Errata in Chapter 9

On page 555, part of Remark 23 the equation in the middle of the page:

$$\tilde{H}_{ij}(0,w) = \sum_{k \in S, k \neq i} \tilde{H}_{kj}(0,w) \left(\frac{q_{ik}}{-q_{ii}}\right) \frac{q_{ik}}{q_{ik}+w}$$

should be changed to

$$\tilde{H}_{ij}(0,w) = \sum_{k \in S, k \neq i} \tilde{H}_{kj}(0,w) \left(\frac{q_{ik}}{-q_{ii}}\right) \frac{-q_{ii}}{-q_{ii}+w}$$

That directly affects the solution to Problem 92 on pages 563-566. However, it does *not* affect solution to problem 95 on page 572 where it is used.

Solution to problem 92

(changes marked in RED).

Solution. At t = 0 water level just crosses over from nominal to concerning. Using the same notation as in Problem ?? for X(t) and Z(t), we have X(0) = 20 and Z(0) = 1. Let T be the time when the water level crosses back to becoming nominal from concerning, i.e.

$$T = \inf\{t > 0 : X(t) = 20\}.$$

To compute E[T], we follow the analysis in Remark ?? and use $H_{ij}(x,t) = P\{T \leq t, Z(T) = j|X(0) = x, Z(0) = i\}$ in particular its LST w.r.t. $t, \tilde{H}_{ij}(x, w)$. To obtain E[T], the expected number of days from t = 0 for the water level to return to nominal values, we use

$$E[T] = (-1)\frac{d}{dw} \sum_{j=1}^{5} \tilde{H}_{1j}(20, w)$$

at w = 0. To compute $\frac{d}{dw}\tilde{H}_{ij}(x,w)$ at w = 0 here too we consider a very small h > 0 and obtain it approximately as $\frac{\tilde{H}_{ij}(x,h)-\tilde{H}_{ij}(x,0)}{h}$. Now, to evaluate $\tilde{H}_{ij}(x,h)$ and $\tilde{H}_{ij}(x,0)$, we can write down from Equation (??), for j = 1, 2, 3, 4, 5,

$$\begin{bmatrix} \tilde{H}_{1j}(x,w) \\ \tilde{H}_{2j}(x,w) \\ \tilde{H}_{3j}(x,w) \\ \tilde{H}_{4j}(x,w) \\ \tilde{H}_{5j}(x,w) \end{bmatrix} = a_{1,j}(w)e^{S_1(w)x}\phi_1(w) + a_{2,j}(w)e^{S_2(w)x}\phi_2(w) + \ldots + a_{5,j}(w)e^{S_5(w)x}\phi_5(w)$$
(1)

where $a_{i,j}(w)$, $S_j(w)$ and $\phi_j(w)$ values need to be determined for w = 0 and w = h for some small h.

We can obtain $S_j(w)$ for j = 1, 2, 3, 4, 5 as the scalar solutions to the characteristic equation

$$det(DS(w) - wI + Q) = 0.$$

But this is identical to that in Problem ??. Likewise $\phi_j(w)$ can be computed as the colimn vectors that satisfy

$$S_j(w)D\phi_j(w) = (wI - Q)\phi_j(w)$$

which is also identical to that in Problem ??. Thus refer to Problem ?? for $\phi_j(w)$ and $S_j(w)$ for j = 1, 2, 3, 4, 5 at w = 0 and w = h. What remains in Equation (??) are the $a_{i,j}(w)$ values for w = 0 and w = h. For that refer back to the approach in Remark ??. First of all

$$\begin{bmatrix} \tilde{H}_{1j}(x,w) \\ \tilde{H}_{2j}(x,w) \\ \tilde{H}_{3j}(x,w) \\ \tilde{H}_{4j}(x,w) \\ \tilde{H}_{5j}(x,w) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

for j = 1, 2 since the first passage time can never end in states 1 or 2 as the drift is negative in those states (only when the drift is positive is is possible to cross over into a particular buffer content level from below). Thus we only need $a_{i,j}(w)$ values for i = 1, 2, 3, 4, 5 and j = 3, 4, 5.

Of those fifteen unknown $a_{i,j}(w)$ values, nine can be obtained through the following boundary conditions:

$$\begin{split} \tilde{H}_{33}(20, \ w) &= 1, \tilde{H}_{34}(20, \ w) = 0, \tilde{H}_{35}(20, \ w) = 0, \\ \tilde{H}_{44}(20, \ w) &= 1, \tilde{H}_{43}(20, \ w) = 0, \tilde{H}_{45}(20, \ w) = 0, \\ \tilde{H}_{55}(20, \ w) &= 1, \tilde{H}_{53}(20, \ w) = 0 \quad \text{and} \quad \tilde{H}_{54}(20, \ w) = 0. \end{split}$$

For the remaining six unknowns we use for j = 3, 4, 5

$$\tilde{H}_{1j}(0,w) = \sum_{k=2}^{5} \tilde{H}_{kj}(0,w) \left(\frac{q_{1k}}{-q_{11}}\right) \frac{-q_{11}}{-q_{11}+w}$$

$$\tilde{H}_{2j}(0,w) = \tilde{H}_{1j}(0,w) \left(\frac{q_{21}}{-q_{22}}\right) \frac{-q_{22}}{-q_{22}+w} + \sum_{k=3}^{5} \tilde{H}_{kj}(0,w) \left(\frac{q_{2k}}{-q_{22}}\right) \frac{-q_{22}}{-q_{22}+w}$$

where q_{ij} corresponds to the element in the i^{th} row and j^{th} column of Q.

Solving the above fifteen equations we get for w = 0,

$\left[\begin{array}{c} a_{1,3}(0) \\ a_{1,4}(0) \\ a_{1,5}(0) \end{array}\right]$	$\begin{array}{cccc} & a_{2,3}(0) & a_{3,3}(0) \\ & a_{2,4}(0) & a_{3,4}(0) \\ & a_{2,5}(0) & a_{3,5}(0) \end{array}$	$ \begin{array}{l} a_{4,3}(0) \\ a_{4,4}(0) \\ a_{4,5}(0) \end{array} $	$\left.\begin{array}{c}a_{5,3}(0)\\a_{5,4}(0)\\a_{5,5}(0)\end{array}\right]$	=
0.0093×10^{-3}	-0.2211×10^{-4}	-0.2109	-0.0033	-0.0014]
0.1326×10^{-3}	0.1117×10^{-4}	-0.8945	-0.0466	-0.0208
-0.1419×10^{-3}	0.1094×10^{-4}	-1.1307	0.0500	0.0223

Also, for w = h = 0.000001, the values of $a_{i,j}(h)$ are the same as that when w = 0 to the first few significant digits. Hence we do not present that here.

Now using $a_{i,j}(w)$, $S_i(w)$ and $\phi_i(w)$ values for i = 1, 2, 3, 4, 5 and j = 3, 4, 5 at w = 0 and w = h in Equation (1) we can compute $\tilde{H}_{ij}(x, w)$. In particular for x = 20 (which is what we need here) we get

$H_{13}(20,0)$	$H_{14}(20,0)$	$H_{15}(20,0)$		0.1583	0.3995	0.4422	
$\tilde{H}_{23}(20,0)$	$\tilde{H}_{24}(20,0)$	$\tilde{H}_{25}(20,0)$		0.1497	0.3913	0.4590	
$\tilde{H}_{33}(20,0)$	$\tilde{H}_{34}(20,0)$	$\tilde{H}_{35}(20,0)$	=	1	0	0	.
$ ilde{H}_{43}(20,0)$	$\tilde{H}_{44}(20,0)$	$\tilde{H}_{45}(20,0)$		0	1	0	
$\tilde{H}_{53}(20,0)$	$\tilde{H}_{54}(20,0)$	$\tilde{H}_{55}(20,0)$		0	0	1 _	

The values of $H_{ij}(20, h)$ for some small h do not differ in the first four significant digits from the corresponding $\tilde{H}_{ij}(20, 0)$ values for i = 1, 2, 3, 4, 5 and j = 3, 4, 5, hence they are not reported.

Thus we have the expected number of days from t = 0 (with initial water level X(0) = 20 as well as initial environmental condition Z(0) = 1) for the water level to become nominal as

$$E[T] = (-1)\frac{d}{dw} \sum_{j=3}^{5} \tilde{H}_{1j}(20, w)|_{w=0} = -\lim_{h \to 0} \sum_{j=3}^{5} \frac{\tilde{H}_{1j}(20, h) - \tilde{H}_{1j}(20, 0)}{h}$$

which is approximately 15.593 days by using h = 0.000001.