )(δP denote the LPV model that includes the 
original plant (12-13) as well as the input/output low-pass 
filters. The controller )(δK  is designed such that the 
closed-loop system is stabilized and the ∞H  norm of the 
transfer function from the exogenous input (the reference 



 
 

 

response time T ) to the controlled variables (the weighted 
error signal e~ and the weighted control signal u~ ) is 

minimized, i.e., γ≤
∞KSW

SW

u

e with performance level γ , 

where S  denotes the sensitivity transfer function. We then 
apply the LPV- ∞H  control design from [4].   

VI. SIMULATION RESULTS & PERFORMANCE ANALYSIS 

A. Control Design Results 
Both the LQ and LPV design have been implemented on 

the simulator. Their performance is evaluated using the real 
http trace plotted in Fig. 2, and is compared to that of a 
G/G/1-queueing based nonlinear optimization given in [5].    

LQ Design: The weights in (14) are chosen to favor 
meeting target response time, which is specified as =T 20 
sec for the trace in Fig. 2. We have designed feedback control 
gains for model (15-16) with =%α  50-, 85-, and 
95-percentile load conditions. The design at =%α  
85-percentile gives the best tradeoff between meeting target 
response time and using minimal CPU frequency; the 
corresponding control gains are 016.01 −=k , 032.02 −=k .  

LPV Design: In the LPV- ∞H  formulation, the weighting 
function eW  and uW  are chosen to reduce tracking error and 
peak control action. They are designed as,  
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Then the LPV controller is derived to satisfy 1<γ . 
A G/G/1-Queueing Based Nonlinear Optimization: The 

result from a G/G/1-queueing based nonlinear optimization 
[5] is also presented here in comparison with results from 
control-theoretic approaches. The algorithm, denoted as 
Queueing in the rest of the paper, consists of three 
components: a multiplicative S-ARMA (seasonal 
autoregressive moving average) for workload characteristics 
estimation, an G/G/1 model for predicting response time, and 
a heuristic solution to a nonlinear optimization problem. The 
sampling period for modeling and design in this G/G/1-based 
nonlinear optimization is chosen to be 1hr, which produces 
the best result. Details of the Queueing algorithm can be 
found in the co-authored work [5]. 

B. Simulation Results & Analysis 
In this section, simulation results from the approaches in 

the previous section are presented and their performance is 
compared. Table 1 lists the average response time and 
average aggregate CPU frequency for LQ, LPV- ∞H  and the 
G/G/1-based nonlinear optimization (denoted by Queueing).  
The average values are calculated in terms of the whole 24 hr 
duration for the trace.  

The results for LQ regulator in Table 1 are obtained from 
the design conducted at 85-percentile of λ  and s . From 
Table 1, we can see that the LQ design uses as much as 
control action but has higher average response time than the 
Queueing. The LPV control satisfies the target response time 
as the Queueing does, but using 20% less CPU, which would 

reduce the operational cost significantly. The LPV design has 
lower values in both average response time and control effort 
than that of LQ designed at high-percentile load conditions. 
This demonstrates that the utilization of detailed time-varying 
information on workload improves the performance of 
control design efficiently. 

Table 1. Simulation results of three designs. 

 LQ LPV Queueing 
Mean response time (sec) 21.48 19.89 17.22 

Mean Aggregate CPU (GHz) 17.50 14.03 17.18 
 

Fig. 4 compares time histories of response time for LPV 
control to the LQ designed at 85-percentile of the load 
condition. We can see that the LPV design outperforms linear 
designs significantly. In particular, during the transient 
overload situation (~ hour 8 & hour 21), the LPV controller is 
able to allocate the right amount CPU thus to maintain a 
reasonable response time. In contrast, the LQ controller fails 
to do so, which causes considerable oscillations in CPU 
allocation, substantial spikes in response time, and system 
getting stuck in overload for significant longer time. 

Fig. 5 shows the response time history of LPV control 
versus that of G/G/1-based nonlinear optimization. It is 
observed that the LPV control is more responsive with 
respect to workload changes. In particular, the LPV control 
has reduced the spikes around hour 8, 12, and hour 21, and 
the LPV’s time response is less oscillated than that of the 
Queueing approach. In terms of CPU allocation (Fig. 5(b)), 
we can see that the Queueing is over-allocating CPU during 
most of the time compared to LPV. At hour 8, 12, and 21, but 
it fails to adapt to the sudden increase of workload and 
response time is much higher than that of LPV. LPV control 
on the other hand is more responsive and has allocated 
sufficient resource to maintain a reasonable response time.  

Though the LPV control has lower mean response time 
than the LQ and the Queueing approaches, it still shows 
spikes periodically in response time, as plotted in Figs. 4 & 5. 
These spikes are mostly due to the dramatic variation of 
request-level service demand (file size). For the studied trace, 
a sudden increase of file size from less than 1KB to over 1MB 
is frequently observed. Note that the average CPU speed in 
LPV control is 14KB/sec, which implies that it takes 71 
seconds for the server to process a single request of 1MB. All 
requests after this request inevitably have longer waiting 
time. Indeed the spikes of response time correspond to bursts 
in service demand and arrival rate (see Fig. 2(b)). Though the 
dramatic changes of request file size often occur, these jumps 
are not persistent, but very transient instead. In addition, 
change of sampling interval is barely helpful for the modeling 
to capture or predict such burstiness due to the self-similarity 
behavior in real traces.  

C. Easiness for Real-Time Control  
As far as implementation is concerned, since the presented 

LPV design is based on an analytical model (12-13), it only 
requires on-line measurement of load parameters; while the 
Queueing requires significant amount of data for training in 
order to achieve reasonably good prediction. The LQ designs 
presented in Sections V-VI are not on-line implementable 
since the entire workload is not available a priori to compute 



 
 

 

the required average (percentile) values for arrival rate and 
service demand. For real-time implementation, predicted 
workload parameters would be used instead, which could 
lead to additional modeling uncertainty thus degrading 
control performance. In this paper, we mainly use the LQ 
designs as baseline to compare with the LPV approach, thus 
we neglect this implementation issues for the LQ. 
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Fig. 4. LPV vs. LQ: response time and CPU frequency. 
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Fig. 5. LPV vs. Queueing: response time and CPU frequency. 

VII. CONCLUSION 
This paper has presented a first-principles based LPV 

modeling and control for performance management of Web 
servers in achieving response time SLA. By analyzing 
transient queueing dynamics for a Web server, we have 
derived analytical models that characterize dynamics from 
the CPU frequency to response time in the presence of time 
varying load conditions. We have derived a linear uncertain 
model and an LPV model which uses time-varying request 
arrival rate and service demand as scheduling parameters. 
Through simulations using real http traces, the LPV design is 
demonstrated to outperform both the LQ design and the 
G/G/1-queueing based optimization. The advantage of this 
first-principles based LPV modeling and control is that it only 
requires on-line measurement of workload statistics, thus 
avoiding extensive model training using historical traffic 
data. This framework provides the versatility in dealing with 
different types of workload and operating environment 
without modifying the implementation of control algorithms. 
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