
Synthesizing Representative I/O Workloads for TPC-H

Jianyong Zhang∗ Anand Sivasubramaniam∗ Hubertus Franke† Natarajan Gautam∗
Yanyong Zhang‡ Shailabh Nagar†

∗The Pennsylvania State University, University Park, PA 16802.
†IBM T. J. Watson Research Center, Yorktown Heights, NY.

‡Rutgers University, Piscataway, NJ.
Contact:anand@cse.psu.edu

Abstract

Synthesizing I/O requests that can accurately capture
workload behavior is extremely valuable for the design, im-
plementation and optimization of disk subsystems. This pa-
per presents a synthetic workload generator for TPC-H, an
important decision-support commercial workload, by com-
pletely characterizing the arrival and access patterns of
its queries. We present a novel approach for parameteriz-
ing the behavior of inter-mingling streams of sequential re-
quests, and exploit correlations between multiple attributes
of these requests, to generate disk block-level traces that
are shown to accurately mimic the behavior of a real trace
in terms of response time characteristics for each TPC-H
query.

1. Introduction

The data-centric nature of commercial applica-
tions/services and the growing disparity between pro-
cessing and I/O speeds continue to motivate the need for
designing and deploying scalable high-performance stor-
age subsystems. The performance of these storage systems
is highly dependent on the workload, and an indepth un-
derstanding of the demands imposed by the workload is
critical for system design and implementation, and sub-
sequent optimization once it is deployed. Workload char-
acterization is thus at the core of any systems design and
optimization process, and our focus here is on character-
izing the demands imposed by an important commercial
transaction processing workload (TPC-H) on the stor-
age subsystem towards generating a synthetic trace of disk
block-level requests.

The load on the disk subsystem can be envisioned as
a sequence of block-level requests that are a result of the
application-level requests filtering through the OS software
stack. There are two ways of inducing this load on a target
disk subsystem for evaluation: (i) using traces of the block
level requests that have been collected on an alternate sys-
tem, and (ii) using a synthetic workload generator that can
closely mimic the behavior of the real load. Though attrac-
tive in terms of reflecting realistic workload behavior, traces
have been widely pointed out [6, 18, 9] to have the follow-
ing drawbacks:

• Traces may not be easily obtainable since system ad-
ministrators may not want to slow down their produc-
tion environment by tracing overheads, or they may not
want to part with their traces (even if they have one) for
security and/or privacy reasons.

• Traces can become very large with the systems being
traced running for several days to get representative be-
havior. Storage space and distribution costs can make
these long traces less attractive.

• Since each trace represents the execution of one work-
load on one system, it may be difficult to get statistical
confidence in the evaluation. It is not easy to gauge if a
performance glitch is an inherent feature of the under-
lying system or whether it is because of some anoma-
lous behavior (e.g. an extraneous artifact imposed a
transient load) in the trace.

• With a trace, it becomes very difficult to change work-
load behavior (in anticipation of future workloads that
may be different from what has been traced). We may
want to change arrival rates, burstiness in the load, or
the pattern of sectors being referenced in order to stress
the system under different conditions.

• Traces do not allow isolating the influence of any one
parameter. When performance debugging/optimizing,
one needs to understand what artifact (e.g. was it the
burstiness or was it the randomness of sectors re-
quested?) of the workload caused a problem.

• When characterizing the workload, we gain a lot more
understanding about the workload that a blind use of
a trace may not provide. Correlation (i) between the
values of a particular parameter over the trace, or (ii)
between parameters themselves, is one such important
characteristic that is not readily available in a trace.
These correlations can be extremely valuable in sys-
tems design, e.g. correlations between the sequence of
sectors that is requested can give ideas for a prefetch-
ing mechanism, or correlations between arrival times
and sectors requested may suggest better disk schedul-
ing algorithms.

This indepth understanding of workload behavior
becomes extremely important for online tuning (or
self-managing/optimizing systems that is gaining a lot
of industrial interest recently due to the high costs of
managing/tuning systems). If the characterization can
provide good insights on what to expect in the near fu-
ture, the underlying system can be adapted for the ideal
performance when those workload conditions evolve.

Consequently, a lot of effort has been expended on de-
veloping synthetic workloads that can mimic the behavior
of a real application. The main concern when synthesizing
these workloads is to make them realistic and representa-
tive of the actual demands imposed on the system, while
not taking away the above fundamental advantages

TPC-H is an important decision support workload sup-
plied by the Transaction Processing Council [25] that con-
tains 22 queries which analyze relational tables to aid in de-
cision making for commercial enterprises. As is to be ex-
pected with database workloads, disk I/O is typically the
most limiting factor in the performance of these TPC-H
queries, which many prior studies [28, 23, 3] have pointed
out. Our study uses traces collected from a TPC-H power
test on a commercial IBM Netfinity 8-way SMP server with
15 disks running EE DB2 [12]. Using this trace, this paper
conducts an extensive, and to our knowledge the first com-
plete, analysis of TPC-H disk block-level requests to ac-
curately synthesize thearrival pattern (inter-arrival times)
andaccess pattern(location of the sector on disk and the re-
quest size in terms of the number of sectors) of each query
in the workload.

The main areas in which this paper contributes to the
state-of-the-art on this topic include:

• We study the suitability of different approaches to an-
alyzing the arrival and access patterns for TPC-H. We
investigate the correlations between the values of a sin-
gle parameter in the requests, as well as the correla-
tions across the parameters, and show how this can be
useful in synthesizing the arrival and access pattern for
the queries. An important contribution is a methodol-
ogy for capturing the sector reference pattern of several
inter-mixing (and possibly sequential) streams that can
model correlations between multiple arrival and access
pattern parameters, while being generic enough to cap-
ture diverse behaviors exhibited by these queries.

• The results of our analysis shows certain results that
differ from those in previous studies. Specifically, we
show that simple IID (independent and identically dis-
tributed) distributions can capture TPC-H I/O inter-
arrival times, which is in contrast to more bursty and
self-similar behavior observed in other workloads. We
also show that despite there being some sequentiality
in the disk blocks that are referenced, there is a fine
grain inter-mixing of sequential streams making it im-
perative to conduct a smarter analysis of the requests
to extract such patterns in some queries.

The rest of this paper is organized as follows. The next
section summarizes related work in the area of I/O char-
acterization, both in the scientific and production workload
area. The trace collection mechanism, the simulation target
used for validation, the metrics used to evaluate accuracy,
and the overall synthesis methodology is outlined in sec-
tion 3. Section 4 examines inter-arrival time characteristics.
Subsequently, in section 5 we examine access pattern char-
acteristics and use correlations between parameters to syn-
thesize the requests for the queries. Finally, section 6 sum-
marizes the contributions and outlines directions for future
work.

2. Related Work

Workload characterization has long been recognized as
a critical requirement for systems design with several prior
investigations into synthesizing workloads for specific sys-
tem artifacts. Our focus here is on the disk system, and the

reader is referred to [6, 18, 9] for the motivation behind syn-
thesizing representative I/O workloads, and why this is a
non-trivial problem.

Several prior studies [16, 20, 21, 24, 26] have analyzed
the I/O behavior of parallel scientific applications, for tun-
ing - either offline or online - parallel file systems. When
we move to non-scientific workloads, the impact of spatial
reference pattern (particularly sequentiality) has been stud-
ied in [17, 14] for an email server. Ruemmler and Wilkes
[22] observed burstiness in I/O requests in two actual en-
vironments - a time-shared system and a file server. Gomez
and Santonja [8] confirmed the self-similarity in I/O arrivals
for these traces suggesting reasons for such behavior. Fur-
ther, [6] goes on to suggest that I/O arrivals may not match
a Poisson process and may not be independent or exponen-
tially distributed.

In the context of database/decision-support workloads, a
more general investigation of the I/O throughput for TPC-H
and TPC-C queries has been conducted in [3] on the IBM
NUMA-Q system. But this does not give much insight on
the temporal or spatial I/O properties of the queries, except
reiterating that reads are dominant in the execution. TPC-
D, a pre-cursor to TPC-H, has been analyzed in [15], at a
higher level to examine request sizes and arrival phases. A
very detailed evaluation of 10 production workloads, in ad-
dition to TPC-C and TPC-D, has been undertaken in [10]
but the focus has been mainly on buffer management is-
sues (caching, prefetching and write buffering). At the same
time, the authors in [10] acknowledge that the TPC work-
loads are representative of the load on production environ-
ments, thereby underlining the importance of understanding
(and synthesizing) their behavior.

Most previous studies for TPC-H have studied an iso-
lated artifact at a time (possibly for a specific system op-
timization). The recent work by Kurmas et al. [18] is the
only other study, to our knowledge, that has attempted to
characterize several attributes of this workload at a time.
Their goal, however, is to automate the process of generat-
ing synthetic workloads, and the TPC-H trace that they use
as one of the examples is much more simple (with exten-
sive sequentiality in the sectors referenced that the resulting
model is much simpler) than the more irregular behavior
that we observe for some of the queries in our system. Fur-
ther, the methodology that we propose for addressing this
behavior can capture different kinds of sequential interleav-
ing, and can automatically degenerate to a model for strict
sequentiality with appropriate parameter values.

3. Synthesis Methodology and Experimental
Setup

Trace Collection: The TPC-H trace on which we con-
duct the analysis has been collected on an IBM Netfinity
SMP server with eight 700 MHZ Pentium III processors,
2.5GB memory and fifteen disks. Of these fifteen, three are
system disks, with the other twelve used to hold TPC-H
data. The data disks are 36GB 7200RPM SCSI disks, and
are connected to two SCSI controllers.

The database engine used for the study is IBM’s DB2
UDB EE Version 7.2 [12] running on Linux 2.4.17. Typ-
ically, several kernel patches are needed beyond the
vanilla Linux kernel to obtain good TPC-H performance.
We used several patches includinglse04-rc1 (devel-
oped at IBM [19]), that integrates several patches such
as the highmem patch, the kio pagesize patch, the
smptimers patch, light-weightkiobuf and a patch to re-
move the big I/O request lock. In addition, we also devel-
oped our patch to collect the I/O trace at the SCSI driver
level. Each trace record consists of a timestamp (at mi-

crosecond granularity), the major and minor device num-
bers, the type of operation (read/write), the starting-sector
and number of sectors requested, and the pid of the pro-
cess issuing the request. We have compared the re-
sponse times for each query with and without our patch,
and found that there are negligible differences to ver-
ify that our patch has little interference on the workload.
The resulting I/O trace consists of 18 million I/O refer-
ences over all queries.

TPC-H Configuration: We use the TPC-H power test
that measures the throughput/response times of a sequence
of 22 queries as recommended by the Transaction Process-
ing Performance Council (TPPC). A smaller version (30
GB) of the TPC-H implementation whose results for a 100
GB dataset were submitted by IBM [13] in February 2002
to TPPC is used in this exercise. All data disks are config-
ured to use raw I/O.

The decision-support workload queries of TPC-H re-
quire the disks to hold 8 tables, and the names of these tables
together with their populations (in brackets) are: Lineitem
(6,000,000), Orders (1,500,000), Part (200,000), Partsupp
(800,000), Customer (150,000), Supplier (10,000), Nation
(25) and Region (5). The disk partitioning is based on these
tables with each disk being partitioned into 7 logical parti-
tions. With Lineitem and Orders being much larger than the
other tables, we use 1 partition each (four in all) to hold the
table Lineitem, the index of Lineitem, the table Orders, and
the index of Orders. The other tables are grouped in two par-
titions, one for data, one for index. The last partition holds
the Temp table, that the database engine uses for intermedi-
aries.

In our trace, we found that the number of I/O requests
for queries Q2, Q11, Q16 and Q22 is not very significant
(typically less than 3000 requests to a disk). Even though
we have conducted our analysis on these queries as well
(and found our synthesis to match the response time char-
acteristics of the original trace), the statistical confidence of
our synthesis is not very high because of the fewer sam-
ples. Further, the accesses in Q13 are mainly to the Temp
table. Hence,we primarily examine the other 17 queries.

Synthesis Methodology/Outline:We take the trace and
conduct extensive analyses to completely characterize the
(i) arrival pattern (inter-arrival times), and the (ii) access
pattern (the other attributes of each request including the
start sector/location, requestsize in terms of the number
of sectors, and the requesttypeas to whether it is a read
or write). We first examine the arrival times in isolation and
show that they can be assumed to be IID, and independently
validate this assumption (by picking the other parameters
from the original trace). We then examine the location pa-
rameter and show that queries fall into 3 categories based
on the regularity/sequentiality in this parameter. We pro-
pose a new model of capturing these 3 location characteris-
tics in a unifying way, and validate its accuracy in isolation
(by taking the other parameters from the trace). Armed with
all these intermediate results, we finally present a unified
methodology that exploits correlations between attributes to
generate a synthetic trace for each category. When validat-
ing the accuracy of a synthetically generated trace, we are
specifically interested in matching its response time (for a
request) characteristics with those of the original trace, by
using them both to drive a disk subsystem simulator.

Simulator configuration: The simulator that we use for
empirical validation of synthesis accuracy is DiskSim [7],
that incorporates detailed models of the disk drives, con-
trollers, caches and I/O channels. The parameters for the
disks that are modeled (resembling Quantum Atlas disks)
are given in Table 1 and we use two controllers that are
based on the NCR 53C700. Please note that the parameters
for this simulator itself are not very important since we are

more interested in how close is the performance of the syn-
thetic workload with that for the original trace, rather than
the absolute performance issues. Still, in one set of exper-
iments we also vary some of these hardware parameters to
show that our synthetic workloads still produce similar per-
formance characteristics as the real trace.

Capacity 22.4GB
Rotation Speed 7200 RPM
Data Surfaces 15

Cylinders 10042
512-Byte Sectors 44920468

Zones 24
Sectors/Track 229-334

Interface Ultra-2 SCSI
4M Cache, 20 Segments, and 1 write segment

Track Sparing/Reallocation
Elevator Algorithm

Table 1. Disk Parameters in the Simulator

Metrics: In addition to using different statistical error
measures that can be associated with each of the models that
are used when generating the synthetic workload from the
trace, we also quantify the differences in the actual perfor-
mance (response time of each request) characteristics be-
tween that for the synthetic model and the real trace on
the simulated disk subsystem. Response time characteris-
tics for the queries are very important from the user’s per-
spective, and have been extensively used in related studies
[6, 9, 22, 18] to evaluate the accuracy of synthetic work-
load generation. We use similar metrics in this study.

We track the response time for each I/O request (from
the original and from the synthetic trace). We plot a cumu-
lative density function (CDF) of these response times for the
original and synthetic trace, and we can use the Root-Mean-
Square (RMS) error of the horizontal distance between
these two CDF curves [22], or the normalized Root-Mean-
Square (nRMS) error which isnRMS= RMS/m, wherem
is the average response time for the original trace. We are
specifically targeting a synthetic workload trace that has an
nRMS of around 0.20 or lower.

4. Synthesizing Arrival Characteristics

We begin by examining the synthesis methodology for
arrival (inter-arrival time) characteristics of requests in the
trace to all 12 disks (one can easily generate per disk ar-
rivals from these results). In the following discussion, we
first investigate the modeling issues (and errors) using sta-
tistical techniques that paints a fairly good picture about
the accuracy of our models. Subsequently, we actually in-
ject the workload generated by this model into the simula-
tor and validate its accuracy further by comparing response
time characteristics with those for the real trace.

Studying Correlations: Before deciding on a model-
ing strategy, it is first necessary to understand the correla-
tions of the inter-arrival times using auto-correlation func-
tions (ACF), since that can give a good indication of how
to proceed. If there is very little correlation, then it may not
be a bad choice to assume that inter-arrival times are in-
dependent identically distributed (IID), and proceed along
the lines of fitting statistical distributions. On the other
hand, if there are strong correlations, either near-term (with
successive/close-by inter-arrival times) or longer-term cor-
relations, then time-series or self-similar models may be
needed. When we plotted the auto-correlation functions of
the inter-arrival times, we found that there were not strong
correlations between inter-arrival times, thereby suggesting

the possibility of IID assumption (the reader is referred to
[27] for a detailed analysis).

Time-series Models:We next used the RPS toolkit [4] to
fit different time-series models - auto regressive (AR), mov-
ing average (MA), ARMA, ARIMA - together with a frac-
tionally integrated ARIMA model (ARFIMA) which is use-
ful for modeling long-range dependence and self-similarity,
a last value model (LAST), a windowed average model
(BM), and a long-term average model (MEAN)- for the
inter-arrival times. The reader is referred to [2] for an in-
depth treatment of these models.

The results of this analysis reveal that the ARMA,
ARIMA and ARFIMA models are quite inaccurate in mod-
eling the inter-arrival times, ruling out the possibility of
self-similar/long-range dependence models. While the
other models are doing better than these, giving absolute er-
rors that lower, the errors are still intolerable - in most
cases they are comparable or even larger than the mean
inter-arrival time. It is only in Q1, Q6 and Q15 do we find
their errors tolerable. These results re-confirm our hypoth-
esis from the previous correlation study that time-series or
self-similar models may not be very suitable for generat-
ing the inter-arrival times for TPC-H queries (unlike their
suitability to other workloads that was pointed out by oth-
ers in [8] and [26]).

IID Distributions: The above observations from the pre-
vious results suggest the possibility of arrivals being inde-
pendent and identically distributed. With these suggestive
hints, we next attempt fitting different distributions for each
query as follows:

• The first step is to identify the distribution family to
use upon which the parameters of the distribution can
be estimated. We mainly consideredhyper-exponential
(that can capture high variance behavior),normal(that
can model lower variance), andpareto(that can model
bursty/heavy-tailed behavior) distributions, though this
is by no means a comprehensive list of all that we tried.
Typically we tried all of them for each query, though
in some cases we had some suggestive hints from pre-
vious results. For instance, in queries Q1, Q6 and Q15,
the smaller errors for the time-series models suggest a
distribution with smaller variance (achievable with an
appropriate variance value for a normal distribution).

• The next step is to estimate the parameters for the
model (e.g. mean and variance for a normal distribu-
tion, etc.). We used the Maximum Likelihood Estima-
tion (MLE) [5] for fitting a distribution to a set of data-
points The idea behind this method is to derive the pa-
rameter values of the distribution that would produce
the highest probability of sampling the given set of val-
ues. We use MLE to estimate the distribution parame-
ters for this exercise. While the parameters are straight-
forward to obtain for the normal and pareto distribu-
tions, the hyper-exponential distribution requires more
work since it is a mixed distribution. In this case, we
use the Expectation Maximization (EM) method which
is an iterative implementation of maximum-likelihood
estimation. We used an implementation of the EM-
algorithm [1] that can be used for fitting phase-type
distributions.

• Finally, after finding the parameters for the distribu-
tions, we need to study how well they fit the original
dataset. Since we are dealing with continuous time se-
ries data here, we use the Kolmogorov-Smirnov (K-S)
test to evaluate the Goodness-of-Fit. For each distribu-
tion, we calculate the maximum distances between the
CDF of the fitted distribution and the sample’s empiri-
cal distribution with the K-S test, and then choose the

fitted distribution that has the minimal distance. We en-
sured that this distance is less than 0.1 for all queries.

The reader is referred to [27] for the detailed results com-
paring the inter-arrival times of the original trace and that
generated by our synthesis for each of the queries. Overall
we found that the pareto distribution was not really doing
well across the queries, that is perhaps another confirma-
tion of the absence of burstiness and self-similarity in the
requests mentioned earlier. As expected, in the queries with
low variance (Q1, Q6 and Q15), the normal distribution
gives the closest fit. Of the rest, the exponential distribu-
tion suffices in Q5. While exponential does a fairly good job
in Q8, Q17 and Q20 as well, the 2-phase hyper-exponential
gives a better Goodness-of-fit for these. The 2-phase hyper-
exponential does a good job in the case of queries Q3,
Q4, Q7, Q9, Q10, Q14, and Q18, while a 3-phase ver-
sion is needed for Q12 and Q21. We also conducted an ex-
periement wherein we substituted the inter-arrival times of
the original trace with those from our synthesis, and com-
pared the response time characteristics (CDF) with those of
the original trace. The response times closely match [27],
again reiterating the validity of such synthesis (suggesting
there is some merit behind the IID assumption).

5. Synthesizing Access Characteristics and
Trace Generation

We now move on to synthesizing the attributes of each
access and generating the complete synthetic trace. These
attributes include the (i)type of the operation (whether a
Read or a Write), (ii) starting sector (which we will refer to
as locationhenceforth), and the (iii)sizeof the request (in
number of bytes or sectors to read or write from the start-
ing sector). We refer to these, in addition to the arrival time,
as theprimary attributes, since these are directly the at-
tributes of each trace record. At the same time, there could
be secondary attributesthat we can derive from these pri-
mary attributes, which may make it easier to synthesize the
workload, and from these be able to generate the primary
attributes themselves. For instance, sequentiality in the sec-
tors that are accessed is a secondary attribute that can be
gleaned by analyzing the trace, and may be easier to ab-
stract/synthesize. Once we have a reasonable estimate of
sequentiality (for instance, 30% of the requests are sequen-
tial), then one may be able to use such information in gen-
erating values for the starting sector (the primary attribute)
that adheres to such sequentiality (the secondary attribute).
The results from the previous section on the arrival pattern,
and the characteristics of the access patterns to be discussed
shortly, jointly provide the information that we need to gen-
erate the synthetic trace for each query.

We specifically focus the results from our study for a
single disk (note that a request does not span multiple disks
since there is no hardware RAID and DB2 is explicitly man-
aging a set of individual disks). Further, DB2 spreads the
load rather evenly across the disks, and we have found that
the results are very similar across the disks. We also con-
centrate the experimental results on those for the lineitem
partitions whose I/O accesses dominate over the rest of the
operations.

TPC-H being a decision-support (OLAP) workload, is
inherently read-dominated, with there being very few writes
(primarily to the ”Temp” partition), making write perfor-
mance not that critical unlike other workloads [11]. Conse-
quently, we fix the type (primary) attribute to ”Read” in this
exercise, and this simplification does not affect the accuracy
of the results to be provided. The following discussions de-

tail our synthesis approach for the other two (primary) ac-
cess pattern attributes - location and size.

5.1. Methodology for Location and Size Synthesis

Unlike the arrival characteristics, we encountered several
more complications/difficulties when attempting to synthe-
size location and size information. We tried different ap-
proaches including distribution-fitting, correlation analysis,
or even simple high level characterization such as sequen-
tiality specification, etc. In the end, we found that a com-
bination of (a) high-level categorization of the queries, (b)
further identification and characterization of secondary at-
tributes from the original trace, and (c) exploiting correla-
tion information across attributes, was needed to get a fairly
accurate synthesis. Before presenting the details of the syn-
thesis, we briefly give a high-level overview of these issues
to understand why each is important.

Categorization of Queries:I/O access patterns have of-
ten been abstracted at the high-level for easier understand-
ing in terms of sequentiality or randomness in how the loca-
tions (starting sectors) are accessed. Such information can
be very useful for devising prefetching mechanisms, buffer
management algorithms, and other optimizations. When we
examine the location attribute of TPC-H queries, we can
broadly put them in 3 categories. Figure 1 shows represen-
tative examples from these 3 categories, by plotting the lo-
cation (on the y-axis) for each access record in the trace in
increasing time order (on the x-axis). We find that queries
seem to be either very well-behaved adhering rigidly to se-
quential behavior (referred to as Category 2), or falling to
the other extreme of having a very random access pattern
(referred to as Category 3), or exhibiting some amount of
regularity/sequentiality though not as rigidly (referred to as
Category 1). Examining these graphs for the 17 queries, we
find Q4, Q10 and Q14 falling in category 1, Q1, Q3, Q5,
Q6, Q7, Q8, Q12, Q15, Q18, Q19, and Q21 falling in cat-
egory 2, and Q9, Q17 and Q20 falling in category 3. Such
a categorization helps us develop a different synthesis strat-
egy for each (e.g. a sequentiality biased synthesis for cat-
egory 2 versus a more random set of requests for category
3).

Q10

Arrival time

Lo
ca

tio
n

Q12

Arrival time

Lo
ca

tio
n

Q20

Arrival time

Lo
ca

tio
n

Figure 1. Access Pattern characteristics of the
three categories (e.g. Q10 for Category 1, Q12 for
Category 2, and Q20 for Category 3). The plots
show the locations referenced by the sequence of
requests for each query.

Secondary Attributes: As mentioned earlier in this sec-
tion, identification of certain secondary attributes, which
may be easier to synthesize since they can better capture
the vagaries in the trace, can facilitate the generation of the
primary attributes subsequently. For instance, despite the
visual appearance of regularity/sequentiality in Figures 1,
there are more subtle variations when one examines these
characteristics at a much finer granularity. In other words,
at a finer resolution, the requests may not be that sequen-

tial due to several reasons, one of them being that the
database engine multiplexes several activities/threads that
are concurrently accessing different I/O regions. For in-
stance, while one thread of a query is scanning a table,
another thread could be performing joins, or the database
prefetcher could be bringing in blocks ahead of their need.
Still, there could be sequentiality within an activity/thread
before another activity takes over, and their inter-mingling
can make location synthesis a lot harder. One can visually
discern this behavior for Q10 in Figure 1, though it also hap-
pens at a finer granularity (and to a lesser extent) for queries
in the second category. While there has been some brief
mention ([10, 14]) of understanding such inter-mingling se-
quentiality, there is no previous study that has formally at-
tempted to define this inter-mingling sequentiality, charac-
terizing it for TPC-H, and using those results to generate
a synthetic trace. To capture this inter-mixing sequentiality,
we introduce two concepts - arun and astream.

A run is a strictly sequential set of I/O requests until this
sequentiality is broken by another request. More formally,
a run can be defined as a sequence of I/O requests (si , li),
with si and li denoting the start sector and number of sec-
tors requested by thei-th request, where the next request in
the sequence starts accessing from where the previous left
off (i.e. si+1 = si + li). For example, if we look at Table 2,
which shows a sequence of requests from the trace for Q10,
requests #12, #13, and #14 are part of a run, before that run
is broken by request #15 which accesses a location (sec-
tor 108909) that is not adjacent to where #14 left off (i.e.
sector 110253). The column denoted as RunID in this ta-
ble, shows the start of the run and where each run ends -
many of the runs in this case are just 1 request long, ex-
cept for runs 8, 11 and 12. We denote the first request of a
run as therun start request, the remaining requests of the
run aswithin a run requests, and define the following at-
tributes to characterize a run:

• Run length: The number of I/O requests in a run before
it is broken by a non-sequential request.

• Run Start Location: This is the location (sector) ac-
cessed by the first request in a run.

ReqID Location Size RunID StreamID Stream Jump Dist.Interf. Active
inter intra Dist. Streams

#1 102893 64 1 1 1
#2 123757 512 2 2 20800 1
#3 102957 64 3 1 0 1 1
#4 68653 64 4 3 -34368 2
#5 68781 64 5 3 64 0 2
#6 109933 64 6 4 41088 3
#7 68845 64 7 3 0 1 3
#8 103021 64 8 1 0 4 3
#9 103085 192 8 1 0 0 3
#10 109997 64 9 4 0 3 2
#11 68909 64 10 3 0 3 2
#12 110061 64 11 4 0 1 1
#13 110125 64 11 4 0 0 1
#14 110189 64 11 4 0 0 1
#15 108909 512 12 5 -1344 1
#16 109421 512 12 5 0 0 1

Table 2. A window of requests from Q10

While one may just proceed with the notion of a run, we
want to point out that there are correlations between the run
start locations, i.e. when a thread is interrupted/pre-empted
from its sequential run by another, it is likely to get back
to where it left off (or at least close to it) when it is sched-
uled again. If we ignore this artifact (i.e. assume run start lo-
cations are independent), then we may not be very accurate

in our synthesis. Consequently we introduce the notion of
a stream wherein we try to check for sequentiality not just
with the immediately previous requests, but go back fur-
ther in the past. At the same time, we do not want to be
too rigid on the sequentiality issue, i.e. we may want re-
quests that are off by a few sectors to still belong to the
same stream. Such a relaxation can (i) allow better stream
formation/characterization (we do not want to end up creat-
ing as many streams as runs), and (ii) allow some vagaries
in workload execution (e.g. an activity may be skipping al-
ternate sectors but these still need to be in the same stream
since they are correlated). More formally, when examining
the trace we classify requestreqi that readssi sectors start-
ing from sectorli to belong to the same stream as some other
requestreqj (readingsj sectors starting from sectorl j) that
has already been encountered in the trace (i.e.j < i), as long
as

l j −dbackward≤ li ≤ l j +sj +df orward

At the same time, we want to restrict how much backwards
(j) in the trace that we need to go, in order to keep the prob-
lem tractable and meaningful. After extensive studies, we
found that using a history of 32 requests (i.e.i − j ≤ 32),
and settingdf orward = 256 sectors, anddbackward= 512 sec-
tors, served our purpose quite well across the queries.

When we examine the example trace in Table 2, we find
that request #3, starts accessing sector 102957 which is im-
mediately after the last sector read by request #1, putting
them in the same stream (note that they were not part of
the same run). Similarly requests #8 and #9 became part
of the same stream (denoted as StreamID 1). In essence, re-
quests that are within a run, become part of the same stream,
though a stream can capture requests that are not strictly se-
quential either in terms of their adjacency in the trace (they
can be upto 32 positions apart) or in terms of the sectors that
they access (they can be apart bydbackwardanddf orward).

As with the run, we denote the first request of a new
stream as theStream Start Request. We try to capture the
following attributes for a stream:

• Stream Length: This is the number of requests in a
stream. For example, if we look at StreamID 1 in Ta-
ble 2, its length is 4 (requests #1, #3, #8, and #9). Note
that this should be at least as large as the Run Length
defined earlier, since every run is part of a stream.

• Inter-stream Jump Distance:This is the spatial sepa-
ration in sectors between the sector read by the cur-
rent stream start request and where the previous re-
quest (has to be of another stream or else this will not
be the stream start request!) left off. For instance, in
Table 2 request #6 is the start of stream 4 that reads
from sector 109933, while its immediate predecessor
(request #5) reads until sector 68845 (68781+64) mak-
ing the inter-stream jump distance 109933 - 68845 =
41088, for stream 4. Intuitively, if we have two inter-
leaving streams, this jump distance captures how much
the disk head will have to move after serving a run of
one stream before moving to another stream. Note that
we need to calculate this only at the start of a particular
stream (requests #2, #4, #6, #15). From the synthetic
workload viewpoint, if we could use this information
to generate the first request of a stream, then we could
use the intra-stream characteristics (described next) to
generate the requests within a stream.

• Intra-stream Jump Distance:This attribute captures
the relation between successive references within a
stream. Formally, for a requesti this is calculated as
li−(l j +sj) whereli andsi are the start sector and num-
ber of sectors accessed for a requesti in a stream and

l j andsj are the start sector and number of sectors ac-
cessed for the immediately previous requestj in the
same stream. In Table 2, only request #5 (the 2nd re-
quest of stream 3) has a non-zero intra-stream jump
distance. As is apparent, this attribute captures the se-
quentiality in the requests within a stream.

• Number of Active Streams:It is possible that over the
duration of a query there may be numerous streams.
However, it is more important to understand how many
streams are active (i.e. their start requests have oc-
curred but their last request has not yet arrived) at any
given time. We call this the number of active streams at
an instant, and this is given in the column denoted by
Active Streams in Table 2 assuming that these 16 re-
quests constitute the entire trace.

• Interference Distance:The previous stream attributes
can help us generate the number of streams, the length
of a stream and the requests within a stream. It is also
important to understand how these streams interleave,
and we capture that using the interference distance.
This is formally defined as the number of requests be-
tween two successive requestsj andi in a stream and
is given byi− j −1. The interference distance column
in Table 2 gives these values for the example sequence.
For instance, the two successive requests (#1 and #3)
of stream 1 are separated by a request from another
stream. Note that this parameter will be 0 for within a
run requests.

The above run and stream attributes will help us better
synthesize the spatial reference behavior of the queries. In
fact, they are general enough to encompass a diverse range
of workload behavior. For instance, we can get an intuitive
understanding of their ability to capture the three categories
of queries shown earlier in Figure 1 by examining the num-
ber of active streams in these queries. For the queries in
Category 1, where there is very good sequentiality and little
interleaving, the average number of active streams is very
close to 1, with the stream and run lengths being relatively
large. At the other extreme, with the queries in Category 3,
streams are extremely short/rare, putting the average num-
ber of active streams close to 0. For the queries in category
2, we find the number of active streams is higher (between
1.5 and 3 in the trace data), with stream/run lengths in be-
tween these two extremes. These results also re-confirm our
earlier categorization of the queries, and give evidence of
possible utility of these attributes in the synthetic workload
generation.

Note that as far as characterizing these secondary at-
tributes from the trace is concerned, one could simply use a
mean value of the observations from the trace, or we can re-
sort to empirical distributions (or even curve fitting for the
empirical distributions) to preserve more information about
the original trace. There are trade-offs between accuracy
and storage overheads (which we want to keep low since
this is one reason why a synthetic workload may be prefer-
able in the first place), that we always keep in mind. In our
synthesis we ensure that the storage overhead is fairly small
(we also quantify this towards the end of the paper), while
still being fairly accurate in the synthesis.

Inter-attribute Correlations: We found that it is not
only important to understand and exploit the correlations
of values of an attribute across the requests (as we did in the
run/stream concepts for location), but also the correlations
across the attributes themselves. For instance, the starting
sector (location) of a request can be highly correlated with
the size+location of where the previous request (of that run)
left off. Further, accesses with smaller sizes tend to come
temporally closer to each other than those for larger sizes

(because it may take a lot more time to process that data be-
fore the next I/O requests).

We next go over the details for applying these methods
and synthesize the queries in each category. We begin with
category 1 which poses more challenges (this is not as reg-
ular as category 2, and not as random as category 3) to ex-
plain the overall process, which then become largely appli-
cable to the other two categories.

5.2. Category 1: Q4, Q10, Q14

We will use Q10 as a representative example (in the in-
terest of space) of Category 1 to walk over the intermediate
steps of the analysis, though the final results of the synthe-
sis are given for all queries.

Synthesizing Location:As in section 4 where we fo-
cussed only on the arrival time and used the other parame-
ters from the trace, we start this exercise as well by attempt-
ing to synthesize one primary access parameter - location
(starting sector) - and take the values for the other primary
parameters directly from the trace.

We begin with a very simple model, calledLocIID,
where the starting sectors are assumed to be independent
of each other and can be drawn from the same probabil-
ity density function (which worked in the case of arrival
times). Instead of trying to fit a curve (specific distribution)
for this density function, we instead use an Empirical CDF,
i.e. the CDF is obtained by simply histogramming the num-
ber of occurrences of each starting sector in the trace. Note
that this ECDF may incur a high storage cost with the num-
ber of sectors becoming quite large. Our point here is to
merely note that even a very accurate function for the prob-
ability density will not produce good results because the
locations are not ”independent”. Figure 2 clearly clarifies
this point, where the response time characteristics using the
LocIID model is quite significantly different (nRMS=1.41)
from that for the original trace on the simulator.

Our next improvement, called LocRUN, tries to cap-
ture correlations of locations between nearby requests us-
ing the concept of a run described in the previous section.
In LocRUN, we calculate the run length distribution and the
run start location distribution (this is obtained as an ECDF)
for the original trace. As in LocIID, the ECDF for the run
start location can again get exceedingly large, and we will
show that despite such an accurate density function, just a
run-based approach does not suffice in this case. To gener-
ate the trace, we randomly pick a run start location from the
ECDF, and we randomly pick a run length using its distri-
bution. Since the request sizes (and arrival times) are com-
ing from the original trace, we can use these sizes to gen-
erate the start sector for the next request within a run (has
to be spatially contiguous from the previous one). We illus-
trate the response time characteristics for LocRUN as well
in Figure 2, wherein it shows better behavior than LocIID,
but is still quite unacceptable (nRMS = 0.83).

Even if we use ECDF of run start sectors in LocRUN,
we are assuming its independence when we start each run,
which may not really be the case. This is where the concept
of a stream comes in useful, i.e. if a stream got interrupted
in its run by another stream, then it will probably start its
next run close to where it left off previously. A brief sum-
mary of the steps in our next stream-based location genera-
tion model,LocSTREAM , is given below:

1. We use the stream length distribution obtained from
histogramming the original trace, and we generate a
length probabilistically from this distribution. A picto-
rial depiction of the stream length distribution for Q10
is given in Figure 3 (a).

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response time (ms)

F
ra

ct
io

n
of

 r
eq

ue
st

s

Original
LocIID: 1.41
LocRUN: 0.83
LocSTREAM: 0.08

Figure 2. Location model validation for Q10.

2. We obtain a conditional distribution of the run length
for each stream length (shown in Figure 3 (b)). From
this distribution we generate run lengths for the stream
length picked in step 1 - note that we need to pick sev-
eral run lengths till the sum total of these lengths gets
to the stream length.

3. Having identified the number of runs and their lengths
for each stream, we need to next generate the start lo-
cation for each of these runs. This in turn takes 2 steps:
(a) We use the inter-stream jump distance distribution
(given in Figure 3 (c)) to find the start location of the
first run for that stream, and (b) We use the intra-stream
jump distance distribution (given in Figure 3 (d)) to
find the start location for each run in this stream. Note
that since we are getting the size of each request from
the original trace, we can use this and the strict sequen-
tiality property within each run to determine the lo-
cation parameter for each successive request in a run
once the run start location is determined.

4. The final step is to take the different runs/requests
generated until now and intermix them to get a sin-
gle trace. We use the interference distance distribution
(given in Figure 3 (e)) for this purpose, i.e. if we pick
a numberx using this distribution, we need to placex
other requests between successive runs of this stream.
It is possible when making these assignments to get a
linear ordering of requests, we can have conflicts (i.e.
two requests may want to occupy the same slot in the
synthetic trace). In such cases, we simply use the next
(closest) empty slot for one of them.

In Figure 2, when we observe the response time char-
acteristics of a synthetically generated trace where we use
LocSTREAM for starting sector determination, and use
the inter-arrival times and sizes from the original trace,
we are very close to the performance of the original trace
(nRMS=0.08), giving us good confidence in the stream+run
based modeling strategy for spatial access pattern.

Synthesizing the Complete Trace:While one could use
a similar investigation to synthesize and validate request
sizes (in sectors), which is the final access pattern attribute,
we do not explicitly go in that direction in the interest of
space. Further, we find that even if we are synthesizing one
parameter independently, it is more important to understand
inter-parameter correlations in the final trace synthesis and
we directly proceed to that issue. There are not too many
distinct request sizes, which is typically an artifact of the
database engine, and Figure 4 (c) shows the probability of
occurrence of 8 different sizes, in sectors, for Q10. We con-
sequently use this empirical CDF of request sizes, which is
reasonably small.

5 10 15
0

0.2

0.4

Stream length

(a)

5 1015
1 5 10

0

0.5

1

(b)

Stream length
Run length

0 1e6
0

0.2

0.4

Inter−stream jump dist.

−500 0 500
0

0.2

0.4

0.6

Intra−stream jump dist.

(d)

0 5 10
0

0.1

0.2

0.3

Interference dist

(e)(c)

Figure 3. Characteristics of secondary attributes used in LocSTREAM (given here for Q10).

As a simple approach for trace generation, we could use
the results from each of the previous exercises to gener-
ate the inter-arrival times, request start locations and request
sizes independently, and put them together to compare the
response time characteristics with that for the original trace.
We have tried this but found its accuracy to be poor (nRMS
= 0.30) - its response time CDF is not explicitly given due
to space constraints.

The reason for this disparity, even if the individual pa-
rameters have been rather accurately modeled, is that we
have not considered the correlations between the parame-
ters:

• Typically one can expect correlations between inter-
arrival times and start sector, i.e. if the gaps are shorter,
then the start locations may also be closer. For in-
stance, inter-arrival times of requests within a run
(that touch successive locations) can be expected to be
shorter than the time gap between run start requests
and their predecessors (which are more spatially sep-
arated). Evidence of this expectation can be found in
Figure 4 (a) where we show the inter-arrival time CDFs
for the run start requests and the requests within a run
separately (which can be fit as IID exponential distri-
butions with means 22.497 and 12.472 milliseconds re-
spectively). We refer to Figure 4 (a) as the arrival time
distribution conditional on run start and within a run
requests.

• We can expect correlations between the location and
size attributes as well, e.g. if we are within a run, the
next location is definitely a function of the size of pre-
vious request. The last two rows of the table in Fig-
ure 4 (c) shows this important correlation, wherein we
find that the requests within a run are more biased to-
wards smaller sizes than the starting request of a run.
We refer to these two rows as the request size distribu-
tion conditional on run start and within a run requests.

• Finally, we can also expect correlations for the final
pair: time and size. In the case of requests within a run
we already observed that their inter-arrival times were
much lower, and the size was more heavily biased to-
wards the smaller (64 sector) sizes. When we examine
the sizes used by the run start requests and their inter-
arrival times in Figure 4 (b), we find that requests with
smaller inter-arrival times are more biased towards the
smaller (64 sector) size, compared to the larger inter-
arrival times. Note that the x-axis in Figure 4 (b) rep-
resents 30 buckets of inter-arrival time ranges (and not

absolute inter-arrival times). We refer to Figure 4 (b) as
the size distribution conditional on inter-arrival time.

These correlations are ignored when we assume inde-
pendence between the parameters, causing significant inac-
curacies, and we consequently employ the following steps
to address these correlations.
Synthesis Methodology for Cat. 1

1. LOCATION: We first use LocSTREAM to generate
the start location for each request, which will also clas-
sify a request to be a starting request of a run, or a re-
quest within a run. Note that we also allow runs to be
of length 1, in which case there is only a starting re-
quest, and no request within that run.

2. TIME: We use the inter-arrival time distribution (Fig-
ure 4 (a)) conditioned by run start requests and within
a run requests to independently generate arrival times
for the two sets of requests obtained from step 1.

3. SIZE: At this step, we have the location and times syn-
thesized for the two sets of requests: run start requests
and within a run requests. We next generate the re-
quests sizes for each of these two sets as follows:

• For the run start requests, we use its inter-arrival
time (synthesized from step 2 above) to generate
a size from the conditioned size distribution for
the run start requests (Figure 4 (b)).

• For within a run requests, we simply use the den-
sity function of the size for such requests (row 3
of Figure 4 (c)) to generate their sizes.

The synthetic trace generated by this methodology has
been directed to the simulator and its response time char-
acteristics have been compared with those for the original
trace in Figure 5. We find that the response time CDFs of
the synthetic and original trace for Q10 are quite close, with
nRMS = 0.16. We give the final accuracy result for Q10’s
synthesized trace in Figure 5. Q4 and Q14’s results can be
found in [27]. Our results show that this methodology works
in those cases as well.

5.3. Category 2: Q1, Q3, Q5, Q6, Q7, Q8, Q12,
Q15, Q18, Q19, Q21

The basic characteristics differentiating this category
from the earlier one is that the number of active streams

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter−arrival time(ms)

F
ra

ct
io

n
of

 r
eq

ue
st

s

Run−start
Within−run

(a)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Inter−arrival time intervals

S
iz

e
fr

eq
ue

nc
y

64
128−448
512

(b)
Size(Sectors) 64 128 192 256 320 384 448 512

All req. 0.716 0.009 0.010 0.009 0.009 0.011 0.011 0.225
Run start 0.577 0.012 0.013 0.012 0.013 0.015 0.016 0.342

Within run 0.916 0.004 0.004 0.004 0.004 0.005 0.005 0.057

(c)

Figure 4. Correlations between attributes (for Q10)
used in the synthesis methodology. (a) Arrival
time distribution conditional on run-start/within-
run requests, (b) Size distribution conditional on
inter-arrival time for run-start requests, (c) Size
distribution conditional on run-start/within-run re-
quests.

is typically 1 (there are no interleaving streams), with very
good sequentiality and the request sizes are typically much
larger. For instance, the 512 sector request size constitutes
99% of the requests in Q19, 90% of the requests in Q12,
85% of the requests in Q21, and 79% of the requests in Q3.

We can use our trace generation methodology discussed
in the previous section here as well. The only difference that
arises is that in some of these queries, with a lot of sequen-
tiality, runs can get very long making the number of run start
requests quite low. In fact, in Q19 and Q21, the number of
run start requests is less than 3%, making it difficult to un-
dertake the steps that involve separately dealing with run
start requests and within a run requests. In such cases, we
can simplify the methodology even further, i.e. step 1 of the
methodology remains as is, step 2 does not condition the ar-
rival time by run start/within a run (instead we have just
one arrival time distribution), and step 3 does not specifi-
cally deal with run start requests.

Figure 5 compares the response time characteristics of
the trace synthesized by applying our methodology to Q12

0 50 100 150
0

0.2

0.4

0.6

0.8

1
Q10:0.16

0 50 100 150
0

0.2

0.4

0.6

0.8

1
Q12:0.06

0 50 100 150
0

0.2

0.4

0.6

0.8

1
Q20:0.10

Figure 5. Accuracy of the final synthetic traces
shown for a representative query from each cate-
gory (Q10 for Category 1, Q12 for Category 2, and
Q20 for Category 3). The plots for other queries
can be found in [27]. x-axis is the response time,
and y-axis is the CDF. The solid line is the re-
sponse time CDF for the original trace, and the
dotted line is for the synthetic workload. nRMS
values are given at the top of each plot.

with that for the original trace. The results for the other
10 queries can be found in [27]. We find that our generic
methodolog, adapts automatically for this category (which
is a specialization of category 1 in that there is 1 active
stream and a lot more sequentiality), giving nRMS values
that are even less than 0.10.

5.4. Category 3: Q9, Q17, Q20

When we move to category 3 queries, we find that these
queries are randomly (uniformly) distributed in terms of
their starting locations, and there is very little run/stream be-
havior. The request sizes are also dominated by the smaller
64 sector value (for example, all requests in Q20 are for 64
sectors), making it redundant to study any correlations be-
tween size and other parameters. These characteristics help
us simplify/adapt our described trace generation method-
ology in the following ways. Step 1 is as before, except
now the run/stream lengths are invariably of size 1, and the
start sectors are randomly (uniformly) distributed. In terms
of Step 3, we can simply use the ECDF of sizes (which is
dominated by 64 sector accesses) to generate a size without
worrying about runs and other correlations. In terms of step
2, while we can assume independence between inter-arrival
times themselves, we need to however consider the correla-
tion between these times and the start location - with these
sectors randomly distributed, seek overheads are expected
to be higher, and this will consequently affect the time of
injection of the next request. We exploit the correlations be-
tween jump distance (note that in this case every request is
a an individual stream by itself, and the inter-stream jump
distance defined earlier automatically captures this) and the
inter-arrival times to generate the arrival characteristics for
this category (which is similar to how we exploited the cor-
relations between arrival times and runs in category 1).

The accuracy result for Q20 is given in Figure 5. As can
be seen, our synthesis provides very good results, and so is
the accuracy for Q9 and Q17 whose results can be found in
[27].

6. Concluding Remarks

Synthesizing representative I/O workloads for designing
and optimizing disk subsystems is an important and chal-

lenging area of research. This paper has focussed on one
important decision-support commercial workload, TPC-H,
towards completely characterizing and synthesizing its disk
block-level requests.

The main contributions of this work are two-fold: (i) a
synthesis methodology that captures correlations between
the primary attributes of the requests, and consequently be-
tween the secondary attributes we track as well, and (ii) ap-
plication of this methodology to the TPC-H queries to char-
acterize its behavior and synthesize the I/O request pattern
of its queries. An application of this methodology to I/O
requests of TPC-H suggest that hyper-exponential distribu-
tions can capture inter-arrival times At the same time, it is
possible to capture the regularity/non-regularity in the se-
quential behavior of requests from several inter-mingling
streams, by incorporating correlations between/across the
attributes of requests.

We have also examined the sensitivity of our methodol-
ogy in terms of the disk subsystem target that is used for the
validation, as well as the sensitivity to the system where the
trace is collected and the size of the dataset. Our method-
ology is fairly resilient to these factors, giving good accu-
racy across the spectrum (please refer to [27] for detailed
results).

Q1 Q3 Q4 Q5 Q6 Q7

Storage Fraction (×10−3) 3.46 3.64 2.76 3.43 3.46 3.47
nRMS 0.10 0.09 0.20 0.07 0.01 0.04

Q8 Q9 Q10 Q12 Q14 Q15

Storage Fraction (×10−3) 3.66 0.004 2.79 3.73 6.49 3.46
nRMS 0.05 0.15 0.16 0.06 0.19 0.01

Q17 Q18 Q19 Q20 Q21

Storage Fraction (×10−3) 2.03 3.54 3.44 4.57 2.95
nRMS 0.05 0.06 0.03 0.10 0.07

.

Table 3. Storage costs for synthetic generator as
a fraction of the space taken by the original trace
for each query. Note that the fractions need to be
multipled by 10−3

It is important to strike a good balance between the stor-
age overheads needed for the synthetic generator (relative to
the original trace) and the resulting accuracy. Table 3 quan-
tifies the size required to store the characteristics of the pri-
mary/secondary attributes and their correlations for our syn-
thetic workload in each query, relative to the storage for
the original trace. These numbers clearly illustrate the stor-
age benefits of our generator while providing response time
characteristics that closely mimic the original trace. This is
in addition to the numerous benefits of a synthetic work-
load generator explained earlier.

We would like to point out that we have been able to
present only a portion of the interesting results. At the
same time, we have also shown some of the negative re-
sults along the way in order to better motivate our interme-
diate steps. Our ongoing work is examining the use of the
developed techniques in not only evaluating them for other
workloads (both commercial and non-commercial) but also
in on-line workload characterization where we want to pre-
dict requests as the workload evolves for autonomic perfor-
mance tuning.

Acknowledgements:This research has been supported in
part by NSF grants 9988164, 0097998, 0325056, 0130143,
an IBM Faculty award, and an IBM SUR Equipment grant.

References
[1] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribution via

the EM algorithm.Scandinavian Journal of Statistics, 23:419–441, 1996.
[2] G. Box and G. Jenkins.Time Series Analysis Forecasting and Control. Holden-

Day, 2nd edition, 1976.
[3] D. DeSota. Characterization of I/O for TPC-C and TPC-H Workloads. InPro-

ceedings of the Workshop on Computer Architecture Evaluation Using Com-
mercial Workloads, January 2001.

[4] P. Dinda and D. O’Hallaron. An Extensible Toolkit for Resource Prediction In
Distributed Systems. Technical Report CMU-CS-99-138, School of Computer
Science, Carnegie Mellon University, July 1999.

[5] A. Downey and D. Feitelson. The elusive goal of workload characterization.
Performance Evaluation Review, 26(4):14–29, 1999.

[6] G. Ganger. Generating Representative Synthetic Workloads: An Unsolved
Problem. InProceedings of the Computer Measurement Group (CMG) Con-
ference, pages 1263–1269, December 1995.

[7] G. Ganger, B. Worthington, and Y. Patt.The DiskSim Simulation Environment
Version 2.0 Reference Manual. http://www.ece.cmu.edu/ ganger/disksim/.

[8] M. E. Gomez and V. Santonja. Analysis of Self-Similarity in I/O Workload
Using Structural Modeling . InProceedings of International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems(MASCOTS), March 1999.

[9] M. E. Gomez and V. Santonja. A New Approach in The Modeling and Gen-
eration of Synthetic Disk Workload. InProceedings of International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2000.

[10] W. W. Hsu, A. J. Smith, and H. J. Young. Analysis of the Characteristics of
Production Database Workloads and Comparison with the TPC Benchmarks.
IBM Systems Journal, 40(3), 2001.

[11] Y. Hu, T. Nightingale, and Q. Yang. RAPID-Cache — A Reliable and Inexpen-
sive Write Cache for High Performance Storage Systems.IEEE Transactions
on Parallel and Distributed Systems, 13(3):290–307, March 2002.

[12] IBM DB2. http://www-3.ibm.com/software/-data/db2/.
[13] IBM TPC-H Disclosure Report. http://www.tpc.org/-

results/FDR/tpch/x350100GB16procFDR.pdf.
[14] K. Keeton, G. Alvarez, E. Riedel, and M. Uysal. Characterizing I/O-intensive

Workload Sequentiality on Modern Disk Arrays. InProc. Workshop on Com-
puter Architecture Evaluation Using Commercial Workloads, 2001.

[15] K. Keeton, A. Veitch, D. Obal, and J. Wilkes. I/O Characterization of Com-
mercial Workloads. InProceedings of the Workshop on Computer Architecture
Evaluation Using Commercial Workloads, January 2000.

[16] D. Kotz and C. S. Ellis. Practical prefetching techniques for parallel file sys-
tems. InProceedings of the First International Conference on Parallel and Dis-
tributed Information Systems, pages 182–189, December 1991.

[17] Z. Kurmas, K. Keeton, and R. Becker-Szendy. Iterative Development of an I/O
Workload Characterization. InProceedings of the Workshop on Computer Ar-
chitecture Evaluation Using Commercial Workloads, January 2001.

[18] Z. Kurmas, K. Keeton, and K. Mackenzie. Synthesizing Representative I/O
Workloads Using Iterative Distillation. http://www.cc.gatech.edu/ kurmasz/.

[19] Linux Scalability Effort: File List. http://lse.-
sourceforge.net/project/showfiles.php?groupid=8875.

[20] T. M. Madhyastha and D. A. Reed. Input/output access pattern classification
using hidden Markov models. InProceedings of the Workshop on Input/Output
in Parallel and Distributed Systems, pages 57–67, November 1997.

[21] J. Oly and D. Reed. Markov model prediction of I/O request for scientific ap-
plication. InProceedings of the 2002 International Conference on Supercom-
puting, June 2002.

[22] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.IEEE
Computer, 27(3):17–28, 1994.

[23] J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis: Robust Database Stor-
age Management Based on Device-specific Performance Characteristics. In
Proceedings of the 29th International conference on Very Large Data Bases,
2003.

[24] E. Smirni and D. A. Reed. Workload characterization of input/output intensive
parallel applications. InProceedings of the Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, volume 1245, pages
169–180. Springer-Verlag, June 1997.

[25] TPC-H Benchmark. http://www.tpc.org/tpch/.
[26] N. Tran. Automatic ARIMA Time Series Modeling and Forecasting for Adap-

tive Input/Output Prefetching. PhD thesis, University of Illinois at Urbana-
Champaign, 2002.

[27] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, and S. Na-
gar. Synthesizing Representative I/O Workloads for TPC-H. Technical Report
PSU-CSE-03-018, Department of Computer Science and Engineering, Penn-
sylvania State University, Octomber 2003.

[28] Y. Zhang, J. Zhang, A. Sivasubramaniam, C. Liu, and H. Franke. Decision-
Support Workload Characteristics on a Clustered Database Server from the
OS Perspective. InProceedings of the 23rd International Conference on Dis-
tributed Computing Systems (ICDCS), May 2003.

