
Errata in Chapter 6

Page 335, after solution to problem 54
(changes marked in RED).

Before proceeding onto the next example it is worthwhile to comment on some practical consid-
erations regarding the conclusion of the above problem. In many situations one is faced with this
type of a decision. For example, consider fast food restaurants such as those making submarine
sandwiches or burritos.

Page 346, Section 6.3.2 ASTA
(changes marked in RED).

Consider a closed Jackson network (with all the usual notation) in steady state. Let πj(x) be
the probability that an arriving customer into node j in steady state will see xk customers in node
k for all k so that x is a vector of those xk values. Notice that x1 + x2 + . . .+ xN = C − 1 since we
are not counting the arriving customer into node j in the state description.

Page 353, Section 6.3.3 Single-Server Closed Jackson Networks
(changes marked in RED).

Although for the two closed Jackson network examples thus far, the computing G(C) was not
particularly difficult, as the number of nodes and customers increase, this would become a very
tedious task. There are a few algorithms to facilitate that computation, one of which is provided
in the exercises at the end of the chapter. Nonetheless, there is one case where it is possible to
circumvent computing G(C). That case is a closed Jackson network where there is a single server
at all the nodes. Assume that for all i, there is a single server at node i with service rate µi
operating FCFS discipline at every node. Then the mean performance measures can be computed
without going through the computation of the normalizing constant G(C). For that we first need
some notation (for anything not defined here the reader is encouraged to refer to the closed Jackson
network notation). Define the following steady-state measures for all i = 1, . . . , N and k = 0, . . . , C:

• Wi(k): Average sojourn time in node i when there are k customers (as opposed to C) in the
closed Jackson network;

• Li(k): Average number in node i when there are k customers (as opposed to C) in the closed
Jackson network;

• λi(k): Measure of average flow (sometimes also referred to as throughput) across node i in
the closed Jackson network when there are k customers (as opposed to C) in the network.

We do not have an expression for any of the above and the objective is to obtain them iteratively.
However, before describing the iterative algorithm, we first explain the relationship between those
parameters.

On the basis of the arrival theorem described in Remark 14, in a network with k customers
(such that 1 ≤ k ≤ C) the expected number of customers that an arrival to node i (for any
i ∈ {1, . . . , N}) would see is Li(k− 1). Note that Li(k− 1) is the steady state expected number of
customers in node i when there are k− 1 customers in the system. Thereby, the net mean sojourn
time experienced by that arriving customer in steady state is the average time to serve all those in
the system upon arrival plus that of the customer. Since the average service time is 1/µi, we have

Wi(k) =
1

µi
[1 + Li(k − 1)].

1



Let a be the solution to a = aP as usual. with the only exception that the aj values sum to
one here. Thus the aj values describe the fraction of visits that are made into node j. The aggre-

gate sojourn time weighted across the network using the fraction of visits is given by
N∑
i=1

aiWi(k)

when there are k customers in the network. One can think of an aggregate sojourn time as the
sojourn time for a customer about to enter a node. Hence by conditioning on the node of entry as
i (which happens with probability ai) where the mean sojourn time is Wi(k), we can get the result
N∑
i=1

aiWi(k). Thereby we derive the average flow in the network using Little’ law across the entire

network as λ(k) = k
N∑
i=1

aiWi(k)

when there are k customers in the network. Essentially, λ(k) is the

average rate at which service completion occurs in the entire network, taken as a whole. Thereby
applying Little’s law across each node i we get Li(k) = λ(k)Wi(k)ai when there are k customers in
the network. Since ai, the ith element of a is not unique, we can think of the throughput at node i
to be

λi(k) = ν(k)ai,

where ν(k) is a constant as λi(k) also satisfies the flow balance. From Little’s law we have Lj(k) =

λj(k)Wj(k), summing over all j we get (using the fact that
∑k

j=1 Lj(k) = k)

k =
k∑
j=1

λj(k)Wj(k) = ν(k)
k∑
j=1

ajWj(k).

Thus we have

ν(k) =
k∑k

j=1 ajWj(k)
and

λi(k) =
kai

N∑
j=1

ajWj(k)

.

Using the above results we can develop an algorithm to determine Li(C), Wi(C) and λ(C)
defined above. The input to the algorithm are N , C, P and µi for all i ∈ {1, . . . , N}. For the
algorithm, initialize Li(0) = 0 for 1 ≤ i ≤ N and obtain the ai values for all i ∈ {1, . . . , N}. Then
for k = 1 to C, iteratively compute for each i (such that 1 ≤ i ≤ N):

Wi(k) =
1

µi
[1 + Li(k − 1)],

λi(k) =
kai

N∑
j=1

ajWj(k)

,

Li(k) = λi(k)Wi(k).

2



Page 356, Solution to Problem 59
(changes marked in RED).

We can obtain a = [a1 a2 a3 a4 a5] by solving for a = aP and a1 + a2 + a3 + a4 + a5 = 1 to get
a particular case of vector a as

a = [1/2 1/8 1/8 1/8 1/8].

We are also given in the problem statement µ = [µ1 µ2 µ3 µ4 µ5] = [1/6 1/17 1/28 1/13 1/23].
By initializing Li(0) = 0 for i = 1, 2, 3, 4, 5 we can go through the algorithm of iteratively

computing for k = 1 to C (and all i such that 1 ≤ i ≤ 5) using the following steps: Wi(k) =
1
µi

[1 +Li(k−1)]; λi(k) = kai∑N
j=1 ajWj(k)

; and Li(k) = λi(k)Wi(k). These computations are tabulated

in Table 6.3. From the last row of that table notice that with C = 16, the expected number of
connections at nodes 1, 2, 3, 4 and 5 are 3.6023, 1.327, 7.208, 0.7815 and 3.0812 respectively. Also
the throughput of the database-server system is indeed λ1(16) which is 0.1360 transactions per
millisecond. If we were to increase C to 25, 50, 75 and 100, the corresponding values are described
in Table 6.4. Notice in the table that the throughput λ1(C) has practically leveled off and increasing
C is mostly contributing only to longer queues in node 3 (i.e. disk 2) which is the bottleneck in
this system (and the throughput tends toward µ2, the processing rate of disk 2). Also notice how
all the other nodes have not only scaled very well but the contribution to the overall number in the
system is becoming negligible. This will be the basis of bottleneck-based approximations that we
will consider in the next chapter.

k L1(k) L2(k) L3(k) L4(k) L5(k) λ1(k)

1 0.2286 0.1619 0.2667 0.1238 0.2190 0.0381
2 0.4631 0.3102 0.5570 0.2294 0.4403 0.0628
3 0.7018 0.4452 0.8714 0.3195 0.6621 0.0800
4 0.9433 0.5674 1.2102 0.3962 0.8829 0.0924
5 1.1860 0.6776 1.5737 0.4615 1.1013 0.1017
6 1.4284 0.7765 1.9620 0.5173 1.3158 0.1089
7 1.6692 0.8650 2.3754 0.5649 1.5255 0.1146
8 1.9073 0.9439 2.8138 0.6057 1.7294 0.1191
9 2.1414 1.0142 3.2772 0.6406 1.9266 0.1228

10 2.3706 1.0766 3.7657 0.6706 2.1165 0.1258
11 2.5940 1.1321 4.2790 0.6964 2.2985 0.1283
12 2.8109 1.1812 4.8169 0.7187 2.4723 0.1304
13 3.0207 1.2246 5.3792 0.7379 2.6376 0.1321
14 3.2228 1.2631 5.9654 0.7546 2.7942 0.1336
15 3.4167 1.2970 6.5752 0.7690 2.9421 0.1349
16 3.6023 1.3270 7.2080 0.7815 3.0812 0.1360

C L1 L2 L3 L4 L5 λ1(C)

25 4.8794 1.4786 13.8299 0.8418 3.9704 0.1409
50 5.9284 1.5435 37.0910 0.8660 4.5711 0.1428
75 5.9972 1.5454 61.9915 0.8667 4.5992 0.1429

100 5.9999 1.5455 86.9880 0.8667 4.6000 0.1429

3



Page 374, Exercise 6.10
(changes marked in RED).

Compute the in-process inventory of the number of products in the system. Assume infinite
waiting area and exponential service times.

Page 374, Exercise 6.11 (b)
(changes marked in RED).

Consider a closed queueing network with two identical stations and C customers in total. The
service times at both stations are according to exp(µ) distribution. Each customer at the end of
service joins either stations with equal probability. Let pi be the steady state probability there are
i customers in one of the queues (and C − i in the other). Is the following TRUE or FALSE?

pi =

(
C

i

)
1

2C
for i = 1, 2, . . . , C

4


