

Abstract— This paper presents a control-theoretic

approach to performance management of Internet Web
servers to meet Service Level Agreements (SLA). In
particular, a CPU frequency management problem is
studied to provide response time guarantees with minimal
energy cost. A linear uncertain model and a
Linear-Parameter-Varying (LPV) system are derived
based on first-principles analysis of transient and
steady-state queueing dynamics from the allocated CPU
resource to request response time. The LPV modeling
utilizes the workload arrival and service parameters as
scheduling variables, which allows the Web server to
meet the response time SLA in the presence of
dynamically changing load conditions. Using real Web
server workloads, the performance of an LPV- ∞H
controller is compared to that of a linear controller
designed at the high-percentile load parameters and a
G/G/1-queueing based nonlinear optimization. The
proposed LPV modeling and control framework can be
generalized to incorporate more sophisticated workload
models and more complicated server environments. In
addition, due to the LPV nature of Web systems with
respect to load conditions, the proposed approach can be
applied to a variety of resource management problems
and used for middleware design.

I. INTRODUCTION
High-performance computer systems are widely used in

today’s commercial (Web, database, e-commerce) and
scientific server environments. The high demand on
automatically managing server resources, under dynamically
changing load and operating conditions, strongly motivates
feedback-based control schemes. Compared to using
trial-and-error methods for tuning system parameters,
control-theoretic approaches provide a rigorous mathematical
foundation and systematic mechanisms in the design of
feedback-control systems. There has been increasing research
effort in applying control theoretic approaches to the
performance management for computer systems, though
mostly in the area of network systems and congestion control.
The research on application of control theory to software
systems such as Web, email, database, and storage servers has
just started [3], [5-9], [11], [13] (see the survey paper [2], [10]
and references therein). There exists substantial difference
between performance management of a communication

This work is supported in part by NSF under Grants 0325056 and

0409184. W. Qin (wubi@psu.edu) and Q. Wang (quw6@psu.edu) are with
the Mechanical Engineering Department; Y. Chen (yzc107@psu.edu) is with
the Industrial Engineering Department, Penn State University, University
Park, PA 16802. N. Gautam (gautam@tamu.edu) is with the Industrial
Engineering , Texas A&M University, College Station, TX 77843.

network system and of an Internet server system, e.g., the
difference in modeling request service demand. Requests in a
network system are fixed-size packets; the service time of a
request at a link (leaving a router) corresponds to the
transmission time of the packets. Thus service time for each
request is more or less constant (depending on the link
bandwidth). In contrast, service demand in a Web/storage
server system could be highly varied or even depend on
locality and access pattern.

Most of the existing work for performance management of
Internet server systems adopts system-identification based
linear-time-invariant (LTI) modeling and classical PID
control ([2-3], [8], to name a few). Due to the inherent
nonlinear dependence of request response time on resource
allocation variables as well as the demand on adaptation to
time-varying load conditions, nonlinear modeling and design
are motivated to improve system performance. An adaptive
controller was designed for the performance control of
differentiated caching services [11], where an online
identified linear model was built using a recursive
least-squares algorithm. A fuzzy-logic control is used to
optimize performance of an Apache Web server in [7]. For
the admission control of an Internet Web server, our previous
paper [12] presented an LPV design based on direct LPV
system identification using empirical data, where workload
intensity was utilized as the scheduling variable. The present
paper studies the performance/power management of
computer server systems under the context of Internet hosting
centers; the objective is to dynamically manage server CPU in
meeting response time SLA with minimal energy cost.
Starting with a first-principles analysis of transient and
steady-state queueing dynamics, this paper approximates the
dynamics from CPU frequency to response time by a
Linear-Parameter-Varying system with request arrival and
service demand parameters as scheduling variables. LPV
control has the advantage that it does not require a priori
information on scheduling variables but their online
measurements, thus no prediction is needed for workload
arrival and service demand. Compared to the adaptive control
in [11], the LPV modeling provides analytical functional
expression of system dynamics on load conditions, which
allows the corresponding design to explicitly utilize load
information and existing work on workload characterization.

Major contributions of this paper are: 1) A
Linear-Parameter-Varying model is derived based on
first-principles analysis of system dynamics and then an
LPV- ∞H robust control is designed; 2) using real Web
server workloads, we show that the LPV- ∞H control design
outperforms linear control designs and a G/G/1-queueing
based nonlinear optimization. The general framework of this
LPV modeling and control can be applied to many resource

A First-Principles Based LPV Modeling and Design for
Performance Management of Internet Web Servers

Wubi Qin, Qian Wang, Yiyu Chen, and Natarajan Gautam

allocation problems for managing hosting centers due to the
LPV-nature of system dynamics with respect to load.

II. PROBLEM DESCRIPTION AND SERVER SYSTEM MODEL
A. Performance/Power Management of a Hosting Center

This paper investigates the performance management of
computer server systems under the context of Internet hosting
centers. A hosting center operates thousands of servers to
house multiple applications. A guaranteed level of
performance, which is referred to as Quality of Service (QoS)
delivered to end customers, is often part of a Service-Level
Agreement between the service provider and application
owners. On one hand, a hosting center needs to make revenue
by provisioning sufficient resources (CPU, memory, and I/O
bandwidth) for each application to meet performance SLA in
the presence of dynamically varying load conditions. On the
other hand, a hosting center needs to reduce operational costs
to maximize profit.

Particularly, we are interested in the performance/power
management problem – to meet performance SLA with
minimal power consumption. A hosting center can use
different mechanisms to manage power cost: e.g., allocating
appropriate number of servers to each application and turning
off unused servers; dynamical control of server CPU
frequency using the dynamic voltage/frequency scaling
(DVS) mechanism, which is allowed by most processors
today. The latter scheme may not be able to save as much
energy as turning off a server completely, but it has the
advantage of allowing requests to be served while at a lower
CPU speed (with no or less performance degradation);
further, it takes less time for the server to recover to its normal
CPU frequency than rebooting a machine.

Traditional performance management for server systems
relies on worst-case estimates of load and resource
availability thus provisions resources to meet peak demands.
Since the worst-case resource demand is likely to be
significantly higher than its normal usage, static optimization
based on peak loads could cause server resources to be
heavily underutilized most of time, while over-provisioning
service capacity for worst-case load could incur economically
unfavorable operational costs. Therefore, it is desirable to
design control algorithms for the server to adapt to workload
behavior.
 Consequently, the objective of the performance/power
management for a hosting center is to dynamically allocate an
appropriate number of servers to each application and to
control each server’s CPU frequency such that the target
response time of each application is met with minimal energy
consumption / operational cost.

B. Server System Model and Problem Formulation
 Consider a hosting center that operates identical servers to
support multiple applications at any time. Each server is
equally capable of running any application and it is devoted
to a particular application while each application may span on
multiple servers. By the DVS scheme, each server can operate
at one (may change over time) of a set of discrete CPU
frequency levels between a maximum frequency and a
minimum frequency.

We decompose the above-described performance/power
management problem into two subproblems: 1) dynamically
determine an aggregate frequency for each application that
can meet response time guarantee when there is a single
server per application running at this frequency, and 2) solve
a server allocation problem, which determines the number of
servers for each application and the operating CPU frequency
of each individual server to provide the aggregate CPU
frequency obtained from the first subproblem.

Since this paper is aimed to develop a nonlinear
control-theoretic modeling and design for server performance
management, we focus on the first subproblem, i.e.,
dynamical control of the aggregate CPU frequency to meet
target response time with minimal CPU usage (noting that the
CPU power consumption of a server is proportional to the
cubic power of the CPU frequency). In the rest of the paper,
the aggregate CPU frequency is often referred to as CPU
frequency. In our previous work [5], a linear ARX model was
built using system identification to characterize the dynamics
from server’s CPU frequency to request response time; then a
linear optimal control combined with an on-line optimization
algorithm was applied to this performance/power
management problem. In this paper, we develop a
first-principles based LPV modeling and control design.

III. DERIVATION OF FIRST-PRINCIPLES MODELS
Consider a Web server that serves http requests in a single

queue with first-come first-serve manner, as depicted by Fig.
1. Let t∆ be the sampling interval, and let)(kN s denote the
number of jobs in the system at time tk∆ . Since the number
of jobs in the system at tk ∆+)1(is the sum of the initial
number of jobs in system at tk∆ and the number of arrival
requests (k

arrivn) minus the number of requests serviced

(k
srvedn) in []tktk ∆+∆)1(, , we have

 +−+=+ })({)1(k
srved

k
arrivss nnkNkN (1)

where {})0,max(⋅=⋅ + since sN is nonnegative.

L
arrivaldeparture

l

k
srvedn k

arrivn

Fig.1. A queueing system structure

 The mean arrival rate,)(kλ , and mean service rate,)(kµ ,
in []tktk ∆+∆)1(, are computed as

tnk k
arriv ∆= /)(λ , tnk k

srved ∆= /)(µ (2)
We approximate (1) by removing the projection to the
positive plane {}+⋅ in the modeling for control design (while
we keep the projection in simulation), which leads to
 tkkkNkN ss ∆−+=+))()(()()1(µλ (3)
The average response time)(kT can be approximated by

)(
)(

)(
k
kN

kT s

µ
= (4)

q

Note that the mean service rate is defined as the reciprocal of
the mean service time, which conventionally denotes the
mean time it takes a server operated at certain CPU frequency
to process a request (here for CPU demand). In this paper, the
DVS scheme allows the CPU frequency of a server to be a
tunable parameter; further, the request service time on a
server is assumed to be inversely proportional to this server’s
CPU frequency. Let)(ku denote the CPU frequency (GHz),
and let)(ks denote the mean service time on a server
operating at the unit CPU frequency. Then the service rate

)(kµ satisfies

)(
)()(

ks
kuk =µ (5)

Plug (5) into (3) and (4), we have

tkku
ks
tkNkN ss ∆+

∆
−=+)()(

)(
)()1(λ (6)

)(
)()(

)(
ku

kskN
kT s= (7)

which is a nonlinear time-varying system with output variable
)(kT , state variable)(kN s , and control variable)(ku .

A. A Linearized Model

We first derive a linearization of (6) and (7) around an
equilibrium point. By observing (6) and (7), the equilibrium
condition satisfies

s
u

== µλ ,
u

sN
T s= (8)

Define
)(ˆ)(kNNkN sss += ,)(ˆ)(kTTkT += ,)(ˆ)(kuuku += (9)

Then the linearized model around),,(uTN s and),(sλ can
be written as,

)(ˆ)(ˆ)1(ˆ ku
s
tkNkN ss

∆
−=+ (10)

)(ˆ)(ˆ1)(ˆ ku
s
TkNkT s λλ

−= (11)

This can be treated as a linear time-invariant model if
constant),(sλ and T are considered (which can be
computed as the average over the entire workload duration).

B. A Linear-Parameter-Varying Model Derived Using
Jacobian Linearization

Based on Jacobian linearization, an LPV model can be
derived by linearizing (6-7) around the equilibrium trajectory

)()()(kskku λ= ,)()(/)()(kTkskuTkN s λ== , where the
“-“ and index k are used to denote “steady-state” values in the
kth sampling interval, while the target response time T is the
same across all intervals. Following a similar procedure as in
Section III.A, we derive the LPV model as follows:

)(ˆ
)(

)(ˆ)1(ˆ ku
ks
tkNkN ss

∆
−=+ (12)

)(ˆ
)()(

)(ˆ
)(

1)(ˆ ku
kks

TkN
k

kT s λλ
−= (13)

The scheduling parameters)(kλ and)(ks used in Section
IV-VI are approximated by the mean arrival rate)(kλ and

service time)(ks in the kth sampling interval. We can also
update the scheduling parameters using average arrival rate
and service time computed over a longer time period, e.g.,
multiple sampling periods, since the load is often considered
to vary in a much slower time scale than system dynamics.

IV. MODEL VALIDATION
A. Workload Description and Simulation Setup

The workload used in this paper is a real http trace from the
Web Caching Project group [1]. Fig. 2 plots the request
arrival rate and file size (KB) for this one-day trace. Modeling
and control designs have been evaluated using a simulator
built on top of the CSIM simulation package. In
implementing the simulator, it has been assumed that the
static http requests hit in the cache. Then microbenchmarks
were run for requests (which hit in the cache) with different
file size on a server machine to obtain request service times at
the highest operating frequency. The relationship between
file sizes and service times is verified to be more or less linear
– the service time is proportional to the file size. Similar
experiments have also been conducted on a laptop with DVS
capabilities to confirm that the service time is inversely
proportional to the CPU operating frequency, in terms of
which the service times obtained from Laptop DVS
frequencies are then scaled for the server-class CPU in the
simulation model.

The target response time T is set to be 20 sec. We choose a
2-minute sampling period for implementing the models and
feedback control design. However, for the purpose of better
visibility in a limited space, some of the figures in the rest of
the paper are plotted using a 10-minute sampling periods.

0 5 10 15 20
2

3

4

5

6

7

8

9

Time (hr)

(r
eq

ue
st

/s
ec

)

0 5 10 15 20
5

10

15

20

25

30

Time (hr)

(K
B

)

 (a) (b)

Fig.2. Workload (a) arrival rates; (b) request file size (KB).

We first study how analytical models derived in Section III
capture system dynamics. In validating the derived
control-oriented models, different trajectories of the CPU
frequency)(ku can be specified to process the workload,
then the model-predicted response time)(kT will be
compared with that obtained from the simulation
corresponding to the same)(ku . Fig. 3 plots the simulated
versus the LPV model (12-13) predicted response time)(kT
resulting from the)(ku which is set to be proportional to the
product of arrival rate)(kλ and service demand)(ks . From
Fig. 3, we can see that the LPV model is able to capture the
real system dynamics, especially when the response time is
adequately large. It is noted that the prediction loses accuracy
when response time is relatively small after Hour 20; this
deterioration in prediction corresponds to situations where
the server is experiencing extreme light load which degrades

the approximation of (1) by (3).

V. CONTROL DESIGN
Based on the first-principles models, (8-11) or (12-13), we

dynamically control the CPU frequency)(ku so that the

response time)(kT will meet the target value T in the
presence of time-varying load conditions with minimal CPU
usage. We present a linear controller that is designed at a high
percentile value of load conditions, and an LPV- ∞H robust
controller with scheduling parameters specified in terms of
the mean arrival rate)(kλ and service demand)(ks .

5 10 15 20
0

50

100

150

200

250

300

Simulation time (hr)

R
es

po
ns

e
tim

e
(s

ec
)

Measurement

LPVModel−Equilbm

Fig.3. Validation of the LPV model.

A. A Linear Controller Designed at High-Percentile Load
Conditions

Consider the linearized model (10-11), which represents a
linear time-invariant model with coefficients defined in terms
of a nominal (equilibrium) condition. In order to meet
response time SLA for varying load conditions, a linear
uncertain model is studied by identifying bounds for the
uncertain parameters λ and s . Essentially we consider a
linear robust control problem. Rather than design a linear
robust controller using worst-case values of arrival rate λ
and service demand s for λ and s , we design the linear
controller using the high-percentile values of λ and s. The
latter is motivated by the cumulative distribution of request
service demand; it is noted that the worst-case value of file
size is more than ten times the 95-percentile value, which is
more than ten times the mean value. Thus designing at a
high-percentile value of the load condition may save
significantly in resource provisioning.

We formulate a Linear Quadratic (LQ) control problem
optimizing the cost function as follows:

))(ˆ)(ˆ(2

1

2 kurkTrJ u
k

T ⋅+⋅= ∑
∞

=
 (14)

where Tr and ur are weights for meeting the response time
SLA and minimizing control (CPU) energy. By (10-11), the
optimization is subject to the following dynamic equation,

)(ˆ)(ˆ)1(ˆ
%

ku
s

tkNkN ss
α

∆
−=+ (15)

)(ˆ)(ˆ1)(ˆ
%%%

ku
s

TkNkT s
ααα λλ

−= (16)

where the subscript “ %α ” represents the α -percentile

value. In order to reduce steady-error in meeting target
response time, we augment the system (15-16) by adding an

integrator. Define a new state variable, ∑
−

=
=

1

1
)(ˆ)(ˆ k

i

I
s

I
s iNkN ,

then we have
)(ˆ)(ˆ)1(ˆ kNkNkN s

I
s

I
s +=+ (17)

The state feedback control law for CPU frequency)(ku is
then computed as,

)(ˆ)(ˆ

)(ˆ)(ˆ)(

21%%

21

kNkkNks

kNkkNkuku

s
I
s

s
I
s

++=

++=

ααλ
 (18)

where the feedback gain 1k and 2k are calculated by solving
the LQ problem defined by (14-17).

B. LPV- ∞H Control Design

By utilizing the time-varying load parameters as
scheduling parameters, the Linear-Parameter-Varying control
design is expected to improve performance with efficient
control usage. The LPV control can be classified as a
generalized gain-scheduling control. It designs a
parameter-dependent controller)(δK to stabilize an
augmented Linear-Parameter-Varying plant)(δaugP for all

admissible parameter trajectories δ , minimizing the effect of
the exogenous inputs on the controlled variables in certain
norm. The augmented plant)(δaugP includes the actual

LPV system)(δP to be controlled as well as auxiliary
weighting functions representing closed-loop performance
criteria. For an affine parameter-dependent plant)(δP , the
design of an affine parameter-dependent controller)(δK is
often reduced to solving a set of parameter-dependent Linear
Matrix Inequalities (LMIs) [4].

Define scheduling parameters)(/1:)(1 kk λδ = ,
)(/1:)(2 ksk =δ , and))()(/(1:)(3 kskk λδ = , the model

(12-13) then becomes an affine parameter-dependent plant.
Note that the scheduling parameters defined in this way are
not independent, which may cause the resulting design more
conservative, but it allows the direct application of existing
affine parameter-dependent LPV control designs without
resorting to the polynomial parameter-dependent LPV.

We formulate an LPV- ∞H control design problem, where
the performance specifications on minimizing tracking error
of meeting target response time and reducing control action
are addressed through the design of weighting functions eW
and uW , respectively. In order to apply the LPV- ∞H control
design from [4], low-pass filters are appended to both input
and output channels of the original LPV plant. The cutoff
bandwidth of the low-pass filters should be much higher than
the feedback sampling frequency so that the system
performance would not be affected. With a bit abuse of
notion, we let)(δP denote the LPV model that includes the
original plant (12-13) as well as the input/output low-pass
filters. The controller)(δK is designed such that the
closed-loop system is stabilized and the ∞H norm of the
transfer function from the exogenous input (the reference

response time T) to the controlled variables (the weighted
error signal e~ and the weighted control signal u~) is

minimized, i.e., γ≤
∞KSW

SW

u

e with performance level γ ,

where S denotes the sensitivity transfer function. We then
apply the LPV- ∞H control design from [4].

VI. SIMULATION RESULTS & PERFORMANCE ANALYSIS

A. Control Design Results
Both the LQ and LPV design have been implemented on

the simulator. Their performance is evaluated using the real
http trace plotted in Fig. 2, and is compared to that of a
G/G/1-queueing based nonlinear optimization given in [5].

LQ Design: The weights in (14) are chosen to favor
meeting target response time, which is specified as =T 20
sec for the trace in Fig. 2. We have designed feedback control
gains for model (15-16) with =%α 50-, 85-, and
95-percentile load conditions. The design at =%α
85-percentile gives the best tradeoff between meeting target
response time and using minimal CPU frequency; the
corresponding control gains are 016.01 −=k , 032.02 −=k .

LPV Design: In the LPV- ∞H formulation, the weighting
function eW and uW are chosen to reduce tracking error and
peak control action. They are designed as,

787.0769.1
133.02446.0239.0

2

2

+−
+−

=
zz

zzWe
,

473.0693.0
458.2505.5109.3

2

2

+−
+−

=
zz

zzWu

Then the LPV controller is derived to satisfy 1<γ .
A G/G/1-Queueing Based Nonlinear Optimization: The

result from a G/G/1-queueing based nonlinear optimization
[5] is also presented here in comparison with results from
control-theoretic approaches. The algorithm, denoted as
Queueing in the rest of the paper, consists of three
components: a multiplicative S-ARMA (seasonal
autoregressive moving average) for workload characteristics
estimation, an G/G/1 model for predicting response time, and
a heuristic solution to a nonlinear optimization problem. The
sampling period for modeling and design in this G/G/1-based
nonlinear optimization is chosen to be 1hr, which produces
the best result. Details of the Queueing algorithm can be
found in the co-authored work [5].

B. Simulation Results & Analysis
In this section, simulation results from the approaches in

the previous section are presented and their performance is
compared. Table 1 lists the average response time and
average aggregate CPU frequency for LQ, LPV- ∞H and the
G/G/1-based nonlinear optimization (denoted by Queueing).
The average values are calculated in terms of the whole 24 hr
duration for the trace.

The results for LQ regulator in Table 1 are obtained from
the design conducted at 85-percentile of λ and s . From
Table 1, we can see that the LQ design uses as much as
control action but has higher average response time than the
Queueing. The LPV control satisfies the target response time
as the Queueing does, but using 20% less CPU, which would

reduce the operational cost significantly. The LPV design has
lower values in both average response time and control effort
than that of LQ designed at high-percentile load conditions.
This demonstrates that the utilization of detailed time-varying
information on workload improves the performance of
control design efficiently.

Table 1. Simulation results of three designs.

 LQ LPV Queueing
Mean response time (sec) 21.48 19.89 17.22

Mean Aggregate CPU (GHz) 17.50 14.03 17.18

Fig. 4 compares time histories of response time for LPV
control to the LQ designed at 85-percentile of the load
condition. We can see that the LPV design outperforms linear
designs significantly. In particular, during the transient
overload situation (~ hour 8 & hour 21), the LPV controller is
able to allocate the right amount CPU thus to maintain a
reasonable response time. In contrast, the LQ controller fails
to do so, which causes considerable oscillations in CPU
allocation, substantial spikes in response time, and system
getting stuck in overload for significant longer time.

Fig. 5 shows the response time history of LPV control
versus that of G/G/1-based nonlinear optimization. It is
observed that the LPV control is more responsive with
respect to workload changes. In particular, the LPV control
has reduced the spikes around hour 8, 12, and hour 21, and
the LPV’s time response is less oscillated than that of the
Queueing approach. In terms of CPU allocation (Fig. 5(b)),
we can see that the Queueing is over-allocating CPU during
most of the time compared to LPV. At hour 8, 12, and 21, but
it fails to adapt to the sudden increase of workload and
response time is much higher than that of LPV. LPV control
on the other hand is more responsive and has allocated
sufficient resource to maintain a reasonable response time.

Though the LPV control has lower mean response time
than the LQ and the Queueing approaches, it still shows
spikes periodically in response time, as plotted in Figs. 4 & 5.
These spikes are mostly due to the dramatic variation of
request-level service demand (file size). For the studied trace,
a sudden increase of file size from less than 1KB to over 1MB
is frequently observed. Note that the average CPU speed in
LPV control is 14KB/sec, which implies that it takes 71
seconds for the server to process a single request of 1MB. All
requests after this request inevitably have longer waiting
time. Indeed the spikes of response time correspond to bursts
in service demand and arrival rate (see Fig. 2(b)). Though the
dramatic changes of request file size often occur, these jumps
are not persistent, but very transient instead. In addition,
change of sampling interval is barely helpful for the modeling
to capture or predict such burstiness due to the self-similarity
behavior in real traces.

C. Easiness for Real-Time Control
As far as implementation is concerned, since the presented

LPV design is based on an analytical model (12-13), it only
requires on-line measurement of load parameters; while the
Queueing requires significant amount of data for training in
order to achieve reasonably good prediction. The LQ designs
presented in Sections V-VI are not on-line implementable
since the entire workload is not available a priori to compute

the required average (percentile) values for arrival rate and
service demand. For real-time implementation, predicted
workload parameters would be used instead, which could
lead to additional modeling uncertainty thus degrading
control performance. In this paper, we mainly use the LQ
designs as baseline to compare with the LPV approach, thus
we neglect this implementation issues for the LQ.

0 5 10 15 20

0

50

100

150

200

250

300

350

400

450

Time (hr)

R
es

po
ns

e
tim

e
(s

ec
)

LPV

LQ

0 5 10 15 20

0

10

20

30

40

50

60

70

Time (hr)

C
P

U
 a

llo
ca

tio
n

(K
B

/s
ec

)

LPV

LQ

Fig. 4. LPV vs. LQ: response time and CPU frequency.

0 5 10 15 20

0

20

40

60

80

100

120

140

160

180

200

R
es

po
ns

e
tim

e
(s

ec
)

Time (Hr)

Queueing

LPV

0 5 10 15 20

5

10

15

20

25

30

Simulation time(hr)

A
gg

re
ga

te
 C

P
U

 F
re

qu
en

cy
(G

H
z)

Queueing
LPV

Fig. 5. LPV vs. Queueing: response time and CPU frequency.

VII. CONCLUSION
This paper has presented a first-principles based LPV

modeling and control for performance management of Web
servers in achieving response time SLA. By analyzing
transient queueing dynamics for a Web server, we have
derived analytical models that characterize dynamics from
the CPU frequency to response time in the presence of time
varying load conditions. We have derived a linear uncertain
model and an LPV model which uses time-varying request
arrival rate and service demand as scheduling parameters.
Through simulations using real http traces, the LPV design is
demonstrated to outperform both the LQ design and the
G/G/1-queueing based optimization. The advantage of this
first-principles based LPV modeling and control is that it only
requires on-line measurement of workload statistics, thus
avoiding extensive model training using historical traffic
data. This framework provides the versatility in dealing with
different types of workload and operating environment
without modifying the implementation of control algorithms.

ACKNOWLEDGMENT
The authors would like to thank Dr. A. Sivasubramiam and Mr. A. Das for

helpful discussions and part of system setup.

REFERENCE
[1] Web Caching project, http://www.ircache.net.
[2] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu,

“Feedback performance control in software services,” IEEE Control
Systems Magazine, Vol. 23, No. 3, 2003, pp. 74-90.

[3] T. F. Abdelzaher, Y. Lu, R. Zhang, D. Henriksson, “Practical
application of control theory to web service,” Proceedings of American
Control Conference, 2004, pp. 1992-1997.

[4] P. Apkarian and R. J. Adams, “Advanced gain-scheduling techniques
for uncertain systems,” IEEE Transactions on Control System
Technology, Vol. 6, 1998, pp. 21-32.

[5] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N.
Gautam, “Managing server energy and operational costs in hosting
centers,” SIGMETRICS , Banff, Canada, 2005, pp. 303-314.

[6] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury,
“Using MIMO feedback control to enforce policies for interrelated
metrics with applications to the Apache web servers,” Proceedings of
Network Operations and Management, 2002, pp. 219-234.

[7] Y. Diao, J. L. Hellerstein, and S. Parakh, “Optimizing quality of service
using fuzzy control, Proceedings of the 13th IFIP/IEEE International
Workshop on Distributed Systems Operations and Management, 2002,
pp. 42-53.

[8] Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra, S.
Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, L. Chu, and J.
Colaco, “Comparative studies of load balancing with control and
optimization techniques,” Proceedings of American Control
Conference, Portland, OR, 2005, pp. 1484-1490.

[9] J. Hellerstein, Y. Diao, and S. Parekh, “A first-principles approach to
constructing transfer functions for admission control in computing
systems,” Proceedings of IEEE Conference on Decision and Control,
LasVegas, 2002.

[10] J. Hellerstein, “Challenges in control engineering of computer
systems,” Proceedings of American Control Conference, 2004, pp.
1970-1979.

[11] Y. Lu, T. F. Abdelzaher, C. Lu, and G. Tao, “An adaptive control
framework for QoS guarantees and its application to differentiated
caching services,” Proceedings of Tenth International Workshop on
Quality of Service, 2002.

[12] W. Qin and Q. Wang, “Feedback performance control for computer
systems: an LPV approach,” Proceedings of the American Control
Conference, Portland, OR, 2005.

[13] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Design
and evaluation of load control in web server systems,” Proceedings of
American Control Conference, 2004, pp. 1980-1985.

A
gg

re
ga

te
 C

PU
 F

re
qu

en
cy

 (G
H

z)

