Synthesizing Representative 1/0 Workloads for TPC-H

Jianyong Zhanty Anand Sivasubramaniagm Hubertus Franke Natarajan Gautaim
Yanyong Zhan$§ Shailabh Nagdr

*The Pennsylvania State University, University Park, PA 16802.
TIBM T. J. Watson Research Center, Yorktown Heights, NY.
*Rutgers University, Piscataway, NJ.
Contactanand@cse.psu.edu

Abstract

Synthesizing 1/O requests that can accurately capture
workload behavior is extremely valuable for the design, im-
plementation and Oﬁtlr_nlzatlon of disk subsystems. This pa-
per presents a synthetic workload generator for TPC-H, an
important decision-support commercial workload, by com-
pletely characterizing the arrival and access patterns of
its queries. We present a novel approach for parameteriz-
ing the behavior of inter-mingling streams of sequential re-
quests, and exploit correlations between multiple attributes
of these requests, to generate disk block-level traces that
are shown to accurately mimic the behavior of a real trace
in terms of response time characteristics for each TPC-H

query.

1. Introduction

_ The data-centric nature of commercial applica-
tions/services and the growing disparity between pro-
cessing and 1/O speeds continue to motivate the need for
designing and deploying scalable high-performance stor-
age subsystems. The performance of these sto_raage systems
is highly dependent on the workload, and an indepth un-
derstanding of the demands imposed by the workload is
critical for system design and implementation, and sub-
sequent optimization once it is deployed. Workload char-
acterization is thus at the core of any systems design and
optimization process, and our focus here is on character-
izing the demands imposed by an important commercial
transaction processing workload (TPC-H) on the stor-
age subsystem towards generating a synthetic trace of disk
block-level requests.

The load on the disk subsystem can be envisioned as
a sequence of block-level requests that are a result of the
application-level requests filtering through the OS software
stack. There are two ways of inducing this load on a target
disk subsystem for evaluation: (i) using traces of the block
level requests that have been collected on an alternate sys-
tem, and (ii) using a synthetic workload generator that can
closely mimic the behavior of the real load. Though attrac-
tive in terms of reflecting realistic workload behavior, traces
have been widely pointed out [6, 18, 9] to have the follow-
ing drawbacks:

Traces may not be easily obtainable since system ad-
ministrators may not want to slow down their produc-
tion environmentby tracing overheads, or they may not
want to part with their traces (even if they have one) for
security and/or privacy reasons.

Traces can become very large with the systems being
traced running for several dacljys to get representative be-
havior. Storage space and distribution costs can make
these long traces less attractive.

Since each trace represents the execution of one work-
load on one system, it may be difficult to get statistical
confidence in'the evaluation. It is not easy to %auge if a
Performance glitch is an inherent feature of the under-
ying system or whether it is because of some anoma-
lous behavior (e.g. an extraneous artifact imposed a
transient load) in the trace.

With a trace, it becomes very difficult to change work-
load behavior (in anticipation of future workloads that
may be different from what has been traced). We may
want to change arrival rates, burstiness in the load, or
the pattern of sectors being referenced in order to stress
the system under different conditions.

Traces do not allow isolating the influence of any one

parameter. When performance debugging/optimizing,
one needs to understand what artifact (e.g. was it the
burstiness or was it the randomness of sectors re-
guested?) of the workload caused a problem.

When characterizing the workload, we gain a lot more
understanding about the workload that a blind use of
a trace may not provide. Correlation (i) between the
values of a particular ﬁarameter over the trace, or (ii)
between parameters themselves, is one such important
characteristic that is not readily available in a trace.
These correlations can be extremely valuable in sys-
tems design, e.g. correlations between the sequence of
sectors that is requested can give ideas for a prefetch-
ing mechanism, or correlations between arrival times
and sectors requested may suggest better disk schedul-
ing algorithms.)]
This indepth understanding of workload behavior
becomes extremely important for online tuning (or
self-managing/optimizing sYstems that is gaining a lot
of industrial interest recently due to the high costs of
managing/tuning systems). If the characterization can
provide good insights on what to expect in the near fu-
ture, the underIng system can be adapted for the ideal
performance when those workload conditions evolve.

Consequently, a lot of effort has been expended on de-reader is referred to [6, 18, 9] for the motivation behind syn-
veloping synthetic workloads that can mimic the behavior thesizing representative 1/O workloads, and why this is a
of a real application. The main concern when synthesizing non-trivial problem.
these workloads is to make them realistic and representa- Several prior studies hlG, 20, 21, 24, 26] have analyzed
tive of the actual demands imposed on the system, whilethe I/O behavior of parallel scientific applications, for tun-
not taking away the above fundamental advantages ing - either offline or online - parallel file systems. When

TPC-H is an important decision support workload sup- we move to non-scientific workloads, the impact of spatial
plied by the Transaction Processing Council [25] that con- reference pattern (particularly sequentiality) has been stud-
tains 22 queries which analyze relafional tables to aid in de-ied in [17, 14] for an email server. Ruemmler and Wilkes
cision making for commercial enterprises. As is to be ex- [22] observed burstiness in 1/0O requests in two actual en-
pected with database workloads, disk I/O is typically the vironments - a time-shared system and a file server. Gomez
most limiting factor in the performance of these TPC-H and Santonja [8] confirmed the self-similarity in 1/O arrivals
gueries, which many prior studies [28, 23, 3] have pointed for these traces suggesting reasons for such behavior. Fur-
out. Our study uses traces collected from a TPC-H powerther, [6] goes on to suggest that I/O arrivals may not match
test on a commercial IBM Netfinity 8-way SMP server with a Poisson process and may not be independent or exponen-
15 disks running EE DB2 [12]. Using this trace, this paper tially distributed. o
conducts an extensive, and to our knowledge the first com- In the context of database/decision-support workloads, a
plete, analysis of TPC-H disk block-level requests to ac- more general investigation of the I/O throughput for TPC-H
curately synthesize tharrival pattern (inter-arrival times) ~ and TPC-C queries has been conducted in [3] on the IBM
andaccess patteriocation of the sector on disk and the re- NUMA-Q system. But this does not give much insight on
quest size in terms of the number of sectors) of each querythe temporal or spatial I/O properties of the queries, except
in the workload. reiterating that reads are dominant in the execution. TPC-

The main areas in which this paper contributes to the D, & pre-cursor to TPC-H, has been analyzed in [15], at a
state-of-the-art on this topic include: higher level to examine request sizes and arrival phases. A

very detailed evaluation of 10 production workloads, in ad-

We study the suitability of different approaches to an- dition to TPC-C and TPC-D, has been undertaken in [10]
’ alyzing the arrival and access patterﬁg for TPC-H. We Dut the focus has been mainly on buffer management is-
investigate the correlations between the values of a sin-SU€s (caching, prefetching and write b“ﬁe”“ﬂ)- Atthe same
; _time, the authors in [10] acknowledge that the TPC work-
gle parameter in the requests, as well as the correla; -~ ive of the load ducti :
fions across the parameters, and show how this can be¢2ads are representative of the load on production environ-
useful in synthesizing the arrival and access pattern for NeNts, thereby underlining the importance of understanding
the queries. An important contribution is a methodol- (an'& sytnthes_lzmg) Ehgl_r be%ha\{ll_%rc Hh tudied an i
ogy for capturing the sector reference pattern of several _ <05 BISVIOUS SUAIES 10T - F e NauE S Ciee o oo
inter-mixing (and possibly sequential) streams that can |at€d artifact ﬁt a time (DOSEIby or a specific s stem op-
model correlations between multiple arrival and accesst'rq'zat'ﬁ”)- The recent V‘l’<°r 4 Kurmr?s ?]t al. [18] is the
pattern parameters, while being generic enough to cap-2nly other study, to our know ed?e, that has attempted to
ture diverse behaviors exhibited%y these queries. characterize several attributes of this workload at a time.
Their goal, however, is to automate the process of generat-
e The results of our analysis shows certain results thating synthetic workloads, and the TPC-H trace that they use
differ from those in previous studies. Specifically, we as one of the examples is much more simple (with exten-
show that simple IID (independent and identically dis- Sive sequentiality in the sectors referenced that the resulting
tributed) distributions can capture TPC-H I/O inter- model is much simpler) than the mare irregular behavior
arrival times, which is in contrast to more bursty and that we observe for some of the queries in our system. Fur-
self-similar behavior observed in other workloads. We ther, the methodology that we propose for addressing this
also show that despite there being some sequentialityp€havior can capture different kinds of sequential interleav-
in the disk blocks that are referenced, there is a fine ing, and can automatically degenerate to a model for strict
grain inter-mixing of sequential streams making it im- sequentiality with appropriate parameter values.
perative to conduct a smarter analysis of the requests

to extract such patterns in some queries. . .
_ P _ . a 3. Synthesis Methodology and Experimental
The rest of this paper is organized as follows. The next Setu

section summarizes related work in the area of 1/0 char- P

acterization, both in the scientific and production workload))

area. The trace collection mechanism, the simulation target Trace Collection: The TPC-H trace on which we con-

used for validation, the metrics used to evaluate accuracyduct the analysis has been collected on an IBM Netfinity

and the overall synthesis methodology is outlined in sec- SMP server with el%ht 700 MHZ Pentium Il processors,

tion 3. Section 4 examines inter-arrival time characteristics. 2.5GB memory and fifteen disks. Of these fifteen, three are

Subsequently, in section 5 we examine access pattern chaisystem disks, with the other twelve used to hold TPC-H

acteristics and use correlations between parameters to syrdata. The data disks are 36GB 7200RPM SCSI disks, and

thesize the requests for the queries. Finally, section 6 sum-are connected to two SCSI controllers. _

marizes the contributions and outlines directions for future ~ The database engine used for the study is IBM's DB2

work. UDB EE Version 7.2 F12] running on Linux 2.4.17. Typ-
ically, several kernel patches are needed beyond the
\\;\E/\nl la Lcijnux kernlel to %btair] g?%d";';%g—l-i perf((()jrmapce.

e used several patches includi -rc evel-
2. Related Work oped at IBM [19]), that integrates Several patches such
o) as the highmem patch, thekio _pagesize patch, the
Workload characterization has long been recognized assmptimers = patch, light-weighkiobuf = and a patch to re-

a critical requirement for systems design with several prior move the big I/O request lock. In addition, we also devel-

investigations into synthesizing workloads for specific sys- oped our patch to collect the 1/O trace at the SCSI driver

tem artifacts. Our focus here is on the disk system, and thelevel. Each trace record consists of a timestamp (at mi-

crosecond granularity), the major and minor device num- more interested in how close is the performance of the syn-
bers, the type of operation (read/write), the starting-sectorthetic workload with that for the original trace, rather than
and number of sectors requested, and the pid of the prothe absolute performance issues. Still, in one set of exper-
cess issuing the request. We have compared the reiments we also vary some of these hardware parameters to
sponse times for each query with and without our patch, show that our synthetic workloads still produce similar per-
and found that there are negligible differences to ver- formance characteristics as the real trace.

%that our patch has little interference on the workload.

e resulting 1/O trace consists of 18 million 1/O refer- Capacity 22.4GB

ences over a | querles Rotation Speed 7200 RPM
. o Data Surfaces 15

TPC-H Conﬂguratlon. We use the TPC-H power test Cylinders 10043
that measures the throughput/response times of a sequence 512-Byte Seciors 74920468
of 22 queries as recommended by the Transaction Process- Zones 24
|n% Performance Council (TPPC). A smaller version (30 Sectors/Track 229-334
GB) of the TPC-H implementation whose results for a 100 Interface Ulfra-2 SCSI
GB dataset were submitted by IBM [13] in February 2002 4M Cache, 20 Segments, and 1 write segment
to TPPC is used in this exercise. All data disks are config- Track Sparing/Reallocation
ured to use raw |I/O. Elevator Algorithm

The decision-support workload queries of TPC-H re-
quire the disks to hold 8 tables, and the names of these tables
together with their populations (in brackets) are: Lineitem

6,000,000), Orders (1,500,000), Part (200,000), Partsupp p1etrics:
800,000), Customer (150,000), Supplier (10,000), Nation :
25? and Region (5). The disk partitioning is based on these
tables with each disk being partitioned into 7 logical parti-
tions. With Lineitem and Orders being much larger than the
other tables, we use 1 partition each (four in all) to hold the

Table 1. Disk Parameters in the Simulator

In addition to using different statistical error
measures that can be associated with each of the models that
are used when generating the synthetic workload from the
trace, we also quantify the differences in the actual perfor-
mance gres?onshe time ﬁf each rdequesg %haractleristics be-
R, ; g tween that for the synthetic model and the real trace on
Eﬁg'ﬁllagnxegfegratgg'q%eexo‘?{r]lé'r'}ggf’erg’atpee tr%bde gjr%et(ﬁbar;g_the simulated disk subsystem. Response time characteris-
: group tics for the queries are very important from the user’s per-

titions, one for data, one for index. The last partition holds : ; ; :
' y ; : spective, and have been extensively used in related studies
the Temp table, that the database engine uses for mtermedlg 9, 22, 18] to evaluate the accuracy of synthetic work-

aries. [

In our trace, we found that the number of I/O requests oad generation. We use similar metrics in this study.
for queries Q2, Q11, Q16 and Q22 is not very significant We track the response time for each I/O request (from

- . the original and from the synthetic trace). We plot a cumu-
(typlﬁzally Iessdthand30 0 reqijests to "’l‘qd'Sk)' ven thoughl ative dgensityfunction (CDF) of these response times for the
we have conducted our analysis on these queries as Welljqina|'and synthetic trace, and we can use the Root-Mean-
(and found our synthesis to match the response time Chaquuare (RMS) error of the horizontal distance between

acteristics of the original trace), the statistical confidence of {656 two CDE curves [22], or the normalized Root-Mean-

our synthesis is not very high because of the fewer sam- P -~
ples. Further, the accesses n Q13 are mainly to the Tempoduare (NRMS) error which SRMS=RMS/m, wherem

A i i Is the average response time for the original trace. We are
tabée'angsﬁme%m%ﬁ%?gmm%51\/2 ?;Egrtﬁg ﬂgﬁg%sn d specifically targeting a synthetic workload trace that has an

conduct extensive analyses to completely characterize thePRMS of around 0.20 or lower.

(i) arrival pattern ipter-arrival time9, and the (jii) access

pattern (the other attributes of each request including the hesizi ival Ch .

start sector/locationrequestsizein terms of the number 4. Synthesizing Arrival Characteristics

of sectors, and the requdype as to whether it is a read

or write). We first examine the arrival times in isolationand We begin by examining the synthesis methodology for
show that they can be assumed to be IID, and independentharrival (inter-arrival time) characteristics of requests in the
validate this assumption (by picking the other parameterstrace to all 12 disks (one can easﬂY generate per disk ar-
from the orlégmal trace). We then examine the location pa- rivals from these results). In the following discussion, we
rameter and show that queries fall into 3 categories basedirst investigate the modeling issues (and errors) using sta-
on the regularity/sequentiality in this parameter. We pro- tistical techniques that paints a fairly good picture about
pose a new model of capturing these 3 location characteristhe accuracy of our models. Subsequently, we actually in-
tics in a unifying way, and validate its accuracy in isolation ject the workload generated by this model into the simula-
(by taking the other parameters from the trace). Armed with tor and validate its accuracy further by comparing response
all these intermediate results, we finally present a unifiedtime characteristics with those for the real trace.
methodology that exploits correlations between attributes to Studying Correlations: Before deciding on a model-

generate a synthetic trace for each category. When validating strategy, it is first necessary to understand the correla-
ing the accuracy of a synthetically generated trace, we aretions of the inter-arrival times using auto-correlation func-
specifically interested in matching its response time (for a tions (ACF), since that can give a good indication of how
request) characteristics with those of the original trace, by to proceed:. If there is very little correlation, then it may not
using them both to drive a disk subsystem simulator. be a bad choice to assume that inter-arrival times are in-
Simulator configuration: The simulator that we use for dependent identically distributed (1ID), and proceed along
empirical validation of synthesis accuracy is DiskSim [7], the lines of fitting statistical distributions. On the other
that incorporates detailed models of the disk drives, con-hand, if there are strong correlations, either near-term (with
trollers, caches and I/O channels. The parameters for thesuccessive/close-by inter-arrival times) or longer-term cor-
disks that are modeled (resembling Quantum Atlas disks)relations, then time-series or self-similar models may be
are given in Table 1 and we use two controllers that are needed. When we plotted the auto-correlation functions of
based on the NCR 53C700. Please note that the parametetfe inter-arrival times, we found that there were not strong
for this simulator itself are not very important since we are correlations between inter-arrival times, thereby suggesting

the possibility of 1ID assumption (the reader is referred to fitted distribution that has the minimal distance. We en-
[27] for a detailed analysis). sured that this distance is less than 0.1 for all queries.

~ Time-series ModelsWe nextused the RPS toolkit [4] to) .
fit different time-series models - auto regressive (AR), mov- Thereader is referred to [27] for the detailed results com-
ing average (MA), ARMA, ARIMA - together with a frac- paring the inter-arrival times of the original trace and that
tionally infegrated ARIMA model (ARFIMA) which is use- ~ generated by our synthesis for each of the queries. Overall
ful for modeling lon Tange dependence and self-similarity, we found that the pareto distribution was not really doing
a last value model (LAST), a windowed average model well across the queries, that is perhaps another confirma-
(BM), and a long-term avérage model (MEAN)- for the tion of the absence of burstiness and self-similarity in the
inter-arrival times. The reader is referred to [2] for an in- requests mentioned earlier. As expected, in the queries with
depth treatment of these models. low variance (Q1, Q6 and Q15), the normal distribution
The results of this analysis reveal that the ARMA, gives the closest fit. Of the rest, the exponential distribu-
ARIMA and ARFIMA models are quite inaccurate in mod- tlon suffices in Q5. While exponential does a fairly good job
eling the inter-arrival times, ruling out the possibility of N Q8, Q17 and Q20 as well, the 2-phase hyper-exponential
self-similar/long-range dependence models. While the gives a better Goodness-of-fit for these. The 2-phase hyper-
other models are doing better than these, giving absolute erexponential does a good job in the case of queries Q3,
rors that lower, the errors are still intolerable - in most Q4, Q7, Q9, (%10, Q14, and Q18, while a 3-phase ver-
cases they are comparable or even larger than the meafion is needed for Q12 and Q21. We also conducted an ex-
inter-arrival time. It is only in Q1, Q6 and Q15 do we find Periement wherein we substituted the inter-arrival times of
their errors tolerable. These results re-confirm our hypoth-the original trace with those from our synthesis, and com-
esis from the previous correlation study that time-series orpared the response time characteristics (CDF) with those of
self-similar models may not be very suitable for generat- the original trace. The response times closely match [27],
ing the inter-arrival times for TPC- querieséunlike their again reiterating the validity of such synthesis (suggesting
suitability to other workloads that was pointed out by oth- there is some merit behind the 11D assumption).
ers in [8] and [26]).
1D Distrlibutions: Thr? above_g_tla_ser\?ations}‘rotr)n the prg—
vious results suggest the possibility of arrivals being inde- 5 iz isti
Eendent and |dent|caII]>_/ dlﬁs)tnbuted)., With these suggestlve5 Synthesizing .Access Characteristics and
ints, we next attempt fitting different distributions for each Trace Generation
guery as follows:

i i) . . i We now move on to synthesizing the attributes of each
e The first step is to identify the distribution family to access and generating the complete synthetic trace. These
use upon which the parameters of the distribution can attributes include the (i}ype of the operation (whether a
be estimated. We mainly considefggper-exponential ~ Read or a Write), (i) starting sector (which we will refer to
(that can capture high variance behaviagrmal(that aslocationhenceforth), and the (iii3izeof the request (in
can model lower variance), apdreto(that can model =~ number of bytes or sectors to read or write from the start-
bursty/heavy-tailed behavior) distributions, though this ing sector). We refer to these, in addition to the arrival time,
is by no means a comprehensive list of all that we tried. as theprimary attributes since these are directly the at-
Typically we tried all of them for each query, though tributes of each trace record. At the same time, there could
in some cases we had some suggestive hints from prepe secondary attributethat we can derive from these pri-
vious results. For instance, in queries Q1, ?6 and Q15, mary attributes, which may make it easier to synthesize the
the smaller errors for the time-series models suggest aworkload, and from these be able to generate the primary
distribution with smaller variance (achievable with an attributes themselves. For instance, sequentiality in the sec-
appropriate variance value for a normal distribution). tolrs th%t gre accl;es_sed ri]s a secondgry attrikt))ute that can tt))e
; : gleane analyzing the trace, and may be easier to ab-
. Th% nlext step Is 1o Sstlm_ate thfe parametelr%-f?r-bthestract/synt esize. Once we have a reasonable estimate of
model (e.g. mean and variance for a normal distribu- goq jentiality (for instance, 30% of the requests are sequen-
tion, etc.). We used the Maximum Likelihood Estima- ;

: et EA Sl tial), then one may be able to use such information in gen-
t'g?ﬂgg"%hg [Ig]eg’{jfgﬁi’;]% ?h?ésrtﬁlgtuﬁtl)odni;otg 32&32‘{%& a erating values for the starting sector (the primary attribute)
Pameter values of the distribution that would rodu%e that adheres to such sequentiality (the secondary attribute).
the hiahest probability of sampling the qiven Se% ofval- The results from the previous section on the arrival pattern,
ues. \We usg MLE to)éstimatepthgdistn Ution parame- &nd the characteristics of the access patterns to be discussed

: / - ! parame- shortly, jointly provide the information that we need to gen-
ters for this exercise. While the parameters are straight-g 0 the synthetic trace for each query

forward to obtain for the normal and pareto distribu- by
tions, the hyper-exponential distribution requires more _, W& Specifically focus the results from our study for a
work since’it is a mixed distribution. In this case, we single disk (note that a request does not span multiple disks

use the Expectation Maximization (EM) method which since there is no hardware RAID and DB2 Is explicitly man-

; ; : ; ; “likeali aging a set of individual disks). Further, DB2 spreads the
:essgnmg%garﬂvsvgnglsee@egrgaﬂgBlgl;nrgﬁ%(éri?gnmol%ktehlleh%o,&_ load rather evenly across the disks, and we have found that

i e the results are very similar across the disks. We also con-
g:gg{gﬂ&%] that can be used for fitting phase-type centrate the experlymental results on those for the lineitem
' partitions whose 1/O accesses dominate over the rest of the
e Finally, after finding the parameters for the distribu- operations. .)
tions, we need to study how well they fit the original ~ TPC-H being a decision-support (OLAP) workload, is
dataset. Since we are dealing with continuous time se-inherently read-dominated, with there being very few writes
ries data here, we use the Kolmogorov-Smirnov (K-S) (primarily to the "Temp” partition), making write perfor-
test to evaluate the Goodness-of-Fit. For each distribu-mance not that critical unlike other workloads [11]. Conse-
tion, we calculate the maximum distances between thequently, we fix the type (Prlmary) attribute to "Read” in this
CDF of the fitted distribution and the sample’s empiri- exercise, and this simplitication does not affect the accuracy
cal distribution with the K-S test, and then choose the of the results to be provided. The following discussions de-

tail our synthesis approach for the other two (primary) ac- tial due to several reasons, one of them being that the

cess pattern attributes - location and size. database engine multiplexes several activities/threads that
are concurrently accessing different 1/O regions. For in-

. . . stance, while one thread of a query is scanning a table,

5.1. Methodology for Location and Size Synthesis another thread could be performingjoins, or the database
prefetcher could be bringing in blocks ahead of their need.

Unlike the arrival characteristics, we encountered severalStill, there could be sequentiality within an activity/thread
more complications/difficulties when attempting to synthe- before another activity takes over, and their inter-minglin
size location and size information. We tried different ap- ¢an make location synthesis a lot harder. One can visually
proaches including distribution-fitting, correlation analysis, discern this behavior for Q10 in Figure 1, though it also hap-
or even simple high level characterization such as sequenPens at a finer granularity (and to a lesser extent) for queries
tiality specification, etc. In the end, we found that a com- In the second category. While there has been some brief
bination of (a) high-level categorization of the queries, (b) mention ([10, 14]) of understanding such mter-mmglmP se-
further identification and characterization of secondary at- quentiality, there is no previous study that has formally at-
tributes from the original trace, and (c) exploiting correla- tempted to define this inter-mingling sequentiality, charac-
tion information across attributes, was needed to get a fairlyterizing it for TPC-H, and using those results to generate
accurate synthesis. Before presenting the details of the syna synthetic trace. To capture this inter-mixing sequentiality,
thesis, we briefly give a high-level overview of these issués We introduce two concepts -fen and astream .
to understand why each is important. A run is a strictly sequential set of 1/O requests until this
ten been abstracted at the high-level for easier understanda run can be defined as a sequence of I/0 requests)(
ing in terms of sequentiality or randomness in how the loca- with s andl; denoting the start sector and number of sec-
tions (starting sectors) are accessed. Such information cartors requested by thieth request, where the next request in
be very useful for devising prefetching mechanisms, buffer the sequence starts accessing from where the previous left
management algorithms, and other optimizations. When weoff (i.e. 511 = s + ;). For example, if we look at Table 2,
examine the location attribute of TPC-H queries, we can which shows a sequence of requests from the trace for Q10,
broadly put them in 3 categories. Figure 1 shows representequests #12, #13, and #14 are part of a run, before that run
tative examples from these 3 categories, by JJ]Ottlng the lo-is broken by request #15 which accesses a location (sec-
cation (on the y-axis) for each access record in the trace intor 108909) that is not adjacent to where #14 left off (1.e.
increasing time order (on the x-axis). We find that queries sector 110253). The column denoted as RunlID in this ta-
seem to be either very well-behaved adhering rigidly to se- ble, shows the start of the run and where each run ends -
cLuenual behavior (referred to as Category 2), or falling to many of the runs in this case are just 1 request long, ex-
the other extreme of having a very random access patterrcept for runs 8, 11 and 12. We denote the first request of a
(referred to as Category 3), or exhibiting some amount of run as therun start requestthe remaining requests of the
regularity/sequentiality though not as rigidly (referred to as run aswithin a run requestsand define the following at-
Category 1%. xamining these graphs for the 17 queries, wetributes to characterize a run:
find (%4, Q10 and Q14 falling In category 1, Q1, Q3, Q5,)

Q6, Q7, Q8, Q12, Q15, Q18, Q19, and Q21 falling in cat- e RunlengthThe number of I/O requests in a run before
egory 2, and 9,h(%17 ang Q2|O fallig%in categorﬁ/ 3. Such it is broken by a non-sequential request.

a categorization helps us develop a different synthesis strat- ; o ;)
egy for each (e.g. a sequentiality biased synthesis for cat- ® sgsnsgdt%rt {-hoecﬁﬁgnrghhseg{ itr?g :Sgatlon (sector) ac
%;ory 2 versus a more random set of requests for category y q .

ReqID | Location| Size| RunID | StreamID| Stream Jump Dis{.Interf. | Active

Q10 Q12 Q20 inter intra Dist. | Streamg
#1 102893 64 1 1 1
i #2 123757 | 512 2 2 20800 1
g i 5 / § #3 | 102957 64| 3 T 0 T 1

g e g 7

3 T 3 3 #4 68653 | 64 4 3 -34368 2
#5 68781 | 64 5 3 64 0 2
#6 109933 | 64 6 4 41088 3
Arrival time Arrival time Arrival time #7 68845 64 7 3 0 1 3
#8 103021 64 8 1 0 4 3
; ot #9 103085 | 192 8 1 0 0 3
Figure 1. Acgess Pattern characteristics of the #10 109997 62 5 T o 3 >
three categories (e.g. Q10 for Category 1, Q12 for #11 | 68900 | 64 | 10 3 0 3 2
Category 2, and Q20 for Category 3). The plots #12 | 110061] 64 | 11 4 0 1 1
. #13 | 110125 64 11 4 0 0 1
show the locations referenced by the sequence of #14 1 1101891 64 | 11 v 0 0 1
requests for each query. #15 | 108909 | 512 12 5 -1344 1
#16 | 109421 | 512 12 5 0 0 1

Table 2. A window of requests from Q10

_ Secondary Attributes: As mentioned earlier in this sec-
tion, identification of certain secondary attributes, which _] _]
may be easier to synthesize since the%/ can better capture While one may just proceed with the notion of a run, we
the vagaries in the trace, can facilitate the generation of thewant to point out that there are correlations between the run
primary attributes subsequently. For instance, despite thestart locations, i.e. when a thread is interrupted/pre-empted
visual appearance of regularity/sequentiality in Figures 1, from its sequential run by another, it is likely to get back
there are more subtle variations when one examines theséo where it left off (or at least close to it) when it is sched-
characteristics at a much finer granularity. In other words, uled again. If we ignore this artifact (i.e. assume run start lo-
at a finer resolution, the requests may not be that sequene€ations are independent), then we may not be very accurate

in our synthesis. Consequently we introduce the notion of
a stream wherein we try to check for sequentiality not just cessed for the immediately previous requpst the

with the immediately previous requests, but go back fur- same stream. In Table 2, only request #5 (the 2nd re-
ther in_ the past. At the same time, we do not want to be guest of stream 3) has a non-zero intra-stream jump
too rigid on the sequentiality issue, i.e. we may want re- istance. As is apparent, this attribute captures the se-
quests that are off by a few sectors to still belong to the quentiality in the requests within a stream.

same stream. Such a relaxation can (i) allow better stream

formation/characterization (we do not want to end up creat- e Number of Active Stream#t:is possible that over the
ing as many streams as runs), and (ii) allow some vagaries duration of a query there may be numerous streams.
in workload execution (e.g. an activity may be skipping al- However, it is more important to understand how many
ternate sectors but these still need to be in the same stream streams are active (i.e. their start requests have oc-
since they are correlated). More formally, when examining curred but their last request has not yet arrived) at any
the trace we classify requesty that reads sectors start- given time. We call this the number of active streams at
ing from sectol; to belong to the same stream as some other an instant, and this is given in the column denoted by
requesteq; (readings; sectors starting from sectby) that Active Streams in Table 2 assuming that these 16 re-

has already been encountered in the tracej(iei), as long quests constitute the entire trace.
as

Ij ands; are the start sector and number of sectors ac-

¢ Interference DistanceThe previous stream attributes
can help us generate the number of streams, the length
of a stream and the requests within a stream. It is also
important to understand how these streams interleave,
and we capture that using the interference distance.

lj — dbackward < li <1j 4 sj + dforward

At the same time, we want to restrict how much backwards
(j) in the trace that we need to go, in order to keep the prob-
lem tractable and meaningful. After extensive studies, we

found that using a history of 32 requests (i.e.] < 32),
and settind¢orwarg = 256 sectors, andyackwarg= 512 sec-

This is formally defined as the number of requests be-
tween two successive requegtandi in a stream and

; ; is given byi — j — 1. The interference distance column
tors, served our purpose quite well across the ciuerles. . in Table 2'gives these values for the example sequence.
When we examine the example trace in Table 2, we find For instance, the two successive requests (#1 and #3)
that request #3, starts accessing sector 102957 which is im- of stream 1 are separated by a request from another
mediately after the last sector read by request #1, puttin stream. Note that this parameter will be 0 for within a
them in the same stream (note that they were not part o run requests.
the same run). Similarly requests #8 and #9 became part
of the same stream (denoted as StreamID 1). In essence, re- The above run and stream attributes will help us better
uests that are within a run, become part of the same streamsynthesize the spatial reference behavior of the queries. In
though a stream can capture requests that are not strictly sefact, they are general enough to encompass a diverse range
quential either in terms of their adjacency in the trace (they of workload behavior. For instance, we can get an intuitive
can be upto 32 positions apart) or in terms of the sectors thatunderstanding of their ability to capture the three categories
they access (they can be apartdgyckward@nddsorward)- of queries shown earlier in Figure 1 by examining the num-
As with the run, we denote the first request of a new ber of active streams in these queries. For the queries in

stream as th&tream Start RequesiVe try to capture the ~ Category 1, where there is very good sequentiality and little
following attributes for a stream: |nterleaV|ng, the average number of active streams is very

o) close to 1, with the stream and run lengths being relatively

e Stream LengthThis is_the number of requests in a large. At the other extreme, with the queries in Category 3,
stream. For example, if we look at StreamID 1 in Ta- streams are extremely short/rare, putting the average num-
ble 2, its length is 4 (requests #1, #3, #8, and #9). Note ber of active streams close to 0. For the queries in category
that this should be at least as large as the Run Length2, we find the number of active streams is higher (between
defined earlier, since every run is part of a stream. 1.5 and 3 in the trace data), with stream/run lengths in be-

o Inter-stream Jum;t)) DistancéFhis is the spatial sepa- tween these two extremes. These results also re-confirm our

i _earlier categorization of the queries, and give evidence of
;2%2&%;;02%5” r%m%%? g;]% ?,sﬁé% rﬁlaedp?)é\}igisc%_possible utility of these attributes in the synthetic workload
quest (has to be of another stream or else this will not 9€neration. .
be the stream start request!) left off. For instance, in , . Note that as far as characterizing these secondary at-
Table 2 request #6 is the start of stream 4 that readstributes from the trace is concerned, one could simply use a
from sector 109933, while its immediate predecessor Mean value of the observations from the trace, or we can re-
(request #5) reads until sector 68845 (68781+64) mak-Sort to empirical distributions (or even curve fitting for the
ing the inter-stream jump distance 169933 - 68845 = empirical distributions) to preserve more information about
41088, for stream 4. Intuitively, if we have two inter- the original trace. There are trade-offs between accuracy
leaving streams, this jump distance captures how much@nd storage overheads (which we want to keep low since
the disk head will have to move after serving a run of tiS iS one reason why a synthetic workload may be prefer-
one stream before moving to another stream. Note that@Ple in the first place), that we always keep in mind. In our
we need to calculate this only at the start of a particular Synthesis we ensure that the storage overhead is fairly small
stream (requests #2, #4, #6, #15). From the synthetic(We also quantify this towards the end of the paper), while
workload viewpoint, if we could use this information Still being fairly accurate in the synthesis. o
to generate the first request of a stream, then we could Inter-attribute Correlations: We found that it is not
use the intra-stream characteristics (described next) toonly important to understand and exploit the correlations
generate the requests within a stream. of values of an attribute across the requests (as we did in the
Intra-st 3 Dist This attribut t run/stream concepts for location), but also the correlations

S R e o raforer aPIUEES _across the attributes themselves. For instance, the starting
stream. Formally. for a requesthis is calculated as sector (location) of a request can be highly correlated with
. Y, q the size+location of where the previous request (of that run)
li — (Ij +sj) wherel; ands are the start sector and num- |eft off. Further, accesses with smaller sizes tend to come
ber of sectors accessed for a requdsta stream and temporally closer to each other than those for larger sizes

1

§because it ma% take a lot more time to process that data be-

ore the next I/O requests). ool ‘ T
We next go over the details for applying these methods o / ’
and synthesize the queries in each category. We begin with /

category 1 which poses more challenges (this is not as reg-
ular as category 2, and not as random as category 3) to ex-
plain the overall process, which then become largely appli-
cable to the other two categories.

Fraction of requests
o o o
@
T

=
T

03} — Original
02] Eg%zji%?o 08 | |
5.2. Category 1: Q4, Q10, Q14 o
We will use Q10 as a representative example (in the in- Response me ()
terest of space) of Category 1 to walk over the intermediate Figure 2. Location model validation for Q10.

steps of the analysis, though the final results of the synthe-
sis are given for all queries.

Synthesizing Location:; As in section 4 where we fo- . . o
cussed only on the arrival time and used the other parame- 2. We obtain a conditional distribution of the run length
ters from the trace, we start this exercise as well by attempt- ~ for each stream length (shown in Figure 3 (b)). From
ing to synthesize one primary access parameter - location this distribution we generate run lengths for the stream
(starting sector) - and take the values for the other primary ~ length picked in step 1 - note that we need to pick sev-
parameters diréctly from the trace. eral run lengths till the sum total of these lengths gets

We begin with a very simple model, callddbcliD, to the stream length.

\é\?hg;%ghgtﬁé?rgrq ggﬁt%res grraewa;]s?%rﬂqe?héoSt;l?ngdperggggﬁpt3. Having identified the number of runs and their lengths

1y density function (which worked in the case ot arval (3 oh oreach of these rums, This 1t akes 2 Steps:
O e wranrowie COT: {Gher i Fgure'3 (0 o ind e start ocaton of the

ber of occurrences of each starting sector in the trace. Note :L?# rudnié?gﬁcgt atirs?ﬁglljt%%d ((biz/\é\{me ilrjwslgithuerclanga(_g)tret%m
that this ECDF may incur a high storage cost with the num- %‘indpthe start location for each run in thi% stream Klote

Merely note that ven & ey aCCaraté fanction for the prob. (Nt since we are getting the size of each request from
ability’ density will not pro%ce”gopd results because the %ir:eﬁig/rIglrg%g:glcaim?ncggcuhsimI? gg%%gre > strict sequen-
locations are not iindependent’. Figure 2 clearly clarifies cation parameter for each successive request in a run
this point, where the response time characteristics using the thp tart location is determined q

LoclID model is quite significantly different (NnRMS=1.41) once the run start locafion Is determined.

from that for the original trace on the simulator. 4. The final step is to take the different runs/requests

Our next improvement, called LocRUN, tries to cap-
ture correlations of locations between nearby requests us-
mc};_the concept of a run described in the previous section.
In LocRUN, we calculate the run length distribution and the
run start location distribution (this is obtained as an ECDF)
for the original trace. As in LoclID, the ECDF for the run_
start location can again get exceedmdqu large, and we will
show that despite such an accurate density function, just a
run-based approach does not suffice in this case. To gener-
ate the trace, we randomly pick a run start location from the
EC_DF, %nd Wehrandomly pick a(rundlengthlu_smg)|ts distri-

ution. Since the request sizes (and arrival times) are com- ; :
ing from the original trace, we can use these sizes to gen-_ N _F|guref2, Wheﬂ we (l)lbserve thedrespons% time char-
erate the start sector for the next request within a run hasECteS”.?gCESA?vﬁsym etically generdate trace where é"e use
to be spatially contiguous from the previous one). We illus- thoc' , / ?ft Startlngdse_ctor feterrphmano_n_, alnt use
trate the response time characteristics for LocRUN as well 1€ 1N er—arrlvcla |meshan sf|zes rom ¢ eh ongina lrace,
in Figure 2, wherein it shows better behavior than LoclID, W€ are very close to the performance of the original trace
but is still quite unacceptable ("\RMS = 0.83). (nRMS=0.08), giving us good confidence in the stream+run

Even if we use ECDF of run start sectors in LocRUN, Pased modeling strategy for spatial access pattern.
we are assuming its independence when we start each run, Synthesizing the Complete TraceWhile one could use
which may not really be the case. This is where the concept Similar investigation to synthesize and validate request
of a stream comes in useful, i.e. if a stream got interruptedsizes (in sectors), which is the final access pattern attribute,
in its run by another stream, then it will probably start its We do not explicitly go in that direction in the interest of
next run close to where it left off previously. A brief sum- space. Further, we find that even if we are synthesizing one
mary of the steps in our next stream-based location generaparameter independently, it is more important to understand
tion model LocSTREAM, is given below: inter-parameter correlations in the final trace synthesis and

’ ' S) we directly proceed to that issue. There are not too many
1. We use the stream length distribution obtained from distinct request sizes, which is typically an artifact of the
histogramming the original trace, and we generate adatabase engine, and Figure 4 (cg)shows the probability of
length probabilistically from this distribution. A picto- occurrence of 8 different sizes, in sectors, for Q10. We con-
rial depiction of the stream length distribution for Q10 sequently use this empirical CDF of request sizes, which is
is given in Figure 3 (a). reasonably small.

generated until now and intermix them to get a sin-
le trace. We use the interference distance distribution
given in Figure 3 (e)) for this purpose, i.e. if we pick
a numberx using this distribution, we need to plage
other requests between successive runs of this stream.
It is possible when making these assignments to get a
linear ordering of requests, we can have conflicts (i.e.
two requests ma?/ want to occupy the same slot in the
synthetic trace). In such cases, we simply use the next
(Closest) empty slot for one of them.

()

(a) (d) (e)
0.4 0.6 0.3
0.4 0.2
0.2
0.2 0.1
5 1015 0 0
5 10 15 '9(,/7 10 St lenath 1le6 -500 0 500 0 5 10
/@,,0% reamleng Intra—stream jump dist. Interference dist

Stream length

Inter-stream jump dist.

Figure 3. Characteristics of secondary attributes used in LocSTREAM (given here for Q10).

As a simple approach for trace generation, we could use
the results from each of the previous exercises to gener-
ate the inter-arrival times, request start locations and request
sizes independently, and put them together to compare the
response time characteristics with that for the original trace.
We have tried this but found its accuracy to be poor (nRMS
= 0.30) - its response time CDF is not explicitly given due
to space constraints.

The reason for this disparity, even if the individual pa-

absolute inter-arrival times). We refer to Figure 4 (b) as
the size distribution conditional on inter-arrival time.

These correlations are ignored when we assume inde-

pendence between the parameters, causing si?nificant inac-
curacies, and we consequently employ the fol

to address these correlations.

Synthesis Methodology for Cat. 1

owing steps

rameters have been rather accurately modeled, is that we
have not considered the correlations between the parame-
ters:

¢ Typically one can expect correlations between inter-
arrival times and start sector, i.e. if the gai:)s are shorter,
then the start locations may also be closer. For in-
stance, inter-arrival times of requests within a run
(that touch successive locations) can be expected to be
shorter than the time gap between run start requests
and their predecessors (which are more sBatlaIIy sep-
arated). Evidence of this expectation can be found in
Figure 4 (a) where we show the inter-arrival time CDFs
for the run start requests and the requests within a run
separately (which can be fit as IID exponential distri-
butions with means 22.497 and 12.472 milliseconds re-
spectively). We refer to Figure 4 (a) as the arrival time
distribution conditional on run start and within a run
requests.

e We can expect correlations between the location and
size attributes as well, e.g. if we are within a run, the
next location is definitely a function of the size of pre-
vious request. The last two rows of the table in Fig-
ure 4 (c) shows this important correlation, wherein we

1. LOCATION: We first use LocSTREAM to generate

the start location for each request, which will also clas-

sify a request to be a starting request of a run, or a re-
guest within a run. Note that we also allow runs to be

of length 1, in which case there is only a starting re-

guest, and no request within that run.

2. TIME: We use the inter-arrival time distribution (Fig-

ure 4 (a)) conditioned by run start requests and within
a run requests to independently generate arrival times
for the two sets of requests obtained from step 1.

3. SIZE: At this step, we have the location and times syn-

thesized for the two sets of requests: run start requests
and within a run requests. We next generate the re-
guests sizes for each of these two sets as follows:

o For the run start requests, we use its inter-arrival
time (synthesized from step 2 above) to generate
a size from the conditioned size distribution for
the run start requests (Figure 4 (b)).

e For within a run requests, we simply use the den-
sity function of the size for such requests (row 3
of Figure 4 (c)) to generate their sizes.

The synthetic trace generated by this methodology has

find that the requests within a run are more biased to- peen directed to the simulator and’its response time char-

wards smaller sizes than the starting request of a run.acteristics have been compared with those for the original

We refer to these two rows as the request size distribu-trace in Figure 5. We find that the response time CDFs of

tion conditional on run start and within a run requests. th;?,\%”thg“faa% or|g|na|htra%¢e flor Q10 are qum? CfloseQ’lv\(l)lth

- - o N = 0.16. We give the final accuracy result for 'S

* Finally, we can also expect correlations for the final synthesized trace in Figure 5. Q4 and Q14's results can be

pair: time and size. In the case of requests within a run e indin 271, O It show that thi thodol k

we already observed that their inter-arrival times were .OL#I‘ in [27]. “”esﬂ S show that this methodology works

much lower, and the size was more heavily biased to- ' (NOS€ cases as weill.

wards the smaller (64 sector) sizes. When we examine

the sizes used by the run start requests and their inter .
arrival times in Fl)éure4(b),we finqd that requests with °.3. gf;e%)lré Zngngf Q5. Q6, Q7. Q8, Q12,

smaller inter-arrival times are more biased towards the
The basic_characteristics differentiating this category

smaller (64 sector) size, compared to the larger inter-
arrival times. Note that the x-axis in Figure 4 (b) rep- _]
resents 30 buckets of inter-arrival time ranges (and notfrom the earlier one is that the humber of active streams

Q10:0.16 Q12:0.06 Q20:0.10
1 1 1

0.8 0.8 0.8 d

—rsar | | 06 06 06
=+ Within-run
04 04 04

0.2 0.2 0.2

O0 50 100 150 O0 50 100 150 O0 50 100 150
Figure 5. Accuracy of the final synthetic traces
shown for a representative query from each cate-
gory (Q10 for Category 1, Q12 for Category 2, and

0 50 100 150 200 250 300 350 400

el el Q20 for Category 3). The plots for other queries

(@) can be found in [27]. x-axis is the response time,

" ‘ ‘ = and y-axis is the CDF. The solid line is the re-
E— sponse time CDF for the original trace, and the

dotted line is for the synthetic workload. NnRMS
values are given at the top of each plot.

with that for the original trace. The results for the other
10 queries can be found in [27]. We find that our generic
methodolog, adapts automatically for this category (which
is a specialization of category 1 in that there is 1 active
s stream and a lot more se%uentlallty), giving nRMS values

b) that are even less than 0.1
Size(Sectors) 64 128 | 192 | 256 | 320 | 384 | 448 | 512

Allreq. | 0.716] 0.009 0.010 0.009] 0.009] 0.011| 0.011| 0.225 5.4. Category 3: Q9, Q17, Q20

Run start_| 0577] 0.012| 0.013] 0.012| 0.013] 0.015] 0.016] 0.342
Withinrun | 0.916] 0.004| 0.004| 0.004| 0.004| 0.005| 0.005| 0.057 V\/_hen we move to Category 3 que_rie_s, we ﬁnd that these

(©) ueries are randomly (uniformly) distributed in terms of
}1 eir staTrEng locations, and therle |s(\j/erylllttle (rjug/stﬁeam b(lal—

. . . avior. The request sizes are also dominated by the smaller
Figure 4. Correlations between attributes (for Q10) 64 sector value (for example, all requests in Q20 are for 64
used in the synthesis methodology. (a) Arrival sectors), making it redundant to study any correlations be-
time distribution conditional on run-start/within- tween S'Fe/ar(‘jd other pgram%te&s. These Chara_Cte”S“Cﬁ hé%lp

e L us simplify/adapt our described trace generation method-
run requests, (b) Size distribution conditional on ology iﬂ {Ke following ways. Step 1 isgas before, except
inter-arrival time for run-start requests, (c) Size now the run/stream lengths are invariably of size 1, and the
distribution conditional on run-start/within-run re- start sectors are randomly (uniformly) distributed. In terms

Lests of Step 3, we can simply use the ECDF of sizes (which is
q . dominated by 64 sector accesses) to generate a size without

worrying about runs and other correlations. In terms of step
2, while we can assume independence between inter-arrival
]))]) times themselves, we need to however consider the correla-
is typically 1 (there are no interleaving streams), with very tion between these times and the start location - with these

ood sequentiality and the request sizes are typically muchsectors randomly distributed, seek overheads are expected
arger. For instance, the 512 sector request size constituteso be higher, and this will consequently affect the time of
99% of the requests in Q19, 90% of the requests in Q12,injection of the next request. We eXploit the correlations be-
85% of the requests in Q21, and 79% of the requests in Q3.tween jump distance (note that in this case every request is
~ We can use our trace generation methodology discusse@ an individual stream by itself, and the inter-stream Jumﬁ
in the previous section here as well. The only difference that distance defined earlier automatically captures this) and the
arises is that in some of these queries, with a lot of sequen-inter-arrival times to generate the arrival characteristics for
tiality, runs can get very long making the number of run start this (;ateqé)ry (which is similar to how we exploited the cor-
requests quite low. In fact, in Q19 and Q21, the number of relations between arrival times and runs in category 1).
run start requests is less than 3%, making it difficult to un- ~ The accuracy result for Q20 is given in Figure 5. As can
dertake the steps that involve separately dealing with runbe seen, our synthesis provides very good results, and so is
start requests and within a run requests. In such cases, whe accuracy for Q9 and Q17 whose results can be found in
can simplify the methodology even further, i.e. step 1 of the [27].
methodology remains as is, step 2 does not condition the ar-
rival time by run start/within a run (instead we have just .
one arrival time distribution), and step 3 does not specifi- 6. Concluding Remarks
cally deal with run start requests.

Figure 5 compares the response time characteristics of Synthesizing representative I/O workloads for designin

the trace synthesized by applying our methodology to Q12 and optimizing disk subsystems is an important and chal-

lenging area of research. This paper has focussed on on&References

important decision-support commercial workload, TPC-H,
towards completely characterizing and synthesizing its disk [
block-level requests. 2l

The main contributions of this work are two-fold: (i) a
synthesis methodology that captures correlations betweenls]
the primary attributes of the requests, and consequently be-
tween the secondary attributes we track as well, and (i) ap-

plication of this methodology to the TPC-H queries to char- !
acterize its behavior and synthesize the I/O request pattern
of its queries. An application of this methodology to /0 5

requests of TPC-H suggest that hyper-exponential distribu-
tions_can capture inter-arrival times At the same time, it is [e]
possible to capture the regularity/non-regularity in the se-
guential behavior of requests from several mter—mlnglmﬂ
streams, by incorporating correlations between/across thel’]
attributes of requests.

We have also examined the sensitivity of our methodol-
ogy in terms of the disk subsystem target that is used for the
validation, as well as the sensitivity to the system where the
trace is collected and the size of the dataset. Our method-
ology is fairly resilient to these factors, glVlng7]good accu-

8]

racy across the spectrum (please refer to [27] for detailed
results). [10]
| [Q1 | Q3 [Q4 [Q5 [Q6 | Q7]
Storage Fraction>(l(T3) 346 | 364 | 2.76 | 3.43 | 3.46 | 3.47 (11]
nRMS 0.10 | 0.09 | 0.20 | 0.07 | 0.01 | 0.04
| [@8 | Q9 [Q0] Q12 [Qi4 | Q15 | [22]
Storage Fraction{10-3) | 3.66 | 0.004 | 2.79 | 3.73 | 6.49 | 3.46 (13]
nRMS 0.05 | 0.15 | 0.16 | 0.06 | 0.19 | 0.01 [14]
| [Q17 [QI8 [Q19 | Q20 | Q21 | |
Storage Fraction>(l(T3) 2.03 | 354 | 344 | 457 | 2.95
NRMS 0.05| 0.06 | 0.03 | 0.10 | 0.07 (15]
Table 3. Storage costs for synthetic generator as [16]
a fraction of the space taken by the original trace
for each query. Note that the fractions need to be (17]
multipled by 103
(18]
[19]

It is important to strike a good balance between the stor-
age overheads needed for the synthetic generator (relative teeo]
the original trace) and the resulting accuracy. Table 3 quan-
tifies the size required to store the characteristics of the pri-
mary/secondary attributes and their correlations for our s]yn—[zﬂ
thetic workload in_each querg, relative to the storage for
the original trace. These numbers clearly illustrate the stor-|,,,
age benefits of our generator while providing response time
characteristics that closely mimic the original trace. This is [23]
in addition to the numerous benefits of a synthetic work-
load generator explained earlier.

We would like to point out that we have been able to o4
present only a portion of the interesting results. At the
same time, we have also shown some of the negative re-
sults along the way in order to better motivate our interme-
diate steps. Our onhgoing work is examining the use of the 23]
developed techniques in not only evaluating them for other [26]
workloads (both commercial and non-commercial) but also
in on-line workload characterization where we want to pre- ,,,
dict requests as the workload evolves for autonomic perfor-
mance tuning.

AcknowledgementsThis research has been sugported in !
part by NSF grants 9988164, 0097998, 0325056, 0130143,
an IBM Faculty award, and an IBM SUR Equipment grant.

S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribution via
the EM algorithm.Scandinavian Journal of Statistic83:419-441, 1996.

G. Box and G. JenkinsTime Series Analysis Forecasting and Conttéblden-

Day, 2nd edition, 1976.

D. DeSota. Characterization of 1/0O for TPC-C and TPC-H Workload$>rbx
ceedings of the Workshop on Computer Architecture Evaluation Using Com-
mercial WorkloadsJanuary 2001.

P. Dinda and D. O’Hallaron. An Extensible Toolkit for Resource Prediction In
Distributed Systems. Technical Report CMU-CS-99-138, School of Computer
Science, Carnegie Mellon University, July 1999.

A. Downey and D. Feitelson. The elusive goal of workload characterization.
Performance Evaluation Revie®6(4):14-29, 1999.

G. Ganger. Generating Representative Synthetic Workloads: An Unsolved
Problem. InProceedings of the Computer Measurement Group (CMG) Con-
ference pages 1263-1269, December 1995.

G. Ganger, B. Worthington, and Y. Paithe DiskSim Simulation Environment
Version 2.0 Reference Manudittp://www.ece.cmu.edu/ ganger/disksim/.

M. E. Gomez and V. Santonja. Analysis of Self-Similarity in I/O Workload
Using Structural Modeling . IfProceedings of International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems(MASCOTSMarch 1999.

M. E. Gomez and V. Santonja. A New Approach in The Modeling and Gen-
eration of Synthetic Disk Workload. IRroceedings of International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOT,2000.

W. W. Hsu, A. J. Smith, and H. J. Young. Analysis of the Characteristics of
Production Database Workloads and Comparison with the TPC Benchmarks.
IBM Systems Journa#0(3), 2001.

Y. Hu, T. Nightingale, and Q. Yang. RAPID-Cache — A Reliable and Inexpen-
sive Write Cache for High Performance Storage SystelBEE Transactions

on Parallel and Distributed Systents3(3):290-307, March 2002.

IBM DB2. http://www-3.ibm.com/software/-data/db2/.
IBM TPC-H Disclosure Report.
results/FDR/tpch/x35000GR 16procFDR.pdf.

K. Keeton, G. Alvarez, E. Riedel, and M. Uysal. Characterizing I/O-intensive
Workload Sequentiality on Modern Disk Arrays. Ryvoc. Workshop on Com-
puter Architecture Evaluation Using Commercial Worklog2i301.

K. Keeton, A. Veitch, D. Obal, and J. Wilkes. 1/0O Characterization of Com-
mercial Workloads. IProceedings of the Workshop on Computer Architecture
Evaluation Using Commercial Workload¥anuary 2000.

D. Kotz and C. S. Ellis. Practical prefetching techniques for parallel file sys-
tems. InProceedings of the First International Conference on Parallel and Dis-
tributed Information Systempages 182-189, December 1991.

Z. Kurmas, K. Keeton, and R. Becker-Szendy. Iterative Development of an 1/0
Workload Characterization. IRroceedings of the Workshop on Computer Ar-
chitecture Evaluation Using Commercial Workloadanuary 2001.

Z. Kurmas, K. Keeton, and K. Mackenzie. Synthesizing Representative 1/0
Workloads Using Iterative Distillation. http://www.cc.gatech.edu/ kurmasz/.
Linux Scalability Effort: File List. http://lse.-
sourceforge.net/project/showfiles.php?gradp8875.

T. M. Madhyastha and D. A. Reed. Input/output access pattern classification
using hidden Markov models. FRroceedings of the Workshop on Input/Output

in Parallel and Distributed Systempages 57—-67, November 1997.

J. Oly and D. Reed. Markov model prediction of /O request for scientific ap-
plication. InProceedings of the 2002 International Conference on Supercom-
puting June 2002.

C. Ruemmler and J. Wilkes. An introduction to disk drive modelinBEE
Computer 27(3):17-28, 1994.

J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis: Robust Database Stor-
age Management Based on Device-specific Performance Characteristics. In
Proceedings of the 29th International conference on Very Large Data Bases
2003.

E. Smirni and D. A. Reed. Workload characterization of input/output intensive
parallel applications. IProceedings of the Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluatimiume 1245, pages
169-180. Springer-Verlag, June 1997.

TPC-H Benchmark. http://www.tpc.org/tpch/.

N. Tran. Automatic ARIMA Time Series Modeling and Forecasting for Adap-
tive Input/Output Prefetching PhD thesis, University of lllinois at Urbana-
Champaign, 2002.

J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, and S. Na-
gar. Synthesizing Representative /0 Workloads for TPC-H. Technical Report
PSU-CSE-03-018, Department of Computer Science and Engineering, Penn-
sylvania State University, Octomber 2003.

Y. Zhang, J. Zhang, A. Sivasubramaniam, C. Liu, and H. Franke. Decision-
Support Workload Characteristics on a Clustered Database Server from the
OS Perspective. IRroceedings of the 23rd International Conference on Dis-
tributed Computing Systems (ICDC8$)ay 2003.

http://www.tpc.org/-

